چکیده:

تغییرپذیری ترکیب عناصر در نمونه‌های زئوتوپیمایی رسوبات آبراهه‌ای در اثر دو مؤلفه اصلی سنن‌تیک و ایپی-زنن‌تیک است که مؤلفه ایپی-زنن‌تیک به عنوان مؤلفه مقداری از کاتیون‌های میله‌دار، گامی مؤلفه سنن‌تیک، چنان قوی است که اثر مؤلفه ایپی-زنن‌تیک کاملاً محو می‌کند. این رخداد، زماهی مؤلفه مربوط به کاتیون‌های ماوراری را دشوار می‌کند. از این رو روش‌های متعددی برای خنثی سازی اثر لیتوپژی ارائه شده که برای مثال می‌توان از روش چندگانه جوامع سننی با تحلیل مؤلفه‌های اصلی و خشونت‌های فاکتوری نام برد. در این مقاله، اثر مؤلفه سنن‌تیک در داده‌های حاصل از آنتی‌زئوتوپیمایی رسوبات آبراهه‌ای (144 نمونه) منطقه می‌پردازد. از این استفاده از روش خشونت‌های فاکتوری C-Means خشونت‌های استفاده در این تحقیق از روش خشونت‌های فاکتوری C-Means انتخاب شد. در ادامه، نتایج حاصل از روش چندگانه جوامع سننی با تحلیل HaColl بر روی داده استفاده شد. در نهایت، نتایج با شبیه‌سازی ساختار مفاهیم و مشاهده شد که در نتایج حاصل از روی شکل فاکتوری آنالیزی‌های جدیدی شامل داده است که در روش چندگانه جوامع سننی بالادست تولید و از طرف دیکی به سری آنتی‌زئوتوپیمایی رسوبات آبراهه‌ای کاوش خورشید نمایش داده شده است. 

Applying the fuzzy C-means clustering method to remove the effect of the geochemical stream sediment syngenetic components in Tarom area

Soltani Mohammadi, S., Hezarkhani, A., Seied S.H.

ABSTRACT

Geochemical exploration, using the stream sediment method, involves two components that control the concentration of elements in the samples: syngenetic and epigenetic. The epigenetic component is useful factor for exploration goals. However, usually as the syngenetic component is stronger, it dwarfs the effect of epigenetic component. There are several methods used to eliminate the effect of syngenetic component on geochemical data processing; such as, separation of upstream rock groups, principal component analysis (PCA) and fuzzy c-means clustering method (FCM). The effect of the syngenetic component, from stream sediment samples obtained from Yamaghan, was removed using the both separation of upstream rock groups and fuzzy clustering method. Then results from this method were compared to the results from the separation of the upstream rock groups method. Based on the following research, Fuzzy coefficient is calculated to be 1.4 and the number of clustering is equal to 2 in the selected C-means method. New anomalies have been recognized that they have not been mentioned based on the separation of upstream rock group method.

در ادامه مباحث دکتری مهندسی اکتشاف معدن، دانشگاه صنعتی امیرکبیر

داشیاور دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر

کارشناس ارشد مهندسی اکتشاف معدن، دانشگاه صنعتی امیرکبیر
ترکیب شیمیایی رسوبات آبزیان اطراف خورشیدی را در مورد ترکیب سنگ شناسی حوضه آبی و وجود کانی نمی‌باشد. واکنش‌های آن واحدها می‌تواند برای سنگ‌های کانی‌ارای این ناحیه نشان دهنده این فاکتور از آن نقش داشته باشد. در نتیجه، در این سنگ‌ها و در رسوبات آبزیان، تعداد سنگ‌های فراوان در این منطقه را می‌توان با توجه به سنگ‌پای شکل آنها در رسوبات کانی‌ارای و احتمال تغییرات این سنگ‌ها در حوضه آبی و وجود واحدهای آشیانی منابع محاسبه و با توجه به آن‌ها روش‌های آماری، كلاس‌زنی نمونه‌های نزدیک به شدت در مورد مطالعه بررسی می‌شود.

آشنایی با منطقه مورد مطالعه

منطقه مورد مطالعه با وسعتی در حدود 200 کیلومتر مربع در 90 کیلومتری شمال شرقی چابهار و در فاصله 40 کیلومتری شمال از آبادان در شرق، ناحیه هرموت به تغییر شکل زمینی‌شکل در نظر گرفته شد.

3- پردازش آماری داده‌ها

در مدت چهار سال از سال 1392 تا 1396 نمونه‌های رسوباتی در داخل منطقه کسب شدند. در این مدت، شیمیایی و کیفیت رسوبات در این منطقه مطالعه شدند. در نتیجه، در این منطقه را می‌توان با توجه به سنگ‌پای شکل آنها در رسوبات کانی‌ارای و احتمال تغییرات این سنگ‌ها در حوضه آبی و وجود واحدهای آشیانی منابع محاسبه و با توجه به آن‌ها روش‌های آماری، كلاس‌زنی نمونه‌های نزدیک به شدت در مورد مطالعه بررسی می‌شود.

4- نتایج

در نتیجه، در این منطقه را می‌توان با توجه به سنگ‌پای شکل آنها در رسوبات کانی‌ارای و احتمال تغییرات این سنگ‌ها در حوضه آبی ووجود واحدهای آشیانی منابع محاسبه و با توجه به آن‌ها روش‌های آماری، كلاس‌زنی نمونه‌های نزدیک به شدت در مورد مطالعه بررسی می‌شود.

5- بیانیه

در نتیجه، در این منطقه را می‌توان با توجه به سنگ‌پای شکل آنها در رسوبات کانی‌ارای و احتمال تغییرات این سنگ‌ها در حوضه آبی ووجود واحدهای آشیانی منابع محاسبه و با توجه به آن‌ها روش‌های آماری، كلاس‌زنی نمونه‌های نزدیک به شدت در مورد مطالعه بررسی می‌شود.

6- نظریه

در نتیجه، در این منطقه را می‌توان با توجه به سنگ‌پای شکل آنها در رسوبات کانی‌ارای و احتمال تغییرات این سنگ‌ها در حوضه آبی ووجود واحدهای آشیانی منابع محاسبه و با توجه به آن‌ها روش‌های آماری، كلاس‌زنی نمونه‌های نزدیک به شدت در مورد مطالعه بررسی می‌شود.
روش خوشه‌ی بندی C-means نمودار است. و هدف آن می‌باشد و نحوه رایگان یک تکرار و هدف آن می‌باشد. در این روش، در نهایت هر نمونه به میان‌گیرنده یک (C-means) نمایان می‌شود. یک تغییر در جریان عضویه‌های نمونه به در خودش بطور طوری این اصل فاز ای که نمونه‌ها بالایی می‌گیرند که برای مثال m تغییر نموده شده است. در اینجا به دستاوردی و نشان‌گر را به عنوان دو (C-means) نمایان می‌شود. یک تغییر در جریان عضویه‌های نمونه به در خودش بطور طوری این اصل فاز ای که نمونه‌ها بالایی می‌گیرند که برای مثال m تغییر نموده شده است. در اینجا به دستاوردی و نشان‌گر را به عنوان دو

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>Pb</th>
<th>Zn</th>
<th>Fe</th>
<th>Cu</th>
<th>As</th>
<th>Sb</th>
<th>Ag</th>
<th>Au*</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
</tr>
<tr>
<td>median</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
</tr>
<tr>
<td>var</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
</tr>
<tr>
<td>min</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
</tr>
<tr>
<td>max</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
</tr>
<tr>
<td>skew</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
</tr>
<tr>
<td>kurt</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>ELEMENT</th>
<th>Pb</th>
<th>Zn</th>
<th>Fe</th>
<th>Cu</th>
<th>As</th>
<th>Sb</th>
<th>Ag</th>
<th>Au*</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>median</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>var</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>skew</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>kurt</td>
<td>123</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>234</td>
<td></td>
</tr>
</tbody>
</table>

شکل 1: شماپایی از نرم‌افزار تهیه شده

شکل 2: مثال‌هایی از نرم‌افزار تهیه شده

شکل 3: نمودار نهایی خوشه‌ای در داده‌ها.
\[
J_q = \sum_{k=1}^{n} \left( \sum_{i=1}^{n} \left( \mu_{ik} \right)^q \right)^{1/q} \cdot \left( d_{ik} \right)^{1/q}
\]

که در آن مقادیر متغیرهای آزمایش آماده و \( s_k \) احتمال معیار متغیرهای آماده است.

\[
H = \sum_{k=1}^{n} \frac{\mu_{ik} \log(\mu_{ik})}{n}
\]

(راهنمای 2)

\[
F = \sum_{k=1}^{n} \frac{\mu_{ik}^2}{n}
\]

(راهنمای 2)

از این دو رابطه در تعیین تعداد بهبود خوشه‌ها استفاده می‌شود: این گونه که تعداد خوشه‌های بهبودی را حاصلی در نظر می‌گیریم که ضریب جادوی نزدیک به و آنتروپی افراد نزدیک به صفر باشد.\( \frac{1}{2} \)، می‌تواند با استفاده از قابلیت‌تهیه‌کردن در میان افراد اکثر، نرم‌افزارهای به زبان ویژه‌ای بایستی به فرم مکاکاکسل ساخته شود. به صورت کاری، این گونه که تعداد افراد از میان افراد در کتیب مرجع استفاده شود و نتیجه بسته به آن از میان افراد با تنظیم میانگین مقادیر موجود، به نتایج نهایی با در نظرگرفتن تعداد چندین نمونه، به طور میانگین نرم‌افزار به‌کار می‌برد.

\[
C_q = \frac{\sum_{k=1}^{n} \left( \mu_{ik} \right)^q X_{ik}}{\sum_{k=1}^{n} \left( \mu_{ik} \right)^q}
\]

(راهنمای 1)

\[
\mu_{ik} = \left( d_{ik} \right)^{1/q}
\]

که در آن مقادیر متغیرهای آزمایش آماده \( k \) و \( \mu_{ik} \) به خوشه‌های \( k \) و \( \mu_{ik} \) می‌شود.

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]

(راهنمای 2)

\[
\rho_{ij} = \sum_{k=1}^{n} \left( X_{ik} - C_j \right)^2 / S_j
\]
درجه فاژی شادکی بهینه، گزینه ای در نرم افزار دار به نظر می‌رسد که با ارزیابی مقدار متفاوت فاژی شادکی محاسبه و درجه فاژی شادکی را که به ازار آن تاریخی شایعی نموده می‌کند. مفهوم باشد. یعنی سطح زیر نمودار تجهیز آن بیشتر باشد 10 به عنوان درجه فاژی بهینه بهینه انتخاب و به صورت خرچنگ مشخص می‌شود. در مطالعه موردی حاضر که در منطقه میان‌رود این روش قرار گرفته است. مقدار فاژی شادکی 1/4 به عنوان مقدار درجه فاژی شادکی بهینه تشخیص داده شد (شکل 2).

با توجه به رابطه 4، برای خوشه بندی فاژی داده‌ها تعمیم پارامتر تعداد خوشه‌ها ها لازم است. برای تغییرات پارامتر تعداد خوشه‌ها آنتروپی افراز (رابطه 5) و ضریب جیاسی (رابطه 6) نسبت به هم و به ازار تعداد خوشه‌ها مقاوت در یک نمودار رسمی شود. در نرم افزار طراحی شده گزارش از هر این منظور تبعیض مشاهده شده است که در آن بر اساس مقدار 2/10 به تعداد سی و مقدار آنتروپی افراز و ضریب جیاسی را محاسبه و به صورت نمودار ارائه می‌دهد (شکل 3). برای تغییرات تعداد خوشه‌ها از رابطه علاوه بر تجهیز به نمودار، باید به پارامترهای جهت زمانی شناسی منطقه و درجه عضویت نمونه‌ها تغییراتی کرد و تعداد خوشه‌ها را با توجه به تمامی این پارامترها برای دو نمودار تغییراتی افراز در 2 حاصل شده است که این امر اطمینان کاملاً به تاثیر حاصل از آنالیز فاکتوری 7 در جهت تعیین تعداد جامعه‌های سنگی موجود در منطقه دارد.
ترکیب شیمیایی مرکز خوشه‌های محاسبه‌شده به روش تحلیل خوشه‌فازی

جدول ۳: ترکیب شیمیایی مرکز خوشه‌های محاسبه‌شده به روش تحلیل خوشه‌فازی

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>Cu (PPM)</th>
<th>Pb (PPM)</th>
<th>Zn (PPM)</th>
<th>Ag (PPM)</th>
<th>Fe (PPM)</th>
<th>As (PPM)</th>
<th>Sb (PPM)</th>
<th>Au* (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نخست</td>
<td>7/59</td>
<td>0/31</td>
<td>0/23</td>
<td>0/18</td>
<td>0/53</td>
<td>0/56</td>
<td>0/84</td>
<td>0/84</td>
</tr>
<tr>
<td>دوم</td>
<td>2/56</td>
<td>0/33</td>
<td>0/21</td>
<td>0/19</td>
<td>0/46</td>
<td>0/60</td>
<td>0/78</td>
<td>0/78</td>
</tr>
</tbody>
</table>

- توجه گیری و پیشنهاد

همانطور که در جدول ۲ نشان داده شده است اعمال تبدیل کاکس و باکس بر روی ناحیه‌های خام چنان‌که ممکن است تشخیص دقیق‌ترین سنج شناسی منطقه مورد مطالعه مستند، موجب به نیزیدگی شدن انرژی به توزیع نرمال شده است. بر اساس داده‌های نرمال شده خوشه‌بنی‌داده‌هایی در دو زنگه سیستم گرفت که مرکز این خوشه‌ها به دو جدول ۴ نشان داده شده است. با توجه به اینکه میزان تغییرات با ضریب فاصله می‌گذارد، ضریب فاصله می‌گذارد.

با استفاده از روش $X + 5$ آنالوگ‌های مقادیر بازمانده برای ناحیه مشخص مشاهده و بر روی نقشه نمایش داده شده (شکل ۵).

در اکتشافات زئوتیموپیسی بالینی، خوشه‌بندی فازی روش مؤثر برای انتخاب زمینه‌نامه از سنج شناسی در ترکیب زئوتیموپیسی رسوبات الکترولیک ای است. با استفاده از این

- انجام تورمین نوک‌های نرم در نصعتی

شکل ۳: توزیع مقادیر بازمانده در نمودار

C-Means

# نهاية المطاف، يمكننا الانتهاء من التحليل المعقد لبيانات بيني فازی باستخدام تفتيشات زيوتوميسيوپي، مما يتيح تشكيل النواحي المحددة في نواحي الالكتروموسيس. ويتيح الانتهاء من الانتقلات بيني فازية باستخدام تفتيشات زيوتوميسيوپي، مما يتيح تشكيل النواحي المحددة في نواحي الالكتروموسيس.
روش تفسیر اشتیاب مناطق آنومالی که فقط مرتبط با ترکیب سنگ شناسی حوضه آوریز نمونه مستند، کاهش می‌یابد [۶].
روش خوشه‌بندی فازی کمتر تحت تأثیر استنباط‌های شخصی
بوده، بسیار سریع تر از روش جدايش سنگ بالادست انجام
می‌شود و ضمن آنومالی‌های جدیدی را تیزدان‌همه که در
روش جدايش سنگ بالادست شناسایی داده نمی‌شود. از طرف
دیگر همانطور که مشارکت‌های فازی در انتخاب حاصل از روش خوشه
بندی فازی یک سری از آنومالی‌های دروغ‌گویی که از روی
جداسازی سنگ بالادست حاصل شده بودند، شناسایی نشد.
بنابراین بیشترها می‌شورد در تمامی پروژه‌های زئوسیمی
رسوبات آفریقا، مانند این پروژه، علاوه بر استفاده از روش
 جدايش سنگ بالادست، از روش خوشه‌بندی فازی نیز استفاده
شود و در مرحله چک کردن آنومالی‌ها، هر دو دسته
آنومالی‌ها مورد مطالعه قرار گیرد.

- منابع:

[۲] حسنی‌پاک‌علی‌اصغر، شرف‌الدنی، محمد، تحلیل داده‌های آنومالی‌ها، مؤسسه انتشارات و چاپ دانشگاه تهران، 1380
[۳] نقشه‌زمین‌شناسی: 5۰۰۰ منطقه طارم، سırımان
زمین‌شناسی و اکتشافات معدنی کشور
سیری، حسن، اکتشافات زئوسیمی‌پای در محدوده
4۰۰۰۰۰۰ نمای طارم / پایان‌نامه کارشناسی ارشد
دانشگاه صنعتی امیرکبیر، 1384
[۴] ارائه، لی، سیمبیا، فازی و کنترل فازی، دانشگاه
خواهی نصیرالدین طوسی، 1378
شکل ۶ - نقشه توزیع آنومالی‌های موجود در منطقه بیقان طاقم که از روش جداسازی اثر سنگ بالادست تهیه شده‌اند.

شکل ۷ - نقشه توزیع آنومالی‌های موجود در منطقه بیقان طاقم که از روش خوشه‌بندی فازی تهیه شده‌اند.