k=m=880

45
40 - e N S N et
35 - /o / b T
/ \ / \\ ;
g 304 / \ \ /
B y 4 /
= ; |]
g“? 25 T ,’/ u\ ."I
Q 3 ’f’ E\‘\‘ /j
€ 20 v/ o/
N
15 ; el e A e
10 - —o— Panel-block on Fib
5 -#--- Panel-dot on Fib
+- Parallel alg on Mesh
0 ¥ T H T T
0 200 400 600 800 1000 1200

Matrix dimension n

Figure 7: Performance of various parallel matrix multiplication algorithms

6. REFERENCES

[11 8. G. Akl, The design and Analysis of Parallel Algorithms, Queens
University, Prenticg Hall International, Inc, 1989.

[2] A. V. Anisimov, "Fibonacci Hypercube", International Journal
of computer mathematics, Vol. 25,pp. 221_227, 1997.

[3] A. Chtchekanova, J. Gunnels, G. Morrow, J. Overfelt, R. geijn,
"Parallel Implementation of BLAS : General Techniques for
level3 Blas", TR_95 40, Department of Computer Sciences,
University of Texas, Intel Research council, 1995.

[4] G.C. Fox, M. A Johnson, G .A. Lyzenga, S. Wotto, J. K.Salmon
and D. W. Walker , Solving Problems on Concurrent Processors,
Prentice Hall, Englewood cliffs, N. J. Vol.1, 1998.

[5] J. Guaonels, C. Lin, Greg Morrrow, R. Geijn, "Analysis of a Class
of parallel Matrix Multiplication Algorithms", 4 Technical Paper
Submitted to IPPS 98, 1998.

[6] R. Geijn, "Scalable Universal Matrix Multiplication Algorithms
, Concurrency"” : Practice and Experience , Vol. 9(4), pp. 255_274
,1995.

[71 R. V. Geijn, Using PLAPACK : Parallel Linear Algebra Package”,
The MIT Press, 1997.

{8] B. Grayson, A. Pankaj shah, R. Geijn, "A High Performance
Strassen Implementation", /ntel Research council, Junel3. 1995.

[91 J. M. Jadish, Parallel Algorithms and Matrix Computation,
University of Cambridge, Clam Don Pess. Oxford , 1998.

[10] L. Jokar, "Parallel Algorithms for Matrix Multiplication”, M.S
Thesis, Department of mathematics and computer science, Tehran
university, 2002.

1 Apmiirkabir/ Vol.17/No.64-A/ Electrical Engineering)/ Spring-Sununer 2006 @/ s

m=880

45
40 ”*_*\‘
35 -
30 - ¢
8
£ 25
2
3
§ 20 4
ol \
10 -
5
0 , : , , :
0 200 400 600 800 1000 1200

Matrix dimensions k=n

Figure 5: Performance of parallel matrix multiplication algorithm based on panel-block that designed to run on C F.4

k=880

45

40 -

% / \/\W

25 A

20

MFLOPS/node

15 4

10

0 : : . . .
0 200 400 600 800 1000 1200

Matrix dimensions m=n

Figure 6: Performance of parallel matrix multiplication algorithm based on panel-dot that designed to run on C F 4.

@%ﬁ Amirkabir/ Vol.17/No.64-A/(Electrical Engineering)/ Spring-Summer 2006 16

matrix multiplication algorithm based on panel-block that
are designed to run on Cp 4. For the case where

m>>n fn1 42, this algorithm is cost-optimal, we present

results for the case where m dimension is fixed and large.
It is clear from the graph (in accordance to the Figure 5)
that to increase dimension of k in comparison to the
dimension of m, the speed of performance of algorithm
will be reduced. Therefore if dimension of m is fixed and
large this algorithm will be an improved algorithm.

In Figure 6, we show the performance of parallel
matrix multiplication algorithm based on panel-dot that
are designed to runon Cf 4 . Considering, for the case

where k >>n,f, ., , this algorithm is cost-optimal, we

present results for the case where & dimension is fixed
and large. It is clear from the graph (in accordance to the
Figure 6) that to increase dimension of m in comparison to
the dimension of k, the time of algorithm performance will
be increased. Therefore if dimension of k& is fixed and
large this algorithm will be an improved algorithm.

In Figure 7, the results of the performance of panel-
block and panel-dot algorithms that are designed to run on
Cy 4 and parallel multiplication algorithm that is designed

to run on a 4x2 mesh structure [1] were compared. We
present results for the case where both dimensions of &
and m are fixed and large. It is clear from the graphs that
the panel-block algorithm has a better performance time in
respect to the other two algorithms. Also, the performance
time of both panel-block and panel-dot algorithms on the
Fibonacci hypercube structure were much better than
performance time of the parallel multiplication algorithm
on the mesh structure.

5. CONCLUSION

The main drawback of the hypercube structure, is the
necessary increase of each vertex valence while increasing
a hypercube dimension. This means that the value of the
communication hardware grows faster than a hypercube
dimension. Taking into consideration that increase of the
hypercube dimension and vertices of higher dimensional
mesh will lead to a comsiderable rise in the number of
connections of processors and consequently this will lead
to a fast growth in the hardware. By using the presented
algorithms on the Fibonacci hypercube structure, the cost
of connection amongst the processors will be reduced
(because the Fibonacci hypercube structure has the same
property as hypercube structure but with fewer connectors
plus the same mamber of vertices).

The panel-block algorithm is designed to run on
CF py structure. As we know the number of processors

in this structure is f,,ﬁz, where 7, is Fibonacci

hypercube dimension. As shown in the previous sections,

the time complexity of this algorithm is
Qknnity, + krm yand for the case where
ny+2

m>>mf, ., . this algorithm is cost-optimal. In
accordance to the procedure of this algorithm, the steps of

algorithm will be repeated by nk 2 times, therefore, if
b

the dimension of m is fixed and large, this algorithm
would have a better performance time in comparison to
the panel-dot algorithm.

The panel-dot algorithm on the Fibonacci hypercube
structure with dimension of #} uses fy; 4+2 Processors.

As shown in the previous sections, the time complexity of

this algorithm is O{nmnyty, + e
ny+2

yand for the case

where &k >>mf, ., . this algorithm is cost-optimal.
Since the steps of this algorithm will be repeated by
n *% 9 times, therefore, if the dimension of % is fixed

and large, this algorithm in comparison with panel-block
algorithm has a better performance time.

Comparing the graph of the charts in the Figures 5 and
6 it can be said in the points where k > mz, the speed of
performance of panel-dot algorithm is higher than panel-
block algorithm. And in the points where m >k, the
panel-block algorithm has a better performance time than
pane-dot algorithm,

Considering dimension of m bas a fixed large quantity,
the panel-block algorithm in comparison with the panel-
dot algorithm will take less time to process and if
considering dimension of & has a fixed and large
quantity, the panel-dot algorithm in comparison to the
panel-block algorithm will take less time to process.

As it is seen in the Figure 7, when both dimensions of k
and m are fixed and large, the panel-block algorithm has a
better performance time than panel-dot algorithm and
parallel multiplication algorithm on mesh structure. Also,
the performance time of both panel-block and panel-dot
algorithms on the Fibonacci hypercube structure are much
better than the performance time of the parallel
multiplication algorithm on the mesh structure.

15 Amirkabir/ Vol 17/No.64-AA Electrical Engineering)/ Spring-Summer 2006 ﬁ@g i

Cost=Tp *P=0(knn) fpy +2 +knmn). (10)
We know the condition of cost- optimality is:
T
=28 _ow. (1)
P*Tp

Therefore to have cost -optimal algorithm we must
have:

k. [(12)

1+2 << knm

371] << m.

n1 +2

Therefore, for the case where nf,,, <<m the

algorithm is cost-optimal.
B. Parallel Matrix Multiplication Algorithm Based on

Panel-dot
Consider C'f q structure, as we know the number of

processors in this structure is f,,,, where] is

Fibonacci hypercube dimension, Assume 4 and B are
two matrices with mxk and kxn dimension. Matrix 4
will be divided to row panel with b size, and Matrix B
will be divided into column panel with /x5 dimensions.
Therefore, we would have:

G0 Copr || G

: : §= : (30;311...|BV)
Cnf 0 Bt |y ’
I /Al()BQ A()B/

A,VBO N Bnb

a3)
This algorithm is designed based on multiplication of
row panels of 4 by column panels of B. This
multiplication is called multiplication of panel-dot. In this

algorithm, from mmultiplication of row panel A s by

column panel B, block €, of matrix C will be

obtained.
In this algorithm, the following steps will be repeated

by % xf% times.

1) Members of panel A s will be distributed amongst
all processors in the vector based method.

2) Members of panel B, will be distributed amongst
all processors in the vector based method.

3) The result of C{()=A4@)*B(i) will be computed by
all the processors simultancously.

4) With sum to one processor, the result will be saved
inCyp.

Algorithm procedure is shown as follows:

Procedure Fib_Panel dot Multip{ 4,8,C)

Begin
For A=0 to ’% Do
For s=0 to % Do
Begin
For i=0to f,.,
Begin
A Api;
By« Bj s ;
C)=A@)xBG) ;
end
Sum_to_one(Cp s);

Do in Parallel

end
end.
Figure 4: Panel _dot Algorithmin Cf, ny Structure

Cost-Optimality:
The first and second steps of algorithm take constant
time. In the third step, the multiplication of two matrices

with the dimensions of 5x and % xb
fn} +2 /) ny+2

will be computed by all the processors simultaneously.

Therefore, this multiplication takes (b2 x K) time.
/; ny+2

The fourth step of algorithm takes (fg +bztw Jup time.
There are % x% iterations of steps 1 to 4 [10]. Thus,
the algorithm time complexity is equal to:

_ . 2 2
Tp _0(% %(b *%ﬂ1+2 +(t +b £, 0m)
k

=0 +umn,t).
fn] +2 Tw
(14)

Then cost of algorithm will be equal to:
Cost=Tp *P=0(knm+nmny fp; +2). (15)
We know the condition of cost -optimality is:

Ts
E=="2 =0q). (16)

P*Tp

Therefore, to have cost -optimal algorithm we must
have:

nimn f}21 Lo << kam
= n f 1+2 <k.
7

Therefore, for the case where 7 fn1 1 <<k the algorithm
is cost-optimal.

4, PERFORMANCE RESULTS

This section reports the performance of the algorithms
that we presented in the previous sections, on a system
with 8 nodes.

In Figure 5, we show the performance of parallel

ﬁﬁ?j; Amidrkabir/ Vol 17/No.64-A/ Electrical Engineering)/ Spring-Summer 2006

14

If P, did not receive the data then P ¢x;
If n=0 Return();
If n=1 then 7, Send Datato i,
Else
{ /*adjacent function returns the
processor £y that is in bit nth differ.*/

F, Send Data to adjacent(£ ,n) ;
do in parallel

{
Broadcast_Fib(n-1,x);
Broadcast_Fib(n-2,x);
3

adjacent

3
3

Figure 2: Broadcasting algorithm in Fibonacci hypercubeC g 5,

E. Model of Communication Cost

We will assume that in the absence of network conflict,
sending a message of length 77 between any two nodes
can be models by:

M

where ¢, represents the latency (startup cost) and f,,
represents the cost per byte transferred.

t, +nt,.

3. PARALLEL ALGORITHMS

In this part, two optimal parallel algorithms are given
for the matrix multiplication on the Fibonacci hypercube
structure. We show these algorithms are cost-optimal.

Parallel Matrix Muitiplication Algorithm Based on
Panel-block

CF,nl

If we consider structure, as we know the

number of processors in this structure is J, m+2 that "1 is
Fibonacci hypercube dimension. Assuming A and B are
two matrices with MXk and k*7 dimension, Matrix 4
will be divided into column pane! each with b size, and
Matrix B will be divided into blocks with bxb
dimensions. Therefore, we would have:

Byo - BO,%
(CO|CIQ,..|C’/)=(A01A1|...|AV) : : :
b b

=(A0B070+ .+A%B%,Olm|AOBO,%+W+A{€/bBIV,%)'

This algorithm is designed based on multiplication of
column panels of A by blocks of B . This multiplication
is called multiplication of panel-block. In this algorithm,
from the sum of multiplication of the column panels of
matrix A4 by block of i column of matrix B, panel Cj

of matrix C will be obtained.
In this algorithm the following steps will be repeated by

®

k .
%x A times.

1) Members of panel 4y will be distributed amongst
all the processors in the vector based method.

2) A block from matrix B, will be distributed in every
PTOCESSOT.

3) The result of C()=C@E)+A()*B(E) will be computed
by all the processors simultaneously.

4) After the steps 1 to 3 repeated by k/b times. In
gathering operation, a panel of matrix C will be
computed.

Algorithm procedure is shown as follows:

Procedure Fib_Panel block Multip(4,B,()

Begin
= n
For =0 to A Do
Begin
For i=0 to f,,,
Ci)«0;
For s=0to % Do
Begin
For i=01t0 f,.,
AWy 4; s
Broadcast_Fib(n1,B;s p)

For i=0 to f,,, DoinParallel
CH)=C@)+A4G)xB@) ;
end
Gatherto C,;

end
end.
Figure 3: Panel-block Algorithm in C F,py structure

Do in Parallel

Do in Parallel

Cost-Optimality:
In the first step of algorithm, A, in the constant time

will be distributed amongst all the processors in the vector
based method. The second step of algorithm takes

(ts +b2t,,)n; time. In the third step, the multiplication of

two matrices with the dimensions of % 4% b and
"

bxb will be computed by all
simultaneously. Therefore,

(%n1+2 sb2) time. The fourth step takes constant

the processors
this multiplication takes

time. There are % x% iterations of steps 1 to 4 [10].
Thus, the algorithm time complexity is equal to:

_ . 2 on2
TP—O(% AGEY tw)nl+%nl+2 b%y)

™
=0kt +).
P fn] +2

Then cost of algorithm will be equal to:

®

13 Amirkabir/ Vol 17/No.64-A/ Electrical Engineering)/ Spring-Summer 2006 @{j;

dimension. We assume that the Cj ,, shows a Fibonacci

hypercube with a number of f,,,, vertices which in that
index, each vertex can be shown with 77 bit. Fibonacci
hypercube with m dimension can be presented as

n_Fibonacci hypercube.
If we show the connections of the processors as a

graph, therein the set of all edges in C ,

presented as £, and the set of all labels of vertices of
C . pstructure presented as FCp, . Also the number of
vertices of C,, canbe presented by |FCp| .

In Figure 1, Fibonacci hypercubes Cpo . CFry

Cr . CF 3 are depicted.
0 1
CF,O CF,l
10 010
000 001
00 01
100 101
Cra C F.3

v

- - . A A ¥
Figure 1: Fibonacci hypercubes C o, Cp ,C 72 Cps

B. Properties of the Fibonacci Hypercube

1* Property: FCp11=0FCp+10FC),_1. L

2™ Property:
Fcn+k :FCkOFCn—l +FCk~IOIOFCn_2 @

3 Property: Number of vertices of C ra 1S equal
to f;z-l-’.? .

4th Property: If ¢ and b are adjacent vertices in C;, ,
then H(a, b)=1 [2] and if a,be FC, and H(a,b)=1
then a and b are the adjacent vertices in C; .

C. Data Decomposition

For simplicity, we will assume that the dimensions m,
n and k are integer multiples of the algorithmic block
size b. When discussing these algorithms, we use the
following partitioning A, B and C :

X=(X, 3)

Xll"{an)=

where X e{A,B,C}and my and ny are the row and
column dimension of the indicated matrix.

Also,
Xoo Xo1 X 0 ny
> /b
X0 X1 Xgg
X=] /b, (4

me’() meJ Xm)/,n%

In the above partitioning, the block size b is chosen to
maximize the performance of the local matrix-matrix
multiplication operation.

D. Data Distribution
1): Vector based matrix distribution

It is more natural to start by distributing the problem to
nodes, we pattition vector x and assign portions of this
vector to nodes. The matrix A is then distributed to nodes
so that it is consistent with the distribution of the vectors,
as we describe below.

Assume that we have p processors. We use the

following partitioning
0
=)
X p_.]

This vector is distributed by assigning x, to ;. We
call such matrix distribution, vector based.
1): Broadcasting a datum to Fibonacci hypercube
architecture

We broadcast a datum to Fibonacci hypercube Cr

with O(n) time complexity. According to the first property
and structure of Fibonacci hypercube the following
identities for time complexity can be obtained:

TCr)=T(Ch,)+1=T(Cp,)+2=..= T(CF,O Y+n

T(Cr,)=T(Cro)+n

=T(C,,)=0). ©
T(Cry)=1 e

The algorithm for broadcast to C ;, is as follows:

Broadcast_Fib(n,x)
{

ﬁ}?@‘; Amirkabir/ Vol 17/No.64-AA Electrical Engineering)/ Spring-Summer 2006

12

Optimal Parallel Matrix Multiplication Algorithms

On a Fibonacci Hypercube Structure

L. Jokar'; H. Ahrabian °

ABSTRACT

In this paper, we give two new optimal parallel algorithms for matrix multiplication which are designed
to run on a Fibonacci hypercube structure. At first, we present a broadcast algorithm on Fibonacci
hypercube with O(z) time complexity. We use this broadcast algorithm and algorithms presented by

Gunnels, Lin, Morrow and Geijn on a mesh structure, in order to present two optimal parallel matrix
multiplication algorithms on a Fibonacci hypercube structure. We show these algorithms are cost-optimal.

The performance of the algorithm has been tested on a simulative parallel system.

KEYWORDS

Broadcast, Cost-Optimal, Fibonacci Hypercube, Matrix Multiplication.

1. INTRODUCTION

In the last three decades, numerous parallel algorithms
were implemented for the matrix multiplication. The most
common parallel matrix multiplication algorithms were
Fox's algorithm, Cannon's algorithm, Strassen's algorithm
and parallel algorithms which were designed to run on
Mesh and Hypercube structures [1], [4], 8], [9]. In 1998,
Gunnels, Lin, Morrow and Geijn with regard to various
dimension sizes of matrixes, presented 5 parallel
algorithms for the multiplication of matrixes on a mesh
structure [3], [31, [6], [7].

As you know, all the parallel computers consist of
many types of Mesh, Hypercube and Perfect shuffle
structures. Even though the Hypercube structures are very
useful, they also have their own problems. More of
Hypercube dimensions will lead to a rise in the number of
processors and connection between them. Consequently,
this will lead to a fast growth in the hardware. For this
reason, in recent years researchers were searching for a
new structure which could substitute the hypercube and to
eliminate this problem to some extent. In 1997, the
Fibonacci hypercube structure was recommended by
Anisimov [2]. Anisimov proved that the Fibonacci
hypercube has the same property as hypercube but with

fewer connectors plus the same mumber of vertices.

In this paper, we give two new optimal parallel
algorithms for matrix multiplication which are designed to
run on this structure. We show these algorithms are cost-
optimal.

2. BACKGROUND

A. The Fibonacci Hypercube Structure

The Fibonacci hypercube was introduced by Anisimov
[2] initially in 1997, This Fibonacci hypercube is a new
topological structure that is obtained recursively using
formulas similar to the relation of Fibonacci numbers. It
has properties very close to the hypercube. In this part, a
very brief explanation is given:

Assume that we have P Processors

Py Py Pp g
Knowing that p is a Fibonacci number and for each

processor a binary index is attributed which the binary
representation of numbers is substitited by the
representation of numbers by sums of Fibonacci numbers.
Each processor will be connected to the vertices that their
index differs by just in one position. They called this
structure the Fibonacci hypercube. In this structure, the
number of bits which form the index of vertices is called

i. L. Jokar was M.S Student, Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran,
Tehran, Iran and is an Educator, Department of ComputetEngineering, Islamic Azad University, University of Rodehen, Tehran, Iran.
ii. H. Ahrabian is an Assistant Professor, Department of Computer Science, School of Mathematics, Statistics, and Computer Science,

University of Tehran, Tehran, Iran.

11 Amirkabir/ Vol 17/No.64-A/ Electrical Engineering)/ Spring-Sununer 2006 @gj:

