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Figure 14: Growth of the maximum simultaneous electric power

demand in Iran (X10GW), and its smoothed versions, obtained
by FSF, MA, FMF.

8. CONCLUSION

In this paper, a novel method is introduced based on
fuzzy logic to smooth out signals. The proposed method
utilizes a single fuzzy rule to share the values of
neighboring sharp points. Both time domain and the
frequency domain properties of the signal approve
superiority of the method in comparison with some
conventional and the fuzzy median filters. Application of
the Fuzzy Smoothing Filter (FSF) has led to much better
results when applying the smoothed signals into modeling
processes, two of which are presented in this paper. This
method can be generalized into two-dimensional domain,
more suitable for image processing applications; this is
under investigation and will be reported in near future.
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increases, although it improves noise annihilation at high
frequencies, the pass-band is decreased.

Power Spectrum of Fuzzy Median Filter

0 ¢ 0.2 03 04 05 086 07 08 08 1
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Power Spectral Density
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=1, 6p=0.5
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4
10 + : . .
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Frequency

Figure 12: Power Spectrum Estimates of Fuzzy Smoothing filter
(FSF) compared to the Fuzzy Median Filter (FMF).

7. APPLICATIONS

The proposed method is applied to smiooth out
economic signals in modeling economic dynamic systems.
Generally, economic data contain uncertainty for both
ambiguity in definitions of the economic concepts and
measurement inaccuracy. Such uncertainties often cause
rapid changes in the signal while a smooth one is
expected. Particularly, when derivatives of data signals are
used to model socio-economic systems, fluctuating signals
are often illogical and undesired, and therefore presence of
such signals impedes proper model making. As a fact,
smoothing filters, if they have good performance in both
frequency and time domains, can help in such problems.

For example, the wealth is usually estimated by the
ratio of the whole liquidity to the general prices index:
Wealth = Total Liquidity / General Prices. Obviously,
variations of a national wealth might not be fast, unless a
very destructive event, such as a war, exterminates a
considerable portion of a country’s economy. The wealth
estimate in Iran is depicted in Figure 13, along with
smoothed signals obtained through the MA, FSF and FMF
filters. The fuzzy smoothed signal by FSF is used to
construct macroeconomic model of consumption in Iran
[11]. It is not so difficult to observe from the figure that
the FSF has outperformed the others by preserving much
more information of the original signal. The Euclidean
norms of the deviations of the original signal from the
smoothed signals are given in Table 1. Although sharpness
of the MA filter output is the least, it has lost information

at most of the sample points.

Table 1: Comparison of the Wealth signal with its smoothed
versions, Sharpness and the Euclidean Difference with the
original signal.

Original MA FSF FMF
Sharpness 0.301 0.059 0.102 0.196
Difference 0 0.585 0.299 0.406
4 T Y T T T T
Fuzzy / )
Median F
3L § Ji i
Fuzzy . /)
Smoothed ™. |
28 e N —

4 MA Main Signal

1960 1965 1970 1975 1980 1985 1990 1995 2000

Figure 13: Wealth estimate |Billion Rials/Fixed Prices of 1990]
in Iran and its smoothed versions, obtained by FSF, MA, FMF.

As another application, we take an electric power
demand signal in Iran. It represenis the maximum
simultancous annual demands including blackouts and
frequency drops. Since the whole demand for goods in a
country is a subjective concept depending on the culture
and many other rigid nation lifestyles, it cannot have
abrupt changes from one year to the next year.
Uncertainties, especially raised by measurement errors,
have caused this signal to change rapidly as depicted in
Figure 14. By applying the FSF to this signal, we obtained
a reasonably varying signal used to model electricity
demand in Iran [12]. Table 2 confirms that the proposed
filter, FSF, leads to less deviation from the original data in
the sense of rms, while it offers lower sharpness index.

Table 2: Comparison of the Wealth signal with its smoothed
versions, Sharpness index and the Deviation from the original
signal.

Original MA FSF FMF

Sharpness 0.586 0.247 0.157 0.437

Difference 0 1.211 1.002 1.477
38
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unchanged, with the same kind of oscillations. See, for
example, sample points of 1-3, 5-7 and 9-12, which show
a descending trend, and sample points 3-5 and 7-9 are
ascending, where the MA filter resulted in variations
mostly in diverse direction. Monte-Carlo simulations can
show that due to the inherent properties of the proposed
method, its capability to diminish average sharpness of
typical signals is much higher than the other smoothing
filters. This will be illustrated more in pext sections.

3
ol Original Signal
1} < N
o \%{::/\_? g /\7!‘/::.,4, O (:‘:\\l‘\‘ Ve C—':){;-i
AR \:3:-:.1,
AL MA s
25 5 10 15 20 25 30

Figure 9: Fuzzy Smoothing filter (FSF) with o,=1 and p=2, in
comparison to the Moving Average with M=N=1.
These advantages of the proposed fuzzy filter, FSF, in
the time domain are briefly listed bellow:
1) Data processing is performed for only a subset of the
original data,
2) Information stored in the original data are mostly
preserved and less difference is obtained,
3) Smoothness index of the output signal is higher.

6. SPECTRAL ANALYSIS

The spectral properties of the fuzzy filtered signal are
much better in comparison with the MA smoothing filter
in (22). In this section, the output power spectrums of both
filters are estimated by Fourier transformation. The

frequency response of MA filter is given by [10]:

Rul)=5 5, b~ L)

where f=M+N+1 denotes the window width and fis the
normalized discrete frequency .

Usually, calculation of the power spectrum (frequency
response) of a nonlinear filter is not easy, or even may be
impossible. Knowing the fact that it is impossible to
calculate the frequency response of the fuzzy filter, a
Monte-Carlo simulation with thousands of bandwidth
white noise signals is designed in order to estimate its
power spectrum. Applying the smoothing method on these
signals, we obtained a sigmoid type function for the
estimated power spectrum as:

FS(./) J{b {y(t)}}

for which the parameters o and u depend on the
parameters opand pp. To find the exact relationship among
these parameters, more elaborations are needed. Figure 10
shows the estimated power spectrums with sigmoid shape,

(23)

l+e

T4 e F# @4

and Figure 11 verifies the above claim by exhibiting the
reasonable dependence between the estimated bandwidth
and op.

A rough linear relationship (25) can be estimated
through the regression analysis though we do need much
more accurate spectrum estimates to find a better
relationship between parameters; this is currently under
investigation and will be reported later.

f=0.185+0.189 o, 0.1<g<1
where £, is the discrete pass-band frequency.

25)

15
s Pp(f); 60:0-47 Po= 3
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41-\“ \\\f(
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Figure 10: Power Spectrum (Magnitude) of the Fuzzy
Smoothing Filter (FSF) compared to the Moving Average (MA)

filter.
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Figure 11: Changes in the Bandwidth of the FSF with o

Below, we summarize our findings related to the power

spectrum of the proposed fuzzy filter (FSF):

1) itis much wider at low frequencies,

2) it rapidly falls with a steeper slope,

3) it has a quite flat zero response at high frequencies,
where the MA filter exhibits some ripples.

It is evident from (23) that increasing the size of
window do not help to resolve the ripples problem of the
MA filter. Similar disadvantages even worse are obtained
for the Fuzzy Median Filter when compared to the FSF.
For the FMF, Figure 12 reveals that as the window width
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N
> Flele+)]x(t + k)

Sylele)} ===
;{y[&w)}

where F.] is a nonlinear weighting function computed
within a given window of the original signal, from M to
t+N. Fora Moving Average (MA) filter, F[.] is defined as:

yit)= (13)

[x(t+k)] 1;,-M<t<N (14)
Frun 0; otherwise
For a Median Filter it becomes:
1, x(t+k)=x
F, t+k)= " 15
MD [x( )] {0; otherwise (15)

where x,, is the median of x(¢) within the window. In a
Fuzzy Median Filter (FMF) this function may be modified

to [91[13]:

]x(t«i»k)—xm)' i
Froli+0]={' " 5 PRl g
0; otherwise
where x,,, is defined by:
xmm=max(lmax(x) = xmL [min(x) - xm[) (17)

In this paper, for the sake of brevity and similarity of
the results, other types of the Fuzzy Median Filter and
Fuzzy Mean Filters are skipped.

Furthermore, by comparing (7) with (13), one can
conclude that F[.] in the proposed FSF method, is in fact:

Fps[x<r+k>1={h"“'l’”

Py k=0

As mentioned earlier, in this formulation both of p,
and p,q are assumed to be one. However, in general we
have to calculate the weightings for each point
individually as:

Fr[x@+ k)= pps k=M, .. N

where p,;, should be determined by some propetly
developed fuzzy rule. In this paper, we only study the
simple case of N=M=l. Next section will compare
performance of this simplified version with other types of
both conventional and fuzzy filters.

It is evident that for a generahzed case, (8) and (9)
should be reformulated as:

Yt + k)= x(t + k) + [x(t)- )] (M + V)
fork=-M, ..., N, k #0.

(18)

19

(20)

5, SIMPLIFICATIONS AND COMPARISONS

After a vast number of simulation tests, it has been
observed that a constant exclusion index is good enough to
escape the calculations of the “then” part of (10).
Therefore, in the simplified method, py is obtained by:

Vi s, >o
k={p0 f k 0 (21)

00 ; otherwise

By setting the conmstant p, to 2 or 3, a minor
improvement in the smoothness index has been gained,(
see Figure 8) The trajectory of p,, which varies for each
sample point at all iterations, is also depicted in this figure
for the first iteration of a case in which the term sets have
the membership functions given in Figure 4 and Figure 6
(dashed one). It is clear from Figure 8 (b) that even
maximum values of p, do not exceed 2.25, and therefore
fixing its value on 2 will not affect results of smoothing so
much. Comparison of the two solid and dashed lines in
Figure 8 (a) verifies this claim. Samples for which p, =0
are not processed for their satisfying smoothness.

By such simplifications, we have obtained a simple
filter without loosing any valuable advantage. In fact,
although the smoothness index of a few points is
degraded, the average sharpness is reduced 2 percents,
though it is not assured for all cases. Clearly, such a
simple filter may be compared to the well-known Moving
Average (MA) smoothing filter defined by (14); this may
be rewritten as:

)= S () = ——— 35l +4)

M+N+1,7=,

which is an especial case of a general nonlinear filter.

(22)

3
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of \v’ \/mwf,w;:r \\f ™~
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i i
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®)
Figure 8: (a) Result of smoothing the random signal in Figure 1,

applying (21) into (7)-(9) (simplified method) with o;=1 and
£,;=2 (solid line), p, =3 (dashed line), (b) p, obtained by the main
algorithm (first iteration: solid line, max p,: dashed line).

In the sequel of this section, we present smoothness
property of the filters in the time domain. Figure 9 easily
shows superiority of the fuzzy filter. By generating some
unwanted unsmooth points, that the conventional MA
filter has caused, it has deteriorated some information of
the original signal. While the fuzzy filter, which processes
merely the sharp points, has kept the original shape of data
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the smoothed point is equal to the original data. Actually,
the exclusion coefficients for the samples k-1 and k+1 are
always assumed to be one. However, to keep overall
integral of the curve constant, data values at 71 and fiq
should be modified as:

W)= x(tk—l)—*—[x(tk)“y(tk N2 ®

y(tkﬂ):x(tk+1)+[x(tk)—y(tk)]/2 ®
This correction is based on the presumption that the
additional noise has a mean of zero.

Simply, one may fuzzify the exclusion concept by a
membership function as given in Figure 4 for the linguistic
variable not exclusive.

1

0.8

Mg
0.6
0.4

0.2 P
0

0 2 4 6 8 10
Figure 4: Membership functions defined for the linguistic
variable of not exclusive.
Now, we can apply the single fuzzy rule given in (2);
This is rewritten as the following “if”-“then” statement:

If the ™ point of x(7) is in a very sharp point,

(10)
Then its value in y(r) will be not exclusive. ,
Equally, this rule is implied by a fuzzy relation as:
R :5,€VS—> p,ENE; k=2, .. ,n-1 an

where € means inclusion in a fuzzy set. Figure 5
shows how the method removes sharp points of the
random data given in Figure 1. Although the average
sharpness, which is calculated by averaging (3) over all
samples, is reduced to 0.51, some other sharp points are
still generated because of (8) and (9). To verify this point
bette , look at the sample points 3, 7, 11 and 14 up to 16.
To resolve this, the proposed method is modified bellow
applying two techniques.

3
2 A
1 /\ fl \\ pa)
s \ / A ™ pa ,/\
L. f \\/\I W ¥4 3
0 / A A \'\1 47
1 v \v/ \V,ﬁ‘ \v/ = \/
2 5 10 15 20 25 30

Figure 5: Result of applying (11) to smooth the random signal in
Figure 1.

3. Tur MobpIiriEp FSF

Two modifications are proposed and tested in this
section. First, we apply (11) to the points which have a

sharpness of more than an acceptable value, say o=1.
This means that uys(.) in Figure 3 should be modified to
the one plotted in Figure 6, as an example. In this way,
many non-sharp points will be isolated, without being
processed. Thus, (11) is replaced by:

R, :5,€VS—> p,ENE; k| s,>0,} (12)

This modification discards a considerable number of
data points from the process. Nevertheless, many of those
points are affected by their neighboring points through (8)
and (9). Such a modification may be used to the edge
detection problem too, which will not be discussed in this
paper.

1

0.8 o

057 H ys (Modified)

0.4 | o
0.2 b
. %
0 0.2 0.4 [eX] 0.8 1 1.2 1.4 1.6 1.8 2

Figure 6: Moditied memberships for very sharp (compared to
Figure 3).

The second modification is to iterate the process until
there is no points with sharpness index more than o,. The
two modifications are applied to the same random signal,
and the resulting smoothed signal is depicted in Figure 7.
The average sharpness is reduced to 0.418.

3

2

1 G
\, A e

% 5 P
Y AN TN o F
0 \,.‘ A \_ o vf’ 7 e
2 v ,““ . ra M"‘\..:Z:A/ \‘\“" / A
%

-1

-2
o} 5 10 15 20 25 30
Figure 7. Result of applying (12) to smooth the random signal in
Figure 1, assuming o,=1, without iteration (dashed line)
compared to 5 iterations (solid line).

It should be emphasized that convergence of the
iterated process can be approved experimentaily, even for
long random signals of more than 1000 samples within
less than 10 iterations; this intuitively is perceptible too.
To prove this claim in a mathematical sense, more
elaborations are it required and is may be considered as an
open problem.

4. GENERALIZATION

Both linear and nonlinear (including fuzzy based)
smoothing digital filters may be in general formulated by

[10]:

35 Amirkabir/ Vol.17/No.64-A/( Electrical Engineering)/ Spring-Summer 2006 ﬂ%ﬁ;@



expressed by:
)= 8-} )
while, the process of Sy{.} simply represents the
following single rule:
If sharpness of x(¢) at point ¢ is high,
then share its value with its neighboring )

points at -1 and 1.

In the “if” part of the rule a distinction between sharp
and non-sharp points is recognized. The “then” part
should determine how fo associate the value of the current
point with its neighbors.

The first step to obtain sharpness of each point is to
calculate the angle of the discrete signal at that point.
Although it is easy to determine the angle, there is a matter
that the angle is dependent on the time axis scale. It can be
seen for a sample signal in Figure 1 how a change in scale
will change the angle at a certain point of the curve.

3

2

1 ) gk

° s
-1

0 5 10 15 20 25 30
Time (samples)

0 5 10 15 20 25 . 30
Time (samples)

Figure 1. A random discrete signal sketched in two different
time scales.

The same problem arises when a change in the vertical
axis is considered. To resolve this problem, it is necessary
to divide increments of x(¢) by an appropriate coefficient
which should be proportional fo the mean of absolute
changes in x(¢), if the time variable ¢ is distributed
uniformly. This is in fact a normalization pre-processing
step, which makes the angles independent of the axes
scales. Another point is that the absolute angle value
should be obtained and the sharpness must be determined
regardless of its sign. Summarizing these concerns leads to
the following formulation:

s, =cos(g) + 1 3
0 =tan V(l‘k _-[k~l) +tan™t 7/(zk+1 ““tk) )
= Aoy SNkl kS
X = Xpa Xper1 ™ X
y =(constant) E{|4 x |} %)

where v is the normalizing coefficient and sk represents
the sharpness index which varies in the interval [0, 2]. The

constant coefficient in (5) is an adjustment parameter,
which will be replaced by one hereafter. Figure 2 shows
the sharpness indexes calculated for each points of the
random signal as plotted in Figure 1. The signal has an
average sharpness of 0.622.

3 T T T

§
" k
: lfrw"' %
I / /| \\ . AA N
0 A \\\\///A\\\.\r/ I’ | I// \V4 \Qé\\\“/ :(/\ fr
__/ ! N
; 7N \/ \\/ \
2 ) . :
0 5 10 15 20 25 30

Figure 2: The sharpness index of the random discrete curve of
Figure 1 computed by (3) to (5).

At the next step, the points should be categorized
according to their sharpness. A simple set of membership
functions like the exponential functions in Figure 3 can be
defined for three categories of non-sharp, medium and
very sharp. Therefore, points having an angle about 0° to
45° are considered as very sharp with a membership
degree of more than 0.9. In addition, points with
associated angles about 180° are smooth (non-sharp)
points. Finally, with angles equal to 90° the points are
categorized as medium sharp point. Anyway, as far as the
single fuzzy rule of (2) is concerned, we will merely use
#vs(.) and for more simplicity, the two other functions
have no use in this method.

1 : v - . :
T SN v
0.8 > / N ’M&‘:ﬂ
81 B //"\\ 7 s ~ .
e PN 4 Myg
Q6| / Y
s 7 Y
; . |
0.4} / N
i AY
7 >
o2 ?«/’ \ M s
o el . , . L
0 02 04 05 08 1 12 14 16 1.8 2

Figure 3: Membership functions defined for the linguistic
variables of not, medium and very sharp.

Continuing with the “then” part, the association
concept, which determines the share of each point at each

step, is realized by:

J’([k): nxlt )+ Q-2 )+ %) (©)

where the coefficient #» measures the amount of
neighboring points share. It is evident that (6) actually is a
weighted mean. To shorten calculations, the above
equation is replaced by:

y(t ):[x(tk—l)+pk x([k)+x([k+l)}/(2+pk) Y

whereas p, has a reverse meaning of monopoly, which
may be named exclusion. This parameter should be
obtained for each sample point # in the interval [0, »). As
o tends fo zero we have full association, that is, the value
of x(1) is totally shared with both x(¢,.,) and x{#;;). On the
other hand, p, — o means complete exclusion, for which
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Introduction to an Iterative Weighted Mean Smoothing
Filter Based on a Simple Fuzzy Rule

H. Shakouri G'., M. B. Menhaj", H. Moradmand™

ABSTRACT

Availability of reliable data is an essential part of any scientific investigation. Many of data records
contain inaccurate information, not only due to measurement errors but also for ambiguity of the measuring
concept. This occurs especially in human science fields, where instead of softly varying signals sharp
signals are observed. Since the conventional smoothing methods do not make sense when applying to such
fields, fuzzy smoothing methods are preferred. This paper proposes a novel smoothing procedure based on a
single fuzzy rule for smoothing out sharpness of data curves, and analyzes the method focusing on power
spectrums. The proposed method smoothes out sharp points found in the signal by sharing their value with
the neighboring points. A survey of both time domain and frequency domain performances shows
superiority of the proposed method compared to the other classical smoothing methods cited in the

literature. Some applications are also introduced to highlight better the merit of the proposed method.

KEYWORDS

Signal Processing, Pre-filtering, Smoothing Filter, Nonlinear Digital Filter, Fuzzy Logic.

1. INTRODUCTION

Fuzzy filters are in fact a subset of nonlinear filters
widely used during the last two decades in various fields
of science and technology [11-[7]. There are some
methods have been developed for smoothing problems.
Image processing is on the top of the list of smoothing
methods, mostly affected by fuzzy logic [4]-[7]. Fuzzy
image enhancement, fuzzy edge detection and impulse
noise annihilation using fuzzy filtering have attracted
many research as well [6]-[8]. In addition, in speech
analysis fuzzy filters played crucial role [1]-[3].

Some other various applications of fuzzy smoothing
can be found in other fields of science and technology
[11]-[14]. One may refer to fuzzy traffic smoothing in
network communications [2], language processing [15]

and even bioinformatics [16]. However, the present
approach in nature considers a different aspect of the
general goal of smoothing. For example, edge detection
here is not as important as it is in the field of image
processing methods. Nevertheless, such goals may be

achieved as well.

This paper proposes a novel direct simple method of
signal smoothing. In this method, sharpness of the signal
at each point is measured and compared to the average
desired sharpness by a linguistic variable. At the next step,
very sharp points are distinguished and their values are
shared with the two (or more) points in their
neighborhood. In the last step, we modify the values of the
neighboring points in order to keep the whole integral of
the curve equal to its initial value. The above brief
implication will be explained in details through next
sections. First, we introduce our fuzzy filter. After some
modifications and generalizations in the third and forth
sections, sections 5 and 6 compares the method with the
other known conventional and fuzzy filters, in both time
and frequency domains. In section 7, two applications of
the proposed method in the field of human science
(economics and energy economics) are presented. Finally,
section 8 concludes the paper.

2. Tur Fuzzy SMOOTHING FILTER (FSF)

Denoting the original signal as x(#) and its smoothed
version as }(f), the fuzzy smoothing process is then

iH. Shakouri G. was an Assistant Professor at the Engineering Faculty of Shahed University, Tehran, Iran. Now he has joined the Industrial
Engineering Group of the Engineering Faculty of University of Tehran. (e-mail: hshakouri@ut.ac.ir)
#iM.B. Menhaj, Professor at the Electrical Engineering Department of Amirkabir University of Technoligy, Tehran, Iran. (e-mail:

mb.menhaj@aut.ac.ix).

iiiH. Moradmand is graduated from Shahed University and now is a M.Sc. student of Malek-Ashtar University.

33

Amirkabir/ Vol.17/No.64-AX Electrical Engineering)/ Spring-Summer 2006 @ﬁ



