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ABSTRACT

Before calibrating a water distribution model, selection of the best points to collect data is undoubtedly an
important task for relevant experts. This paper presents a systematic process of sampling design (SD) in a
real water distribution network (WDN). The purpose is to find a specific number of optimal monitoring
locations in which measurement devices (pressure loggers) will be installed. At first, skeletonization is
applied to Mahalat WDN for selecting only the parts of WDN that have a significant impact on the behavior
of the system. SD is then formulated and solved as an optimization problem by using a single objective
genetic algorithm (SOGA) model. Model prediction accuracy is defined as the objective function. The
solutions obtained by SOGA are compared to the ones obtained by expert choice (EC). The results show that
SOGA can find measurement locations with significantly better prediction accuracy rather than EC.
Furthermore, the model is tested for different number of sampling locations in addition to the ones in EC. It
shows that SOGA can achieve the same model uncertainty of EC with only less than half of the number of

EC’s monitoring locations.
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1. INTRODUCTION

The data for calibration of a water distribution network
(WDN) model is usually collected from a series of field
tests at strategic locations within the network, in which
pressure heads are recorded [1]. The accuracy of
calibration depends on the quality and quantity of the
collected data. Therefore, selection of appropriate
locations, called sampling design (SD), has been a
challenge among researchers and practitioners, especially
in recent years [2], [3]. Note that, after monitoring data are
collected from measurement locations, they will be used
later on in the calibration of the analyzed WDN model to
adjust calibration parameters.

The practitioners and modellers of WDN often use
some simplified approaches for sampling design since they
seek methods which are straightforward to apply and
without any analytically complex computation. These
approaches often employ some special criteria such as
clustering based on physical and hydraulic characteristics
of WDN [14]. Walski (1983) suggested monitoring
locations near the high-demand locations and on the
perimeter of the skeletonized network [4].

However, this is prone to errors as it may lead to the

selection whose accuracy is less than the required one for
SD. Therefore, the need for finding optimal locations can
lead to a better selection regarding the time and the money
being spent on this way.

Lee and Deininger (1992) and Yu and Powell (1994)
addressed optimal SD in a WDN model for the first times
[5], [6). Finding optimal solutions on a real world WDN
model are challenging because the procedure usually
needs coupling an optimization model with hydraulic
simulation models (e.g., EPANET [7]) to evaluate
potential solutions. These coupled models can make a
complex optimization model. This model may be difficult
to be solved by traditional optimization model because of
being non-convex, and/or discontinuous. In recently
developed appucations of water resources optimization,
genetic algorithms (GAs) have been noticed by many
researchers and practitioners [1], [8], [9], [10]. Meier and
Barkdoll (2000) solved a SD problem in real world WDN
model using GAs [10]. They formulate objective function
to find fire hydrants in the network in such a way that will
cause water to flow at nonnegligible velocities in more
pipes.

Bush and Uber (1998) proposed three relatively simple
SD methods, including max-sum, weighted sum and max-
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min, for WDN model calibration based on the analysis of
relevant Jacobian matrix. The methods were derived from
minimization of parameter covariance matrix [11]. Lansey
et al. (2001) then addressed prediction covariance matrix
as a better index of measuring errors for finding optimal
sampling locations in WDN model {12].

Kapelan (2002) proposed that optimal sampling
locations are better determined by evaluating the trade-off
between calibrated model accuracy and the cost of SD [3].
Model accuracy is usually evaluated using some norms of
parameter or prediction covariance matrix which, in tumn,
is calculated from the relevant Jacobian matrix [11], [12].
The cost of SD is typically surrogated by the number of
sampling devices used (e.g., pressure loggers) [3], [11].

A newly developed model by Kapelan et al. (2003)
presented a multi-objective genetic algorithm (MOGA) for
SD with the aim of calibration of WDN models. In this
approach, elements of the Jacobian matrix are calculated
prior to optimization model run. They applied and verified
their model in a small artificial case study {13}.

The aim of this paper is to assess the performance of
suggested sampling design optimization approach on a
real case study. More specifically, the objectives consist
of: (1) applying a genetic algorithm optimization for
sampling design on a real world WDN problem; (2)
comparing the optimal SD solution obtained by the
developed model to the ones suggested by expert. In the
next section, sampling design problem is briefly illustrated
and formulated. Then, a real case study and the process of
its skeletonization are demonstrated, respectively. Results
of applying the model to the case study are then presented.
Finally, a summary is given and conclusions are made.

2. SAMPLING DESIGN

The current SD is carried out under the following
assumptions: (1) the type of predicted variables, which
include nodal pressure, pipe flows or both, is assumed to
be only nodal pressure head; (2) pipe roughness
coefficients are considered as calibration parameters; (3)
the steady-state WDN hydraulic model is calibrated under
average demand condition.

A. Single-objective Optimization

The SD problem is formulated and solved here as a
single-objective genetic algorithm (SOGA) optimisation
problem. The objective is to maximise the model
prediction accuracy with a fixed number of sampling
devices. Constraints are mass and energy equations of
hydraulic equality, which are handled through a well-
known simulation model (EPANET) [7].

D) Problem Formulation

To quantify the calibrated model prediction accuracy, a
first-order second-moment (FOSM) model and linear
regression theory are used to approximate both parameter
covariance matrix and prediction covariance matrix [15].
Based on this quantification, if a set of measurement

locations are assumed, the uncertainty of WDN model

parameters associated with those measurement locations is

estimated as the diagonal elements of covariance matrix

defined as follows [2], [11]:

Cov, =s*.(JTNH™ )
where s=standard deviation of measurement devices;

and J=Jacobian matrix of derivatives 0oy,/0q,

(i=1,.‘.,Np;k=l,...,Na ), pressure
predicted variables in locations of interest, a=vector of

calibration parameters (pipe roughness coefficients),

N ,=number of measurement locations of interest,

y=vector  of

N, =number of calibration parameters (pipe roughness

coefficients). Therefore, the value of ith diagonal element
in matrix Cov, corresponds to the uncertainty of ith model

parameter (pipe roughness coefficient).
For a better representation of the model uncertainty, the

model prediction (pressure head) uncertainty needs to be

evaluated. This is performed through the propagation of

parameter uncertainty to model predictions as follows [2],

[12}:

Cov, = JZ.Cova.J:

J,=Jacobian

2y
azi/aak
(i=1.,N,k=1.,N,); z=vector of model pressure

matrix of  derivatives

predictions in all nodes, and N,=number of model

pressure predictions of interest corresponding to all nodes
of WDN in which pressure prediction is important (here
referred to all potential locations of pressure logger
installation). The value of the ith diagonal element in
matrix Cov, indicates the uncertainty of ith model

pressure prediction, and somehow it indicates the variance
of ith model pressure prediction.

To totally represent the value of model prediction
uncertainty, the average of square root of all diagonal
elements in matrix Cov, (i.e., all model prediction

uncertainty) is assumed as model uncertainty
representation which is defined as follows:
N
v 172
Fo= A Z Cov,; 3)

7 =l

The above objective function is in absolute terms. An
alternative to this form is to address in relative and
dimensionless form. Therefore, the objective value is
defined as the normalised (relative) model prediction
accuracy as follows:

le

where F,; =the value of model pressure uncertainty for

ideal state where all potential measurement locations are
monitored. Here, it is assumed that the total budget of
sampling is constant. As a surrogate, the number of
pressure loggers is introduced as an indicator of sampling
cost, which is assumed to be fixed.
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1) Genetic Algorithm

A standard genetic algorithm (GA) is used in this study.
In the SD model, each chromosome represents a set of
sampling locations within the WDN model. Integer-value
encoding is used as the location of measurement device in
the WDN. The length of each chromosome is the number
of pressure loggers. In fact, number of genes for each
chromosome is equal to the number of sampling locations,
which is shown in Fig. 1. Fitness function is assigned for
each chromosome and is defined as the aforementioned
objective value ( f ) in (4).

Ist and 3rd Last

sampling

sampling
focation

location

Fig. 1: Schematic representation of each chromosome.

The GA operators are selection, crossover, and
mutation. Elitism operator is also used in this study to
keep the best solution in the next generations. The GA
generation is repeated until some finishing criteria are met.
In this study, after a pre-specified number of generations
in which all GA runs converge, the GA is stopped.

B. Expert choice

Without applying an optimization model, expert choice
(EC) is used by professionals to find critical points of the
system for pressure logger installation. The following EC
method is an initiative proposed by practitioners to
identify pressure logger installation based on pressure
zones approach [14]. To select a set of monitoring
stations, the following steps are sequentially performed:

In the first step, an analysis on the WDN topography
and morphology is done to recognize different zones with
clustering WDN nodes’ elevation. In the second step, an
analysis on flow distribution statement is performed to
recognize different zones which are supplied by the same
source(s). Consequently, a better behavior of pressure
head loss variations is identified based on these two steps.
Then, the WDN is divided into a number of pressure
zones based on the classification performed in steps 1 and
2. Finally, pressure logger stations are determined for each
zone based on the following criteria.

At first, weighted average of elevation over the
customers located in each zone is calculated as a
representative elevation of that zone as follows:

n; .
> (m! xEl})

El},, =41
I’lj ]
J
2.
i=l

ave
where El/ =ith elevation line in zone j; m/= number

“)

of customers at ith elevation line in zone j; n  =number of

elevation line in zone j. Measurement station is then
determined at a junction with the elevation equal to the
representative  elevation of that zone. The selected
monitoring station must satisfy other required conditions
(e.g., imposed by executive limitations). For instance,
pressure logger must be installed in a main pipeline in the
relevant zone.

3. CASE STUDY

Proposed SD problem is applied to Mahalat WDN
model as a real world case study. The city of Mahalat is
located in the central part of Iran, The general layout is
presented in Fig. 2. A brief summary of the case study is
given here; for more details, refer to [14].

Fig. 2: Layout of Mahalat WDN model.

The WDN covers approximately 46 km® with a
population of around 160,000. Model demands are
predominantly domestic with some commercial users. To
reduce the high pressure head induced by steep slope of
the city, six pressure reduced vales (PRVs) are used to
decrease pressure heads to a fixed pre-specified values.
The main characteristics of the pipes are shown in Tablel.
The majority of main pipes material is ductile iron and the
majority of small-size pipes are made of PVC; and
asbestos cement pipes cover the larger part of middle-size
pipes material in the network. An EPANET hydraulic
model was constructed including 1814 pipes with the total
length of approximately 101 Kilometers, 1771 junctions, 2
tanks, and six PRVs based on the available data.

TABLE 1: SUMMARY OF PIPES MATERIALS AND DIAMETER.

- . Number Range of
No. Original Material of Pipes Diameter (mm)
1 Asbestos Cement 406 80-250
2 Ductile Iron 470 100-500
3 Galvanized Iron 113 25-125
4 PVC 657 25-110
5 Steel 166 20-65

The WDN is supplied by gravity from three wells and
two service tanks (reservoirs) around the city, whose
position are shown in Fig. 2. The average water demand is
158.9 L/S. The water is pumped into the system with a
constant rate. The reservoirs store and balance the
fluctuations of water daily consumption. Estimation of
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pipe roughness coefficients (Hazen-Williams C-factor)
were performed based on the main characteristics of the
pipes and water quality [16], [17].

Based on the circumstances in the EC section, the
minimum and maximum elevation of the WDN was
identified equal to 1554.4 m and 1924.4 m above sea
level, respectively. Then, The WDN was divided into 13
pressure zones with respect to elevation variations and
water supply sources. 20 stations were initially determined
for installing pressure logger and collecting pressure
measurements. Two pressure loggers were excluded since
they had some obvious anomalies after gathering the data.
Fig. 3 depicts locations of the remaining 18 pressure
loggers as EC (expert choice).

4. SKELETONIZATION

Skeletonization is the process of selecting only the
parts of the hydraulic network that have a significant
impact on the behavior of the system for inclusion in a
water distribution model [18]. Although the portions of the
network that play a minor role in the system are removed,
they are not ignored. Rather, the effects of these elements
are accounted for within the parts of the system that are
included in the model.

With respect to the huge number of pipes and junctions
in the case study, two approaches of skeletonization are
sequentially used here as below,

(1) Branch trimming is first applied in which short
dead-end branches and their corresponding junctions are
removed. After removing the link, any nodal demand of
the removed junction is reallocated to the upper junction
at the beginning of the branch. For removing pipes within
performance of this process, other special criteria can be
defined. The criterion defined here is to remove small
diameters pipes (less than 100 mm) and the pipes out of
the reach of existing measurement points (EC). Note that
pipe roughness coefficients for the pipes on dead-end
branches and out of the reach of existing measurement
points are inefficient in the calibration process [1].
Therefore, removal of these pipes has no effect on
declining the generality of the SD model developed here.

(2) Series pipe removal is the process of removing the
intermediate node and merging the series pipes. Further,
specific criteria can be defined as which conditions the
two series pipes must have in order to complete the
process. Here, it is assumed that only equal diameter series
pipes are merged. Moreover, a distance-weighted
technique is used to distribute any available demand of the
removed node to the two end nodes of the newly merged
pipe. This technique divides the demands between the two
nodes based on their proximity to the node being removed.
Note that, when the condition for removal is satisfied
between two series pipes, the merging process is carried
out in such a way that hydraulic capacity keeps constant
after merging.

As one of the purposes of this paper is the comparison

of the proposed method with the EC, the junctions which
have been used as observation junctions in EC should be
kept during skeletonization process. Therefore, these
junctions are retained to be considered afterwards as the
potential nodes for monitoring locations in the
optimization SD problem.

With respect to the mentioned steps in skeletonization,
the WDN model was skeletonized by WATERGEMS
software [18] ten times for removing dead-end branches
until there were no meaningful trimming performed; i.e.,
dead-end branches have been removed up to ten sequential
times if they have satisfied the criteria for branch trimming
in each time. At the second step, series pipes removal was
continued five times until they were no significant removal
occurred. Finally, the skeletonized WDN model was made
of 237 pipes and 195 junctions including the junctions of
EC (Fig. 3).

5. RESULTS AND DISCUSSION

As our purpose is the comparison of the sampling
design by using SOGA with the ones obtained by the EC,
The optimization problem is solved to find the best 18
monitoring locations (equal to number of the EC’s
measurement locations) as the positions for pressure
logger installation. After skeletonizing the WDN model,
all nodes of the system were considered as potential
pressure measurement locations (N, =195). Therefore,

number of sets of possible solutions is equal

195 . .
to (18 };1.16“025 , which shows a large space of feasible

solutions and justifies the use of genetic algorithm as an
optimization model to solve the problem.

Further, it is assumed that the WDN model are
calibrated for N, =7 groups. Although there are a large

number of pipes (237), number of parameter calibration
groups is assumed to be small number because (1) model
prediction error will increase if number of calibration
parameters increase [12], [19] (2) it was shown that the
computational time for running the model will
exponentially be enlarged. Grouping was done by dividing
the range of HW pipe roughness coefficients into a 7
distinctive ranges. After estimating HW pipe roughness
coefficients, their variations were between 78 and 155.
Therefore, they have been classified as the ranges of (78,
90], (90,1001, ..., (130,140] and (140,155]. Then, the
average of the HW pipe roughness coefficients in each
group was considered as the representative roughness
coefficient of all pipe of the group. Note that the standard
deviation of all pressure loggers is assumed to be equal to
s=1.0 m.

When evaluating fitness of each chromosome, Jacobian
matrix (J) is required to be calculated each time. For
calculating J, hydraulic simulation model (EPANET)
needs to be run by ~,+1 times. Instead of this huge

computational effort in each generation, an new method is
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suggested here. Before starting optimization model, Full
Jacobian matrix (J,,) is calculated. Matrix J can be

constructed from full Jacobian matrix (J,,) by copying

the rows corresponding to the currently analysed set of

{ ! I 3

measurement locations. Note that full Jacobian matrix J,,

is obtained using all potential measurement locations. The
matrix has N, =195 rows and N, =7 columns.
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Fig. 3: Pressure monitoring locations for the Expert Choice (EC) and the Genetic Algorithm (GA) sampling design in the
skeletonized WDN model of Mahalat; both approaches for 18 measurement points.The contours denote pressure head lines in meters.

A sensitivity analysis based approach was used here for
setting the SOGA model parameters. Therefore, they were
determined after a limited number of trial runs using
different randomly created initial populations. The
parameters used in the problem are as follows: population
size of 50 chromosomes, roulette wheel selection operator,
mutation with the probability of 0.05 and one point
crossover with the probability of 0.8. These values were
rigorously checked for the parameters in such a way that
the fastest convergence of finding optimal solution is
obtained. Note that there is no systematic approach to find
the best composition of GA parameters setting.

Due to the large space of feasible solutions, the optimal
solutions obtained by GA should be treated as suboptimal
solutions. It means there is no guarantee to find global
optimum. Therefore, GA was run by twenty different
times, each time with different randomly generated initial
populations. Then, the most frequently selected
measurement locations were determined as a suboptimal
solution of optimization model. All SOGA runs converged
after 5,000 generations. Fig. 4 shows a typical SOGA run
convergence of fitness function for the best solution.

The set of 18 optimal measurement locations obtained
using SOGA and measurement locations proposed by EC
are shown in Fig. 3. The network nodes associated with

these solutions are also presented in Table 2. Since the
SOGA solution was run twenty times, the optimal
measurement locations are accompanied by a percentage
which shows the relative frequency of selection of optimal
measurement locations among different runs. This
percentage denotes the robustness of GA optimal
solutions. For example, the selected locations with the
percentage of 100 percent are robust as GA optimal
solutions. However, some selected locations such as
N1735 and N4648 have the percentage of 75%, which
implies that there are some other competitive locations
within WDN. Nevertheless, the selected points are more
robust than other competitive points of WDN.
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Fig. 4: The convergence of SOGA mode! runs.
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As can be seen in Table 2, four measurement locations
(22% of measurement locations) are identical and some
other points are close between the two approaches. The
occurrence of such clustering can be mainly a
consequence of the following possibilities: (1) sensitive
nodes, which are likely candidates for SOGA selection,
have spread in each zone of the network and have been
located in main pipes in each zone (i.e., the locations that
had been selected most by EC); (2) since grouping pipe
roughness coefficients is somewhat related to the special
pipes in each zone, the high uncertainty of some grouped
pipe roughness coefficients may have dictated some
critical (sensitive) nodes to be selected in that zone.
However, there are some points in the network that the
solutions are quite different, For instance, on the left of the
city, EC have selected three measurement locations while
SOGA have not selected any points since there are no
pints in this area to be sensitive when calibrating the
whole system. In other words, the variations of HW pipe
roughness coefficients for the pipes in this area have no or
little effect on the resulted pressure heads. Therefore,
Jacobian matrix, if it includes any point in this area, is less
sensitive rather than the ones which include the points of
the other regions.

As can be seen in Fig. 3 for optimal measurement
locations, some of them are mainly prone to be selected on
the main pipes and where the pressure contour lines are
close to each other (i.e., where the hydraulic gradients are
too much). Despite this fact of selection for some points, it
is difficult for us to be able to generalize to all
measurement locations. Of course, one of the main factors
in selecting optimal locations is the sensitivity of nodal
head over the calibration parameter variations. As pipe
roughness coefficients (calibration parameters) are
grouped, the type of grouping and the number of pipes in
each group can affect the selected locations and therefore
should be rigorously checked and determined.

For further comparison, the objective functions and
other sensitivity parameters of the two approaches are
shown in Table 3. As expected, SOGA is obviously better
than EC in all cases. Main objective function of this study
(H) has a relative improvement of 51%. Interestingly, the
maximum pressure prediction uncertainty for EC is 60.10
m in a node. It means that there is negligible monitoring
effect on this node when the EC measurement locations
are used. However, this value for SOGA is only 1.0 m.
Rather, it means that the prediction uncertainty (standard
deviation) for the worst node in the network is 1.0 m if the
model is calibrated with the measurement locations

obtained by SOGA. The next row in Table 3 has the same
interpretation.

Further, the uncertainty of the calibration parameters
associated with each SD method is shown in Table 3.
Standard deviation of parameters indicates the parameter
uncertainty which is equal to the square root of diagonal
elements in Cov, . These uncertainties will be acquired for

calibration parameters if the model is calibrated with the
observing data collected from measurement locations of
the relevant method. As can be seen, improvement in
parameter estimation (i.e., estimation with less
uncertainty) will be obtained for all parameters in SOGA
rather than EC.

SOGA was analyzed more to find optimal solutions
with different number of monitoring locations. Thus,
optimal set of locations were found for number of
monitoring locations of 7 to 18. Monitoring locations
should be more than 7 since there are 7 calibration
parameters, otherwise they will not lead to a well-posed
solution [13].

The relative accuracy and associated pressure

prediction uncertainty for each specified number of
monitoring locations are shown in Fig. 5. As can be seen,
relative prediction accuracy decreases when number of
monitoring locations decreases. Note that for each point
on the trade-off, there is a set of optimal locations for
installing measurement devices corresponding to the
associated number of pressure logger.
When comparing the SOGA optimal solutions with the
EC’s solution in Fig. 5, the following can be noted:
optimal solution of 8 monitoring locations has the relative
accuracy of around 25% (or model uncertainty of 0.65 m),
which are approximately equal to the relative accuracy (or
model uncertainty) of 18 monitoring locations in EC. It
implies that the same model uncertainty of EC can be
achieved by SOGA, despite that only less than half of the
number of EC’s monitoring locations are required. In
other words, the accuracy of the EC’s can be achieved by
SOGA with a few optimal sampling locations. The
position of these 8 optimal locations compared to the EC’s
is depicted in Fig, 6. The SOGA optimal solution shows a
uniform spread of locations within the WDN, which can
produce approximately the same model uncertainty as
EC’s produces.
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TABLE 2: MEASUREMENT LOCATIONS (NETWORK NODES) OF EC AND SOGA SAMPLING DESIGN.

No. 1 2 3 4 5 6 7 8 9
Expert Choice [ N1009 | Ni205  NI412  NI1536 | N1632 | Ni655  N3330  N4l24 N3350
SOGA optimal solution 37 [ NI009 | NIOIS  NI622 NI628 | NI1632 ] NI735  NI1742  N4648
percentage of selection for
SOGA cotimal solutions 100 100 100 100 100 o 7 100 75
No. 10 T 12 13 14 15 16 17 18
Expert Choice N5790  N6042  N6148  N6654  N7273  N8226 _ N86d0 | N8oi0 | N&oi2 ]
SOGA optimal solution ~ N4687 ~ N7058  N7145  N7192  N7346  N8904 | N8910 | N89iz | N8922
percentage of selection for 100 100 100 100 100 100 75 100 75

SOGA optimal solutions

TABLE 3: COMPARISON OF SAMPLING DESIGN RESULTS BETWEEN EXPERT CHOICE AND GENETIC ALGORITHM SAMPLING DESIGN.

Best single objective Relative

No. Expert design genetic algorithm SD improvement (%)
Relative pressure prediction accuracy (f) 0.25 0.38 51
Average pressure prediction uncertainty (F) (m) 0.63 0.42 34
Maximum pressure prediction uncertainty (i.e., square

. 60.10 1.00 98
root of the largest diagonal element of Cov, (m)
Trace (i.e., sum of the diagonal elements) of Cov 2 (m?) 164.29 38.09 77
Parameter 1: Value and SD? 85.2 and 13.6 852 and 74 46
Parameter 2: Value and SD 94.4 and 4.1 94.4 and 3.2 22
Parameter 3: Value and SD 101.6 and 8.6 101.6 and 6.9 20
Parameter 4: Value and SD 117 and 469.4 117 and 444.9 5
Parameter 5: Value and SD 123 and 57.5 123 and 33.3 42
Parameter 6: Value and SD 134.6 and 1047. 134.6 and 125.4 88
Parameter 7: Value and SD 147.4 and 20.8 147.4 and 144 31
Average of selected locations’ demands (L/S) 1.21 0.53 -
Average of selected locations” elevation (m) 1728.14 1720.38 -
Average of selected locations’ pressure head (m) 55.29 85.61 -

® Standard deviation (indicator of uncertainty) which is equal to the square root of the relevant diagonal element in Cov,
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Fig. 6: Pressure logger locations for the Expert Choice (18
measurement points) and SOGA sampling design (8
measurement points). The contours denote pressure head lines in

meters.
6. SUMMARY AND CONCLUSION

A single objective genetic algorithm was used to solve a
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sampling design problem for calibration of WDN model.
The objective function was defined as relative pressure
prediction accuracy. SOGA was seeking a specified
number of the best locations for installing pressure logger.
The model applied to a real world case study in Mahalat
city, which is large enough to use an optimization model.
Before solving SD problem, skeletonization was used in
the WDN model to remove unnecessary pipes which have
little effect on the behavior of the system. The optimal
solution was then compared to that obtained by the EC.

From comparing the two methods (i.e., SOGA and EC),
it is verified that SOGA can find better measurement
locations, which have more effect on the whole nodes of
the WDN model. Consequently, the calibration resulted
from these monitoring locations will lead to the least
prediction uncertainty.

In addition, SOGA was used to identify the optimal
sampling locations with different number of points (Fig.
5). It was shown that the same level of accuracy of EC can
be achieved by fewer numbers of optimal measurement
locations. For instance, number of 8 optimal measurement
locations can have the same prediction of accuracy
resulted by 18 monitoring locations of EC (Fig. 5 and Fig.
6). This implies that SOGA can achieve the same model
uncertainty of EC despite that only less than half of the
number of EC’s monitoring locations is required. This
proves the cost-effective superiority and significant
improvement of optimal SD over EC. Further, Table 3
shows that significant improvement will be obtained for
parameter and prediction uncertainty if SOGA
measurement locations are used for data monitoring.

Further, if the purpose of SD is model calibration as
well as some other objectives (e.g., monitoring the whole
WDN), the GA optimization problem can be still
applicable. In these cases, GA optimization problem can
be possible with assuming some measurement locations to
be fixed in SD process. To do so, a penalty function must
be defined to deteriorate the solutions’ fitness without
those previously fixed points. Obviously, the composition
of new measurement locations will be influenced by these
fixed points.

In addition, the spread of measurement locations in
WDN can be dependent on the type of pipe roughness
grouping. The sensitivity of such grouping must be
investigated more to find the robust solutions.

7. NOMENCLATURE

a =vector of calibration parameters
Cov, =parameter variance-covariance matrix

Cov,=mode! prediction variance-covariance matrix

El/ =ith elevation line in zone j

F =objective  function
uncertainty

[ =objective function of relative pressure accuracy

of pressure prediction

F,,;=Value of F assuming that all analyzed locations

are monitored
J =Jacobian matrix of derivatives
J,, =full Jacobian matrix (all locations monitored)

J ,=prediction Jacobian matrix

m! = number of customers at ith elevation line in zone j
N, =number of calibration parameters

N,=number of model predictions for whom

uncertainty are evaluated
N, =number of measurement devices

N, =number of total potential locations of SD

¥4

N =number of objectives

n; =number of elevation line in zone

Superscript "=vector/matrix transpose operator
s=standard deviation of measurement devices
y =vector of WDN mode! predicted variables

z=vector of model predictions of interest
o, =standard deviation of measurement devices
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