(®)
Figure 8: Radiation pattern of the monopole antenna mounted on
the handset with w =3cm (—),w=2cm (---) and w=5cm (-

~~), (&) in x-z plane (¢ = 0), (b) in y-z plane (¢ = 90 ).

5. CONCLUSION

The governing electrical field integral equation in time
domain of a monopole antenna on a conducting box (a
cellular handset) is solved by the method of moment in a
wide range of operating frequencies. It is shown that the
length and the width the handset have insignificant effects
on its electromagnetic characteristics, but the height of the
handset could slightly change the direction of the antenna
main lobe. The position of the monopole on the handset
top is shown to shift the position of the radiation pattern to
the side which could be used to reduce the radiation on the
user’s head. In addition, it is shown that a radiating
handset of dimensions less than 1/4 can be approximated
by a single monopole wire antenna. This finding should
simplify the solution of electromagnetic radiation due to a
cellular phone in the vicinity of a dielectric medium such
as human brain.
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Figure 5: Input impedance of the monopole antenna without

conducting box and with conducting box with various heights (-- (©)
-). Figure 6. Radiation pattem of the monopole antenna (—),

mounted on the handset with ¢ = 7 cm (—-), and mounted on the
handset with ¢ =12c¢m (-.-.-); (@) in y-z plane (¢ =90), (b) in
x-z plane (¢ = 0), and (c) in x-y plane (€ = 90).
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different box widths. (a) b=1lcm (—), b=2cm (--—). (b)
b=6cem(—), b=Tcm ().
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Figure 2: The geometric structure of the handset body together
with its radiating monopole antenna.
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Figure 3. Source excitation voltage, (a) Time domain, (b)
Frequency domain.
"I'ABLE 1: PHYSICAL IDIMENSIONS OF THE HANDSET BODY AND ITS
MONOPOLE ANTENNA USED IN THE CASE STUDIES.

a=6,77cm b=1,2cm ¢c=5,7,12 cm

h=5cm w=3cm r =0.1mm

'TABLE 2: PARAMETERS OF THE SOURCE EXCITATION VOLTAGE.

toc=4.58333 x 107° a ,=4.68131x 10° /s

J=1500 MHz

4. DISCUSSION

The validity of the proposed modeling is verified by
comparing our simulated results with those reported by
Luebbers, et al. [6]. Figure 4 shows the input impedance
of the antenna when ¢ =5cm, »=0.5mm and operating
frequency varies from 0 to 5 GHz. As can be seen in this
figure, for the practical range of operating frequency (i.e.,

f:=0.7-2 GHz), the two results are in excellent

agreement. Also, for larger values of /;, our results

qualitively follow the FD results although they tend to
depart from each other. This discrepancy is believed to be
due to the inherent incapability of the FD method for
modeling wire structures, particularly for large operating
frequencies [9].

Figure 5 depicts the variations of the real and
imaginary parts of the input impedance versus operating
frequency when ¢=5 cm, 7 cm and 12 cm. As can be seen,
the handset body causes the antenna free-space resonant

frequency to change from f,=15 GHz to 1450, 1470 and

1580 MHz This is due to the induced current on the
surface of the handset body, altering the free-space field
distribution.

Next, we investigate the radiation pattern variations of
the antenna in xy, yz, and xz planes as shown in Figure 6
(a), (b), and (c), respectively. An examination of Figure 6
demonstrates that the handset height has a slight effect on
the antenna radiation pattern, particularly when compared
with the case where the antenna is placed on an infinite
planar perfect conductor. A further examination of Figure
6 demonstrates that when the handset height exceeds A/4,
the symmetry axis of the main lobe in the radiation pattern
tends to depart from the antenna axis (i.e., z-axis).

Figure 7 (a) and (b) show the variations of the input
impedance at different handset widths and lengths. It is
shown that these variations have no significant effect on
the input impedances in the working frequency range (i.e.,
0.7-2 GHz.).

Figure 8 illustrates the impact of the monopole
position (w) on the radiation pattern. It is observed that the
position of the monopole antenna shifts the main lobe of
the antenna to the side. This effect could be used to reduce
the amount of the radiation reaching human brain which is
considered to be the most harmful.
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Figure 4: Computed input impedance of the monopole antenna

mounted on the handset with height ¢ = 5 cm (—) the proposed

method, (---) the method given in |6].
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tangential electric field at the conductor surface of
equation (7) the electric field integral equation for thin
conducting wires is obtained.
H ss 0
s.EA(r, )= 0 fc[‘—*—,l(S’, M+
4z R of @)
sRo =~ 2sR
c—5—I(s,1)-c —g‘q(S,t)]
R” o5 R

reC(r)+a(r)
where g can be expressed interms of I as

t 8
q(s’,ty =~ [ —I(s',r)dz
~00 Js’

and a(7)denotes the wire radius at point 7. Since the
integration path in equation (8) is along C(7) while the
wire radius displaces the field evaluation path, it is always
true that R > 0 and the integral in equation (8) thus has no
singularity. This displacement of the observation and
source locations by the wire radius is the essence of the
thin wire approximation.

To solve (8) by MoM, the first step is to divide the thin
wire in to Ngelementary segment of length A; . In addition,
the time is divided into N, equal step A, Next, a set of
rectangular basis function is defined for expressing the
known current in each of the segment.

Ng Np

IGsgsto) = 2 le Ly (S U SV (L)) &)
sj=80 =S 4 =1y~
"<
U(sf): S Ai/2
' 0 otherwise 10)

V(ﬂ) B .<_Ai/2
! 0 otherwise

A second order polynomial representation is used to

evaluate the current 7 jj(s;",t}) and the interpolation is

chosen to be Lagrangian:

" oon +1 v+2 (l’m)
Lij (si”j)=1:‘11m=v i Livg+ an
with
my o v2 (o =Sy p)io ~Liig)
M= 1T (12)
P==l 4V (i1 = Sip X jam ~ 1 j4g)
R
y=-1, AR=——————50.5
ot ) (13)
p=-2; AR<0.5
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where /41, j4+m is the current value at the center of the

(I +1) th space segment and the (j +m) th time step.

The last step involves the selection of the test function
in order to get a system of linear equations. The point
matching method, based on Dirac distributions, is used,
ie.,

o\t —ty

St —~ty
Then we obtain the following system of equations

where (1, ) is the unknown vector at every time step vA.

in the space
14
in the time a4

, -1 d
([iv )= (Auv ) {( e;}v ) - (eu_x )} (15)
with
i=1,..,Ny;u=1,.., N v=1,... Nt x=1, ..., v-1

where (Z;) is the matrix of the mutual interactions
between the segments. This matrix has the advantage of
being time independent.

3. RESULTS

The theoretical model described above is used to
compute the clectromagnetic field intensity around the
handset.

As shown in Figure 2, the handset body is
approximated by a metallic box of dimensions of
A monopole wire antenna of length 7
{(h=2/4) and radius 7 is placed at the top center of the
handset body along the z-axis (w=3cm). It should be
noted that since the technique is general, the model can be
used for more complex the handset geometries as well.

To study the effect of the working frequency, we
assume that the source is a modulated Gaussian pulse
whose magnitude, v(¢) is defined as:

axbxe.

W(£) = SIN2 (£ = Ly ) EXP(=a2 (¢ = L)) (16)

where tmax, @, and f; define the pulse shape. It
should be noted that the Fourier transform of such a
waveform is also a Gaussian function with a central
frequency of f.

Table 1 lists the handset and antenna dimensions in our
simulation. The parameters of the source excitation
voltage are given in Table 2. Figure 3 shows the source
waveform in time and frequency domains
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manner in which the various terms in the final equation
originate, it is used here.

It has been determined that integral equations of the
magnetic type are generally more suitable to the treatment
of solid surfaces. On the other hand, the electric-field
integral equation is a better choice for the analysis of wire
structures. Since the analysis of wire antennas and
scatterers is interested the electric-field integral equation is
chosen. While an equation based on the vector potential
formulation would perbaps serve as well for some
problems, it appears from a practical viewpoint that
numerical solution of the electric-field equation is more
conveniently obtained and is applicable without
reformulation to a wider class of problem.

The time-dependent Maxwell’s equations are the
starting point of derivation:

\7><E=—-yo—§;H

8
VxH=g,—E+J 1
X % 1)

0

VI+—p=0 VH=0
ot

where u, and g0 represent the permeability and

permittivity of free space, E and H are the electric and
magnetic fields, and J and p are the volume current and
charge densities, respectively.

The required integral equation may be derived by the
vector Green’s identity combined with (1). This equation
relates J and E on the surface of considered structure. It is
assumed that the structure is wire like with a circular cross
section small compared with the wavelength of the highest
significant frequency component of the excitation
spectrum.

The filamentary current density I(r,z) flows on the
path C(r) along which the length variable is s (Figure 1).
It produces electric field given below:

0
E(r,t) = =V@(r,t) —— A(r,1) V3]
ot
where
i -R
A< L0 KR 3)
47z C R
and
i ~R/v
A(r, ‘uo ’[....(.]..._t__.__/_}_)_ (4)
47z C R
where s =s(t), s' =s(r'), ds’ = ds(¥"),

= {R{ = lr—r’! and the unprimed coordinates r and
denote the observation point location and the primed
coordinates ¥ and 1 =1t »«R/ ¢ the source location. The

differential operators in (2) are with respect to the
observation coordinate,

If s =s(r)and s =s(x')are the unit tangential vectors
to C(r) at r and ', then the required terms in (2) can be
written

0 H s’ 0
A, ) = =L [, f)ds' 5)
ot 47z CR ot
and
1 R
VO(@r,H)=— 1| | -q@' t)—+
47[80 C R3
R 5 6)
- }ds'
RZ Os :

where the following has been used:

bij R
V(' ) =~ 1(r ' )—
s’ Re

And

0 0
—I(F )= ——q(r,1).
os’ ot'

This Wite

Figure 1: Thin wire geometry.

Upon noting that IF, =11 and
q(¥',t) = q(s',t) and combining (5) and (6) with (2) the
integral equation form of the electric field due to a
filamentary current is derived:

Hy .80 R 2
B, t) = —— [[———-—~1(s +e—g—I(s,1)~
4z C R B 7% o )

2 R
c —-—-3*q(s,t)]ds
R

This equation for all space and time except the source
region is valid. In fact the source region is a conductor of
nonzero c¢ross section. Applying the standard thin wire
approach it is assumed that I(s,¢) and ¢(s.t) are
confined to the conductor axis and that the boundary
condition on the tangential electric field at the conductor

surface is known. For a perfect conductor s.(E + g y=0

EAand Bare the applied and generated fields

respectively. By applying the boundary condition on the
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Calculation of EM Characteristics of a Cellular Phone
Handset by Time-Domain MoM

R. Sarraf;' R. Moini;" S. H. H. Sadeghiﬁi; and A. Farschtschi™

ABSTRACT

The effect of cellular phone handset dimensions on radiation pattem, impedance and resonance frequency
is investigated. The hand-set body is modeled by an appropriate three-dimensional wire-grid structure with a
M4 monopole antenna as its radiating source. The govering electric field integral equation (EFIE) is solved
in the time domain, using the method of moments (MoM). The validity of the model is demonstrated by
comparing the wide-band results of the antenna input impedance with those available in the literature. It is
shown that at current operating frequencies, a regular handset dimensions has minimal effect on the antenna

radiation pattern and impedance, and hence modeling of a handset by its antenna (monopole) is sufficient.

KEYWORDS

Method of Moments, EFIE, Time-Domain, Cellular Phone, Input Impedance, Radiation Pattern

1. INTRODUCTION

In the last decade, there has been an enormous growth in
the wireless communication usage and there are more than
two thousand millions cellular users are reported at the
end of 2005 [1]. Biological effects of a handset close
range radiation on human body and its medical
consequences are of great concern. It is desired to reduce
the negative impact of field on the brain which is most
susceptible of all body organs to this problem. Therefore,
we need a model showing the radiated field of an antenna
in the presence of the cellular phone main body. The trend
for small size phones necessitates the study of the antenna
pattern with different handset body dimensions.

Due to irregular shape of a handset, numerical methods
are best suited for analysis of electromagnetic fields. The
Finite Element Method (FEM), the Finite Difference
Method (FDM) and the Method of Moment (MoM) are
most widely utilized in the literature. Recently, the FDM
in time domain (FDTD) has been preferred by many
researchers [2-5]. In this method, the coupled Maxwell’s
equations in differential form are solved in both space and
time. The FDTD method is not efficient for analyzing

metallic structures such as antennas due to its large
computer time and memory requirements [6]. In contrast,
the MoM has been efficiently used for analyzing thin-wire
structures {7, 8].

Here, we use the MoM for analyzing electromagnetic
field distributions around a radiating cellular phone
handset. In particular, we focus on how the physical
dimensions of the handset can affect the radiation pattern,
resonance frequency and input impedance of the antenna.

Section 2 presents the theoretical model of the problem
and describes how the governing EFIE is solved using the
method of moment in time domain. Section 3 discusses the
simulation results for a small telephone handset excited by
a monopole antenna.

2, THEORY

Several methods have been introduced for developing
time-dependent integral equations. One obvious approach
is the Fourier transform of the frequency domain relations.
In this approach, one might return to the time-dependent
Maxwell’s equations and proceed to derive directly in the
time domain the particular equation type of interest. Since
this approach will generally show in a clearer way the
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