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ABSTRACT

This paper is concerned with the problem of plane-strain hydraulic fracture growing transverse to a
borehole in an impermeable elastic medium under condition of compressibility-toughness dominated
propagation regime. Compressibility and near borehole effects are considered to explain the early unstable
phase of the fracture growth observed in laboratory experiments conducted with low viscosity fluids. A
solution is obtained in terms of dimensionless fluid net pressure, fracture length and borehole radius under
conditions where it can be assumed that the fluid is inviscid. It is shown that the problem depends only on
a dimensionless time and on a dimensionless borehole radius. With time, the solution evolves between two
asymptotic regimes where the solution is self-similar. Compressibility effects control the solution at small
time while the solution at large time is dominated by material toughness. An instability is identified in the
problem after breakdown. The potential for unstable growth depends on the initial flaw length, fluid
compressibility, volume of fluid, and the material elastic modulus. It is also seen that the deviatoric in-situ

stress reduces the breakdown pressure.
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1. INTRODUCTION

When conducting experiments designed to reproduce
the process of hydraulic fracturing under laboratory
conditions, it is generally desired for the fracture to grow
in a controlled manner in a block without interacting with
its outer boundary. Data sampling also demands for the
fracture to propagate slowly enough for the acquisition
system to collect relevant information. However,
experiments with low viscosity fluids systematically
exhibited an unstable crack growth step just after
breakdown that was characterized by a very fast increase
of fracture length and a sharp pressure decline. Numerical
models available to describe the propagation of a fluid-
driven crack rely on the assumptions that the fluid is
incompressible and that the borehole can be treated as a
point injection source [3,5,8]. Because compressibility
effects are not considered, these models are in fact
inappropriate to describe fracture breakdown and the early
fracture growth.

In this paper, we consider the problem of a radial
fracture transverse to a borehole with finite radius a, see
Figure 1. The fracture is driven in an impermeable elastic
material characterized by Young's modulus E, Poisson's
ratiov, and fracture toughness K, . The fracture is driven
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by a compressible Newtonian fluid of viscosity 4, injected
at a constant rate J, . The development proposed in this

paper deals with the role of the fluid compressibility and
the borehole finite radius upon the
early stage of fracture propagation.

A solution is proposed in terms of the ratio of fracture
length to borehole radius, and injection pressure for the
simplified case of an inviscid fluid, for which the pressure
gradient along the fracture is neglected.

The model is intended to reproduce the fracture
response in terms of fracture length l(t), width profile

w(x,t) and net pressure profile p(x,t) where x is the
radial coordinate with respect to the borehole center and ¢
is the fluid injection time, the net pressure p is defined as
the fluid pressure p r minus any far-field compressive
stress o, acting perpendicular to the fracture plane.

Under above assumptions, the governing equations are
formulated. The formulation makes use of the following
effective material parameters:

2 2
= W=l 1<'=4(;[-) K,,

where E' is the plane strain elastic modulus, M is the
effective viscosity, and K’ is the effective toughness.
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Figure 1: Problem definition.

2. GOVERNING EQUATIONS

2.1. Elasticity Equation

The crack opening w is related to the fluid pressure
p,byan integral equation [6]:

ple-al=E [P Lvnelee
where, (J, (x) =0,h (x) +0o,h, (x) - Py (X)) and p,is

borehole pressure. This equation can be obtained by
superposition of climbing-edge dislocations, where the
gradient ow/0¢ is actually the dislocation density [2]. The
kernel of integral has two terms, the first one, (x - f)“ is

called a simple Cauchy kernel and appears in all plane
crack problems. The second term, H (x,é’ ) is related to the

borehole effect.

2.2. Lubrication equation

The flow of viscous fluid in the crack is governed by
the Reynolds equation, according to lubrication theory [1]:

w_10( % ®
ot ' ox ox

This non-linear differential equation is deduced from
Poiseuille law

P @
u ox
and the local continuity equation
w 3 ®
ot ox

where g denotes the flow rate.

2.3. Propagation criterion and boundary conditions

The problem formulation is completed by specifying a
propagation criterion and the boundary conditions at the
fracture inlet (x = a) and at the tip (x =a+l ) .
The boundary conditions at the crack tips x = i(l + a) are
given by a zero fracture opening and a zero flow
conditions, i.e.,
w=0, g=0, at x=%(+a) 6)
The assumption of no lag between the fluid fronts and the

crack tips implies that there is no boundary condition for
the fluid presure at these points.

The criterion of continuous quasi-static propagation of
a fracture in mobile equilibrium [7],

K =K, 7
is expressed as the tip asymptote of the crack opening [9]
w=§7((l+a)~x)‘“, (+a)-x((+a) ®)

where K, is the mode-I (opening) stress intensity factor.
In the following, we use (', to introduce system apparent

compressibility, which accounts for the compliance of the
injection system, borehole and compressibility of the
volume of fluid upstream of the fracture inlet. If we
consider that the system compressibility is constant, the
boundary condition at the fracture inlet is given in terms of

flow rate, including a component due to fluid
compression:
& 1 p ©
== —C Y, % at x=%
1=7% 725 re

where ¥, is the initial fluid volume in the system under

Zero net pressure.

The origin of time is fixed to the instant at which the net
pressure in the initial flaw is equal to zero.

Given these boundary and initial conditions, the local
continuity equation (5) can also be expressed in terms of a
global continuity equation after integration both in time
and space as below:

a+l 10
Qot"'CfVOPZZ jw(x)dx (10)

a

where p is the net pressure.

3. SCALING AND SIMPLIFICATION

We seek an appropriate scaling, where each term of the
governing equation consists of a dimensionless factor of
order one and a dimensionless constant that closely
approximates the term order. Building on a scaling
originally introduced for hydraulic fractures with no lag
[4], we introduce the scaled coordinate § = (x~ a)/l and

express the sought quantities w(x,t), p(x,t), q(x,t), l(t)
as:

w=gLQ, p=¢€eE'Tl, qg=0,V, [=Ly (11)
where g(t) is a small parameter, L(t) is a length scale
and where Q IT, W, and yare dimensionless aperture,

net pressure, flow rate and crack length, respectively.
If the far-field deviatoric stress is ignored, under this
scaling (11) the main equations are transformed as follows

® Llasticity equation

I]:..l_i ‘.@QH' g,g,l/. dg
4y %04 G

a

(12)
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e Lubrication equation

f_t+££ Q+Qt...§ ££+_}:£ ég.z_: 21 _a__ Q3_a..r_£
g L L y)o5 »°G, 0 oc¢
13)
e Propagation condition
Q=G " \1-¢, 1-¢c (14)
® Global volume balance
(15)

Lo lode =1-6.1
“G‘:}/J; 4"_u

The five dimensionless groups G,, G,,, G, G,, G, are
defined as follows:

a 7 K’ (16)
G = m T s G Y e
L EEY F gPE
G = Ot _ eC V,E
el? ! Ot

The groups G, and G, are associated with energy
dissipation processes while the groups G, and G, are
related to storage of fluid andG, is associated with the
borehole radius effect. In fact, G,, represents viscosity,
G, toughness, G fluid storage in the fracture, and
G, fluid storage in the borehole due to compressibility

effects.

Four specialized scaling types can then be constructed
to capture the features of the solution for a specific
propagation regime dominated by one group for the fluid
storage and one group for the energy dissipation. This is

done by setting either G to 1 or G, to GA,_l and either
G, or G, to 1, so as to yield definite expressions for the

small parameter 8(1‘) and the length scale L(t); the three
other groups then become evolution parameters. The
introduction of these different scalings enables us to study
the particular conditions when one or both of the evolution
parameters become zero without simplifying the
equations.

3.1. Compressibility-toughness scaling ( K -Scaling)
This scaling (denoted by the subscript K ) is obtained
by settingG, =1, andG, = GJ_l . The compressibility-

toughness scaling is meant to describe a propagation
regime controlled by the storage in the fracture of the fluid
released by decompression. The energy balance is
dominated by formation of new fracture surface while the
energy dissipation in the viscous fluid flow can be
neglected. In this form, the resultant scaling factors &;

and L are given by

1/4 (17)
Kr4 Az
& :[E’SC.,Vo] ’ L; = (CfVOE)

And the three evolution parametersG,, G, and G,
correspond to a dimensionless borehole effect Az,
dimensionless viscosity M 7> and dimensionless fluid

injected volume S, given by

a {(c,v, ) e (18)
e

A- = R
k (C/VOE')VZ Kt

/4

E'
S =0t 3;7;&5;;%5;—]
Hence, the field quantities are formally scaled as follows:
11)= Leyi( 4z, M7, S )
wlnt)= £ LS, 4, My, ;)
plet)= e BTG, 47, M, S;)
q(x.1)= Q¥ (¢, 4. M, ;)

19)

4. LIMITING CASE OF AN INVISCID FLUID

In the remaining part of this paper, we restrict our
consideration to the case of a fracture drivén by an
inviscid fluid in a linearly elastic-brittle, impermeable
material, taking into account upstream compressibility
effects in the inlet boundary conditions.

4.1. Formulation for an inviscid fluid

Specialized expressions that are used to determine the
evolution of the fracture can readily be deduced from the
governing equations presented earlier. Since the fluid is
assumed to be inviscid, the pressure in the fracture is
uniform. It then follows that the model reduces to a set of
three scalar equations; namely, an elastic expression for
the fracture volume, the global fluid mass balance, and the
propagation criterion.

It is in fact convenient to express the stress intensity
factor K, , the fracture volume V, as their equivalent

quantities (denoted by an asterisk) for the reference
Griffith crack with the unit pressure

K, :(Pf;(ﬂ)“o'dfz(ﬂ»Kl*
Vf =(Pg1(ﬁ)‘°'dgz(ﬁ)) Vf*
where ﬂ:l/a and p = p —o0,(net pressure). These
dimensionless functions f:(ﬂ) and g,.(ﬂ) (=1, 2) are
defined in such a way that their limits. for #=0 is
corresponded to the edge crack, and for f=ooto the

Griffith crack. These functions can be found numerically
[10]. Plots of these functions are also shown in Figure 2,
where it can be seen that the effect of the wellbore
becomes negligible when the crack length is larger than
about 10 times the borehole radius.

(20)
@n
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Figure 2: Dimensionless functions of £,(4) and g, (B) (=1,2).

Using the solution of a uniformly pressurized Griffith
fracture in combination with (20) and (21) and
propagation criterion (7), the following expressions can be
deduced readily:

K' £(8)
p= +0
271" £(8) 7 £(B)
2
V,= (pgl(ﬂ)‘o'dgz(ﬂ))_gflz

The above equations, together with the global volume
balance
V,=04-CVyp 24)
completely define the evolution of fracture, given the
initial crack length /, .

22)

(23)

4.2. Solution in the K -Scaling

The solution can conveniently be expressed in the K-
Scaling defined earlier. In this scaling, the solution, e.g.,
the fracture length yE(r;AE,SJ) and the net pressure
I /?(T; A, SJ) depend only on dimensionless timer,
dimensionless borehole radius 4;, and the dimensionless

deviatoric far field stress S , respectively as below:

T:i’ A;:_cL, szad, 25)
,, L; gE
)"k
where £ =L ,(1)/4
E™Q,

Essentially, the zero viscosity model consists of the
propagation criterion (22)
B 1 S/ 4)
= +S85

2% fl(}’,;/A,;) fl(}’E/A/?)
And an equation combining the global volume balance

(24) and elasticity expression for the volume of a
uniformly pressurized fracture (23)

L T+2”}’;25ng(7/:/f4;)

Forenri e/ 4)
where the normalized fracture length [ has been

(26)

i1

k

@7

expressed as

5= )3 (28)
4

Eliminating IT between (26) and (27) gives the time 7 as

a function of the fracture length 7

T=(1+2”7;2gn(7’;/Ai)) (29)

+5;

fz(}’E/AE)]
e/ 4)

1
[25/2 7P e/ 4e)
~27y’S; gz(}’/:/A::)
Then combining (27) and (29) yields an implicit relation
between the dimensionless pressure I1; and7 .

The large time asymptotic behavior of y; and II, are

given by
2 23 i -3
o~ e T I, ~—1 or T™H
Ve~ i 7g s »

Figure 3 shows plots of the solution TI (r)
forS; =0, 4; =1, together with the large time asymptotic

solution (dash-dot line). The solution is characterized by
two branches, which indicate the existence of two possible
solutions for the same time 7 , and thus the existence of an
instability. The upper branch gives the solution for a small
crack with high pressure of the initial flaw, which the
lower branch corresponds to a larger crack with a lower

pressure.

Fluid compression

unstable

0.1
tay,,. Fracture propagation

1 100 1000

Figure 3: Two branches of the curve of the dimensionless
pressure with respect to the time 7 and the
asymptotic trend for large values of 7.

4.3. Fracture breakdown and initial unstable growth

The origin of time is fixed to the instant at which the
net pressure in the initial flaw is equal to zero. However,
the system of governing equations is only applicable after
breakdown, i.e., when the initial flaw starts to propagate.
(Since the fluid is inviscid, fracture breakdown coincides
with fracture initiation.) Thus the solution is meaningful

only from the time of fracture breakdown, 7,. The
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injection time required to reach initiation depends on the
fluid injection rate, system compressibility, material
toughness and initial flaw length.

Figure 4 shows the variation of 712(7) for

87 =0, 4; =1. The lower branch of y; (r) corresponds
to upper branch of [T (z') when compressibility effect are

significant (small initial flaws). Conversely, the upper
branch of Vi (z-) corresponds to lower branch of T] E(T)’

when compressibility effect are negligible (large initial
flaws).

If compressibility effects are important, the pressure
rises slowly and a large injection time is required to
compress the fluid and reach the breakdown pressure I, .

If initial notch is small, a higher pressure level is required
to fulfill the propagation condition. Longer initial flaws
are easier to propagate but more time is needed to fill the
fracture and reach the breakdown pressure. The
knowledge of 7, gives the position of the initial solution

in Figure 3.
12
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stable
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Figure 4: Dimensionless length of the crack versusz .

Let us focus on the diagram of dimensionless pressure
in Figure 3. If the initial solution IT (z'o) is located on the

upper branch, which corresponds to the toughness-
compressibility regime, the solution jumps instantaneously
from HOu(ro) to HOS(TO) as soon as the propagation
condition is satisfied. The initial propagation phase is
unstable. Conversely, if the initial solution IT, (2'0) is on
the lower branch, the fracture propagation is always stable.
A link can be established between the results formulated in
Figures 3 and 4. The upper branch of I /?(T) corresponds

to the lower branch of y; (r), which indicates that small

initial flaws or compressible systems both result in an
unstable growth of the fracture after breakdown. The
lower, stable branch of ] E(T)’ corresponds to the upper
branch of . (z')

Figure 5 shows the dimensionless pressure for various

dimensionless deviatoric far-field stresses. It can be seen
that deviatoric stresses reduce breakdown pressure.

10c
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001 ey v T
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Figure 5: Dimensionless pressure versus7 for various

dimensionless deviatoric stresses.

5. CONCLUCION

A model has been proposed for the propagation of two
radial crack transverse to a borehole with a finite radius.
This model considers effects of borehole and
compressibility of the fluid. Scaling shows that problem
depends on the dimensionless viscosity and two evolution
parameters that are related to the compressibility and
borehole radius. After scaling, the crack is assumed to be
driven by an inviscid compressible fluid. The results
presented in the previous section illustrate the model
predictions of the initial unstable growth observed
immediately after breakdown. During the initial unstable
growth pressure decreases while the length of the crack
increases. The stable propagation regime that follows the
unstable growth is also reasonably well described by the
model. The problem is solved for various deviatoric
stresses and it is seen that deviatoric stresses decreases the
breakdown pressure.
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