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ABSTRACT

Permeability prediction in hydrocarbon reservoirs is probably the most challenging issue geologists,
petrophysicists and reservoir engineers have to deal with. In particular, to understand reservoir performance
and in case of reservoir management and development requires accurate knowledge of permeability.
Attempts were made to utilize artificial neural networks (ANNs) for identification of the relationship which
may exist between the well log data and core permeability. Despite the wide range of applications and
flexibility of the ANNs, there is still no general framework or procedure through which the appropriate
network for a specific task can be designed. Design and structural optimization of the neural networks is still
very dependent upon the designer’s experience. This is an obvious barrier to the wider applications of neural
network. To mitigate this problem, a new method for the auto-design of neural network has been used,
which is based on genetic algorithm (GA). The new proposed method is evaluated by a case study in South
Pars gas field in the Persian Gulf. Design of the topology and parameters of the neural network as decision
variables is done first by trial and error, and then using the genetic algorithms in order to improve the
effectiveness of forecasting when ANN applied to a permeability predicting problem from well logs. It is
shown that a carefully designed neural network is able to predict rock permeability with accuracies
comparable to actual measurements.
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increasingly applied to predict reservoir properties using
1. INTRODUCTION well log data [1]-[3]. Moreover, previous investigation
(4], [5], [6] indicated that artificial neural networks
(ANNs) can predict formation permeability even in highly
heterogeneous reservoirs using geophysical well log data
with good accuracy.

The major reason for this rapid growth and diverse
application of neural networks is their ability to
approximate virtually any function in a stable and efficient
way. By using ANNS, it is possible to create a platform on
which different models can be constructed. In spite of the
wide range of applications, neural networks are still
designed through a time-consuming iterative trial and
error approach. Hence, the time and effort required for
network design are totally dependent on the nature of the
task and designer’s experience. This leads to a significant
amount of time and effort being expended to find the
optimum or near optimum structure for a neural network

Permeability is a key parameter associated with the
characterization of any hydrocarbon reservoir. Knowledge
of rock permeability and its spatial distribution throughout
the reservoir is of utmost importance. Permeability is
generally measured in the laboratory (direct measurement)
on cored rock taken from the reservoir or can be
determined by analyzing well test data (indirect
measurement). The well testing and coring are expensive
and time-consuming in comparison to the electronic
survey techniques which most commonly used in all wells.
Moreover, in a typical oil or gas field, all wells are
“logged” using electrical tools to measure geophysical
parameters such as porosity and density, while both well
test data and core data are available only for a few wells.

Alternatively, the neural networks have been
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for the desired task. In order to mitigate these deficiencies,
various methods for auto-design of neural networks have
been proposed [7]. However, these methods have been
applied only for the design of neural networks used for
simple tasks and not for more complex problems typically
encountered in hydrocarbon reservoir management.

The purpose of this study is to apply genetic algorithms

(GAs) to determine the number of neurons in the hidden
layers, the momentum, and the learning rates for
minimizing the time and effort required to find the optimal
architecture and parameters of the back-propagation
algorithm. It also focused on improving the accuracy of
permeability estimation and verifying the performance and
validity of optimizing both the neural network size and its
parameters using GA.

The attempts [2,3] to predict permeability from well
log data have generally been in the form of empirical
correlations between permeability, porosity, and water
saturation. This technique has been used with some
success in sandstone and carbonate reservoirs; however,
the existing correlations are mainly for homogeneous
formations that have fairly constant porosity and grain
size. The prediction of permeability in heterogeneous
formations from well log data poses a difficult and
complex problem. A comprehensive approach [2] for
correlating permeability with geophysical well log data in
heterogencous formations was previously developed, but
these cannot predict rock permeability adequately.

Previous investigations [8] revealed that neural network
is a powerful tool for identifying the complex relationship
among permeability, porosity, fluid saturations,
depositional environments, lithology, and well log data.
Back-propagation-type neural networks and genetic
algorithms are introduced very briefly in this paper, since
extensive information already exists in the literature.

2. INTELLIGENT SYSTEMS

2.1. Neural networks

Back-propagation-type neural networks have an input,
an output and, in most of the applications, have one
hidden layer. The number of inputs and outputs of the
neural network are determined by considering the
characteristics of the application. In most of the cases, one
hidden layer is satisfactory.

Each neuron of a layer is generally connected to the
neurons in the proceeding layer. Repeating forward-
propagating and backward-propagating steps performs the
learning required. When a pattern is given to the input
pattern, the forward propagation step begins. The
activation levels are calculated and results propagate
forward through the following hidden layers until they
reach the output layer. Every processing unit sums its
respective inputs and then applies a function to compute
its output. Sigmoid is the most commonly used function

[91.

The output of the network is created at the output layer.
The bias units of input and hidden layer add a constant
term in the weighted sum, which improves convergence.
After the network’s output pattern is compared with the
target vector, error values for the hidden units are
calculated and their weights are changed. The backward
propagation starts at the output layer and moves backward
through the hidden layers until it reaches the input layer
[9]. Figure 1 shows a summary of the network topology
illustration.

Any attempt to build a predictive model based on
artificial neural networks generates the need to investigate
how appropriate the network’s architecture and
computational paradigm are for the task that it is supposed
to handle. For neural networks based on supervised
learning, the data are usually split into a training set, a
training validation set, and a test set.
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Figure 1: Back-propagation multilayer ANN with one hidden
layer.

The training set consists of a set of examples used only
for learning, (i.e., to fit the weights of the network). The
training validation set is a set of examples used to adjust
the network parameters such as network architecture (for
example number of hidden layers and neurons, or number
of training cycles). The test set is a set of examples used
only to assess the generalization performance of a trained
neural network, (external valuation). Various networks are
trained by minimization of an appropriate error function
defined with respect to the training set. The performance
of the networks is then compared by evaluating the error
function using the training validation set, and the network
having the smallest error with respect to the training
validation set is selected [10].

The cross-validation data’s errors were measured by
mean square-error (MSE) as defined in Eq. (1):

n T 2
MSE = Z,’=1(Oz z) ,

n
Where: Oi is the desired output for training data or
cross-validation data i, Ti is the network output for
training data or cross-validation data i, and n is the number
of data in the training data set or cross-validation data set.

&)
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2.2. Genetic algorithm

In 1975, Holland introduced an optimization procedure
that mimics the process observed in natural evolution
called genetic algorithms. GA is a stochastic search
algorithm inspired by the mechanics of natural evolution,
including survival of the fittest, reproduction, cross-over,
and mutation. GAs are based on a Darwinian survival of
the fittest strategy, and work with a population of
individuals, each of which represents a potential solution
to a given problem. Each individual, or candidate, solution
in the population is generally represented as a linear string
analogous to chromosomes in the GAs. The basic
algorithms in GAs are selection (reproduction), cross-
over, and mutation operators (called genetic operators).

As originally proposed, a simple GA usually consists of
three processes selection, genetic operation and
replacement. A typical GA cycle is shown in Figure 2. The
population comprises a group of chromosomes that are the
candidates for the solution. The fitness values of all
chromosomes are evaluated using an objective function
(performance criteria or a system’s behavior) in a decoded
form (phenotype). A particular group of parents is selected
from the population to generate offspring by the defined
genetic operations of crossover and mutation. The fitness
of all offspring is then evaluated using the same criterion
and the chromosomes in the current population are then
replaced by their offspring, based on a certain replacement
strategy.
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Figure 2: Genetic algorithm cycle and a simple top level
description.

Such a GA cycle is repeated until a desired termination
criterion is reached. If all goes well throughout this
process of simulated evolution, the best chromosome in
the final population can become a highly evolved and
more superior solution to the problem [11].

In this paper, we implement a genetic algorithm to
optimize one or more parameters within the neural
network. The most common parameters to optimize are

the input vectors, the number of hidden Processing
Elements (PEs), the learning rates, and the momentum
coefficient.

2.3. Neural network incorporating genetic algorithm in
permeability prediction

The architecture of ANNs has considerable influence
on their performance. If the number of neurons is too
small, they cannot remember the input and output patterns
in training. If the number of neurons is too large,
performance may be improved, but the large number of
connections extends the training time and increases
computation burden. It is therefore desirable to establish
networks, which are as simple as possible, provided their
errors are within the tolerance limits.

Many researchers [12] have therefore addressed these
needs by applying GAs in optimizing ANNs’ parameters.
In particular, GAs are found to be quite useful and
efficient when the exploration space of the ANN is
extensive. Research by Rooiji et al [13] and Vonk et al
[14] proposed using evolutionary computation, such as
GAs, in the field of ANNs to generate both the ANN
architecture and its weights. Those {15], [16], [17] who
supported the proposal were in favour of optimizing the
connection weights and the architecture of ANNs by using
GAs. In addition, research on permeability estimation
from well logs [18], [19], showed that it is highly effective
to apply integrated GAs to ANNs in permeability
prediction. However, their work did not cover the
optimization of ANN parameters using GAs. In our study,
GA- optimized ANN predicts the reservoir permeability
more accurately than a network in which the ANN
calibration is done by trial-and-error approach.

3. APPLICATION

3.1. Geological discription

The South Pars gas field is located in the Persian Gulf,
at some 100km from shore. Four huge condensate rich
gas-bearing reservoirs have been identified (K1, K2, K3
and K4) in this field. With the data acquired, the Kangan-
Upper Dalan (K1 to K4) reservoirs can be described as
structurally complex reservoirs on which some geological
and reservoir unknowns still exist. Several reservoirs ‘ol
and gas’ were identified by the exploration and appraisal
wells. The oil reservoirs of South Pars are in Khami and
Bangestan groups formations. The gas-bearing reservoirs
of the field belong to the Kangan and Dalan formation of
Triassic and Permian age, respectively. These carbonate
formations were deposited in a shallow marine
environment during a general marine transgression which
began in the middle of Permian and lasted until the early
Triassic.

3.2. Modelling data

The total number of wells drilled at the time of this
study added up to 43 vertical wells. All the wells have
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been logged but three of them do not have sufficient
number of logs needed for petrophysical evaluation.
Therefore, the petrophysical data of almost wells were
available. Wireline logs obtained from these wells are
gamma-ray, water saturation, density, neutron porosity,
sonic porosity, depth, photoelectric factor and resistivity
log. Only 6 of the wells have been cored in the reservoir
layer. Therefore, as usual cores data are only available
from few wells in reservoir while the well logs are
available from the majority of the wells. Thus, the
evaluation of permeability from well log data represents a
significant technical as well as economic advantage.

3.3. Data analysis

The data were analyzed to establish relevant
relationships between log and core data with the aim of
evaluating heterogeneity in a hydrocarbon reservoir
formation. Heterogeneity is referred to non-uniform, non-
linear spatial distribution of rock properties in a
hydrocarbon reservoir. In order to demonstrate the degree
of heterogeneity of this formation and to show chaotic
status of the information, a cross plot of permeability
versus gamma ray log responses is presented in Figure 3.
In addition, Figure 4 shows permeability variation with
respect to bulk density well log responses.
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Figure 3: Permeability vs. Gamma ray log responses for wells.
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Figure 4: Permeability vs. Bulk density log responses for wells.

As Figures 3 and 4 demonstrated, there are no apparent

relationships between logs and core permeability data,
because the correlation coefficients (R2) between logs and
core permeability data are very poor (where one number is
the best fitness). Since bulk density may be regarded as a
symbol of porosity rock, (regardless of how linear or non-
linear this relationship might be) it may contribute to the
permeability of the formation. Gamma ray log response is
an indication of shalyness or clay content of formation.
This property of the rock may have some impacts on its
ability to conduct fluid.

3.4. Network designing by using Genetic Algorithms

In this study, the process of designing of the network
by NeuroSolutions for Excel Release 4.2 software is being
managed. This software which incorporates ANN and GA,
produced by NeuroDimension, Inc., and used to obtain the
optimal network size and parameters in the ANN
permeability estimation model. In this study, a GA
application process for optimizing the parameters (the
number of neurons in the hidden layer, the coefficient of
the learning rate and the momentum) of ANNs is shown in
Figure 5.

All chromosomes were automatically initialized in
NeuroSolution by values equal to number of hidden
neurons, learning rate, and momentum. NeuroSolution
also can automatically produce these initial values. These
values for number of the hidden layer neurons were set in
a range between a lower bound of m/2 where m is the
number of input neurons and an upper bound of 3m, whilst
the step size had a lower bound of 0 and an upper bound
of 1, and the momentum had a lower bound of 0 and an
upper bound of 1.

Population size and number of generations affect
processing time because the fitness value must be
calculated for every chromosome in every generation [20].
Also, Kim et al, indicate that the best population size and
generation number were set to 100 and 50, respectively.
Hence the initial population pool value is set to 100
chromosomes, which had at least one different value for
the arrayed ANNs parameters. Every chromosome in a
population evolved into new chromosomes for 50
generations.

The back-propagation training module shown in Figure
5 was used to evaluate all chromosomes, that is, after the
parameter values for each chromosome were translated
into the predefined ANN, the network was trained on the
training data set and the cross-validation data set was used
to test if the stopping criteria were satisfied. In this study,
the training process of the network stopped after a
maximum of 5000 epochs or until there was no
improvement of the MSE for 182 epochs on cross-
validation data set. The fitness of every chromosome was
evaluated by measuring the MSE, which is the estimated
result on a cross-validation data set. A better network has
a lower training error but requires a higher fitness value.
The cross-validation data were not used to train the ANN
model but were used to test the ANN model in the training
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Figure 5: Combination of Genetic Algorithm and Neural network.

After evaluating all chromosomes, an intermediate
population was created by extracting chromosomes from
the current population using the reproduction operator. In
this study, the roulette wheel selection based on ranking
algorithm was applied for the reproduction operator.

The chromosomes were organized in the order of their
fitness; that is, the chromosome with the lowest fitness
received a rank of 0, and the next worst chromosome
received a rank of 1, and so on. Chromosomes were
selected in quantities according to their relative fitness
after ranking in the roulette wheel operator and placement
into the intermediate population [20]. Finally, the
population of the next generation was formed by applying
the cross-over and mutation operator to the chromosomes
of the intermediate population.

Then, the new chromosomes reproduced by selection,
cross-over, and mutation operators were evaluated, and
this procedure for evaluation and reproduction of all
chromosomes was repeated until the stopping criterion is
satisfied. The basis of GA is the continual improvement of
the fitmess of the population by means of genetic
operators, as individuals are passed from one generation to
the next. After a number of generations, the population
evolves to a solution close to optimal. In this study,
uniform cross-over and uniform mutation operators were
used and the probabilities of cross-over and mutation
operators were adjusted in 0.9 and 0.01, respectively.

3.5. Simulation Data

All, 280 available data points are organized from all
selected wells as input and output. The database to be
introduced to the neural network is broken down into three
groups: training, cross- validation, and verification. The
network is trained using the training set data. The actual
output of the training set data is used to develop the
weights in the network. At established intervals, the test
set is used to evaluate the predictive ability of the network.
The cross- validation set also insures that network would
not memorize the data which means a tendency for all new
data to be regarded as identical to the training data.

Training continues as long as the computed error between
the actual and predicted outputs for the test set is
decreasing. Typically 80% of the data is used for training
and validation purposes. The other 20% of the data is
categorized as verification. The verification set is used to
evaluate the accuracy of the newly trained network by
providing the network a set of data it has never seen.

There is possibility of using the current network
weights or use the best network weights saved during a
genetically training trial ran. Note if a cross validation set
is used during training, the best network weights are the
ones that give the minimum cross validation error.
Otherwise, the best network weights are the ones that give
the minimum training error. During testing, the learning is
turned off and the chosen data set is fed through the
network. The network output is collected and a report is
then generated showing the testing results.

4. RESULTS AND DISCUSSIONS

4.1. Trail & Error desighning

Well log responses were inputs to the network and
permeability values were the outputs. The optimal number
of neurons of a single hidden layer network using trial and
error method is shown in Table 1. The training result for
the ANN on cross-validation data showed the lowest MSE
when the number of hidden neurons was 22. It has been
found the 8-22~1 architecture was the best model in terms
of MSE, which meant 8, 22, and 1 neurons in the input,
hidden and output layers, respectively. More than a single
hidden layer ANNs also were used throughout this stage,
but the results was unsatisfied.
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TABLE 1: ANN DESIGNING WITH DIFFERENT NEURON IN THEIR
MIDDLE LAYER.

Number  of | Number of PEs in | Cross-validation
ANN hidden layer error (MSE)
1 6 0. 568

2 10 0. 362

3 12 0.178

4 16 0. 0853

5 20 0.0769

6 22 0.0565

7 24 0.0894

8 26 0.0621

9 28 0.209

The performance efficiency of the network was
evaluated using the measured and ANN estimated values.
Table 2 reports the ANN performances in terms of: mean-
squared error (MSE), normalized mean-squared error
(NMSE), mean absolute error (MAE), minimum absolute
error and maximum absolute error and the linear
correlation coefficient (r) between core permeability and
neural network output. The mathematical expressions of'r,
MAE, NMSE, and MSE are defined in Sahoo and Ray
(1996) [21]. In brief, the ANN predictions are optimum if
r, MAE, NMSE, and MSE are found to be close to 1, 0, 0,
and 0, respectively. In the present study, MSE is used only
for the estimation of network training performance,
whereas r, MAE, NMSE are used to measure the
prediction performance of ANN on the validation data set.

TABLE 2: PERFORMANCE OF ANN FOR TEST DATA SET THAT
TRAINED BY TRAIL AND ERROR.

Performance KH

MSE 0.254302137
NMSE 0.196715244
MAE 0.216216873
Min Abs Error 0.001150153
Max Abs Error 3.86565017
R 0.53858819

4.2. GA method

The number of hidden layers and the number of input
and output neurons in GA-ANN were defined 1 (2, and 3),
22, and 1, respectively. It is found that, the best numbers
of hidden layer to determine of the GA-ANN model
topology were obtained two hidden layers. On the other
hand in this case, the GA-ANN model with two hidden
layers by optimizing the ANNs parameters according to
the various numbers of hidden layers had the best fitness
value. This means that the best ANN estimating model had
a 8—16-6-1 architecture.

Table 3 summarizes a report orthe best fitness and the
average fitness values for all data. Also, corresponding
plots which resulted from this table are shown in Figures 6
& 7. For each of these plots, across all generations the
minimum MSE, the generation of this minimum and the

final MSE are displayed.
TABLE 3: TRAINING AND CROSS-VALIDATION ERROR OBTAINED
FROM TRAINED NETWORK.
Optimization Best Fitness Average Fitness
Summary
Generation # 14 9
Minimum MSE 0.01103432 0.013683575
Final MSE 0.01103432 0.0245063997

The fitness function is an important factor for the
convergence and the stability of genetic algorithm. The
collision avoidance and the shortest distance should be
considered in path planning. Therefore, smallest fitness
value is used to evaluate convergence behavior of the GA.
Figure 6 demonstrated the best fitness value versus the
number of generation.

1 2 3 4 5 .
Generation

6 7 8 9 10 11 12

Figure 6: Best Fitness (MSE) versus Generation.

In Figure 7, the average fitness achieved during each
generation of the optimization is illustrated. The average
fitness is the average of the minimum MSE (cross
validation MSE) taken across all of the networks within
the corresponding generation.

TABLE 4: PERFORMANCE OF GA-ANN FOR TEST DATA SET.

Performance KH

MSE 0.116714547
NMSE 0.038365831
MAE 0.047358659
Min Abs Error 0.000110548
Max Abs Error 1.055398535
R 0.999304048
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Figure 7: Average Fitness (MSE) versussGeneration.

In this case, to evaluate of the hybrid model
generalization on the chosen data set or test data points,
the performance of each model was reported in Table 4.
Figure 8 shows the plot of the network output and the
desired network output for each test data set. In this figure,
color and the corresponding network output was a dashed
line of the same color.

Figure 8 shows the actual permeability values (KH)
that were measured in the laboratory (and were never seen
by the network during genetic training) in comparison with
the network's estimation/prediction (KH output) for each
sample.

I «¢= < Exprimental Data u

Network Outpu

1 10 19 28 37 46 55
Testing Data Set

Figure 8: Desired Output and Actual Network Output.

Comparing the results presented in Table 2 and Table 4
reveals that the correlation coefficient between core
permeability and ANN output is 0.85 while this parameter
between core permeability and GA_ANN output is 0.99.
Accordingly, genetically trained network is able to
predict/estimate permeability comparable to that of actual
core measurements. On the other hand, the capabilities of
optimized neural networks in pattern recognition is
established.

In Figure 9, the core permeability values versus GA-
ANN predictions to verification data points are shown.
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Figure 9: Core measurements versus network predictions for test
data set.

This figure reveals that an acceptable agreement (linear
correlation coefficient is 99%) between the predicted and
experimental data can be achieved.

5. CONCLUSIONS

In this work, an attempt has been made to develop a
methodology for designing of neural network architecture
using genetic algorithm. GA is used to determine the
number of neurons in the hidden layers, the momentum,
and the learning rates in order to minimizing the time and
effort required to find the optimal architecture and
parameters of the back-propagation based ANN,

Comparing the prediction performance efficiency of the
GA optimized ANN model with that of trial-and-error
approach calibrated ANN model, shows that GA-ANNs
significantly outperforms to trial-and-error calibrated
ANNs. On the other hand, GA is found to be a good
alternative over the trial-and-error approach to determine
the optimal ANN architecture and internal parameters
quickly and efficiently. The performance of the nets with
respect to the predictions made on the test sets shows that
the neural network model incorporating a GA was able to
adequately estimate the permeability reservoir with high
correlation coefficient.

Using this methodology researchers and engineers will
be able to characterize reservoir heterogeneity using
readily available geophysical well logs. It was shown that
a carefully designed neural network is able to predict rock
permeability with accuracies comparable to actual
laboratory core measurements.
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