Noise Suppression in Eddy Current C-Scan Images Using
a Non-linear Adaptive Maximum Likelihood Filter
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ABSTRACT

In this paper, a non-linear local adaptive Maximum Likelihood filter is proposed for analyzing EC C-scan
images. The model of EC noise in this filter is assumed to be non-zero mean complex Gaussian process. By
introducing an enhancing factor, we show that a better sharpening of the boundary and details of defects are
achievedwhile the effect of noise on the defect reconstruction is reduced. Theoretical and experimental

results are presented to confirm the performance of the proposed filter.
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1. INTRODUCTION

Nondestructive evaluation (NDE) includes a wide
range of inspection methods such as visual, radiography,
ultrasonic and electromagnetic with several applications in
the field of medical and industry {1]. The eddy current
(EC) technique is the most commonly used nondestructive
testing (NDT) method for detection and sizing of defects
" in conductive materials, This method works as a result of
the interaction between an ac current-carrying probe (coil)
and the material under the test [1]. This interaction
appears as an impedance variation of the probe which is
due to the variations of density, permeability and
conductivity of the material [2].

A visual observation technique, based on C-scan
imaging, is often used for analysis of eddy current test data
[3]. It is desirable that the true defect signals in EC C-
scan images have sufficiently large amplitudes in
comparison with the noise [2]. One solution for noise

reduction is based on utilizing a statistical model that
characterizes the probability density function of noise in
the EC C-scan images. The statistical model used for noise
process in ultrasonic images is the multiplicative Rayleigh
speckle [4] whereas in magnetic resonance imaging data,
an additive Rician [5] model is found to be appropriate.
The model of noise associated with the EC signal is
generally taken to be additive, uncorrelated and complex
Gaussian (CG) with zero mean and comparable variance
for each quadrature channel [2]. Also, the straight model
of noise for signal amplitude (absolute of impedance)
changes to Rician distribution [5].

The non-stationary nature of images in addition to the
limitations of linear spatial filtering have motivated many
researchers towards the investigation of filters which
adjust their smoothing properties at each point of the
image according to the local image content [6, 7].
Therefore, non-linear methods are successful alternatives
to linear methods for image processing because these
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techniques can locally provide a dynamic structure for the
best estimation of noise-defect transition [7]. The
experimental results indicate that the first processing
levels of human visual system (HVS) possess nonlinear
characteristics for better estimation of objects [7, 8].

Because of inhomogeneous micro-structure of defects
and noise, it is difficult to extract both boundary and size
of the defect. Linear techniques do not provide good
results for noise-defect separation as both the noise
structure and defect signals in C-scan images have the
same intensities. Therefore, non-linear techniques such as
the adaptive maximum likelihood (AML) filter are good
alternatives for defect enhancement [8, 9].

Linear noise elimination methods such as spatial
averaging and Wiener filter have been used in signal
processing [11]. However, these methods suffer from
some limitations due to their low pass property which
causes image degradation through suppression of edges
and small details [9]. Images are in general non-stationary
signals and as such perform poorly under linear modeling
and linear filtering techniques [11].

Several classes of nonlinear filters exist. They include
homomorphic, nonlinear mean, nonlinear partial
differential equation, morphological, order statistics,
polynomial and fuzzy filters [9].

In this paper, we first make use of the AML filter for
separating noise and defect in an EC inspection process
which is discussed in section 2. In Section 3, the design of
the AML filter that deals with lift-off noise removal on EC
C-Scan images is formulated. In this case, noise is
modeled as a non-zero mean CG. Also in this section, the
modification of the AML filter is described by introducing
an enhancing factor (o). In Section 4, the development of
an edge detection enhancement operator for better
estimation of the defects boundary is described. It can
help improve image understanding in EC practices. In
Section 5, simulated and experimental results are
presented to examine the performance of the proposed
filter.

2. THE AML FILTER

The AML filter is one class of non-linear mean filters
used for noise suppression. It works with local image
adaptation based on moving window. The result of local
windows is enhanced for the best noise removal based on
pre-defined probability density function of noise [12]. In
this section we develop this filter to process of EC C-scan
images.

A.  Filter Model

Consider an image x consisting of two parts: a low-
frequency part x; and a high-frequency part xp as
x=2x; +xy [13]. The low-frequency component depends
on the homogeneous regions of image while the high-

frequency component depends on the near edge regions.
The maximum likelihood (ML) estimation denoted by

$pg, (k, 1) is obtained based on the observations in a moving
window W centered at the current pixel (&, /). The ML
estimation is proposed as the low-frequency component
[8]. Thus the estimate of the original signal at (%, /), is as
follows.

SCk, 1y = 5 pqg (k1) + Bk 1)Lk, 1) = 5 gy, (R, D] M
where x(k, [) is the noisy observation at pixel (&, /),
Sy Ck, D) is the maximum likelihood estimate of s(k, [)

based on the observations x(k—i,/—j)eW , pk,/l) is a

weighting factor, approximating the local signal-to-noise
ratio (SNR) over the window W, and s(k,/) is the signal-
adaptive filter output at pixel (k, 7). For simplicity we
eliminate index (%, /) in exhibition of formulas.

By selecting g near to 1, the result of (1) becomes
equal to the original noisy image and when it is near to 0,
the high-frequency component is suppressed and the
maximum noise reduction is occurred. The value of S
can be derived for the best approximation of the original
(noiseless) signal.

B. Signal Dependent Weighting Factor

A local mean squared error (MSE), e, can be used as a
criterion to best approximate the noiseless signal, s from
its estimation, § obtained from (1).

e=Eyl(s~8)"1= Epl(s—3,,)"1+

2 ISR A A @
B E (=5, 1= 2BE, [(s = Spq Wox — $3. )]

where the local expectation value Ewl] and f are
calculated over a window W centered at pixel (k, 1).
Minimizing e relative to § by differentiating (2) with
respect to § and setting the result equal to zero yields:
f= Ly KS — S Xx - §ML)]
Eyl(x- §ML)2]
The weighting factor (3) is a general form and can be

obtained for non-zero mean Gaussian. By replacing (3) in
(2), the error function can be obtained as:

3

C))

e= Eyl(s—§)*1= Ep((s - 5p) 1= B2 Ew (x - 5y)?)

3. PROCESSING NOISY EC IMAGES

An EC image enhancement is often performed by
suppression of noise [16, 17]. Noise may be caused by
variation of the probe lift-off and drift, or other unwanted
signals such as porosity in the test specimen [16, 17]. In
this section, first, we derive the value of the weighting
factor and 3§, based on ML criterion. Then (1) is

modified for enhancing the defect details.

A. Complex Gaussian Model of Noise

Since EC images are obtained from complex probe
impedance data, x, the formation of a model for EC signals
can be achieved as [2],
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where s is the true signal, » denotes the measurement noise
and unwanted signals such as probe lifi-off from the
specimen under the test [14]. It is noted that s, # and x
contain real () and imaginary (i) parts As shown in (5),
real and imaginary parts are statistically independent and
can be obtained separately from each other [15].

Noise model in the EC technique is usually modeled as
an additive zero-mean complex Gaussian which is
assumed to be independent of the signal [2]. Probe lift-off
is an inevitable part of EC inspection. It occurs when a
gap exists between the probe and the material under
evaluation [14]. The spatial variation of the probe enforces
an unwanted effect on the original signal that is taken
usually into account by changing the noise model to a
nonzero-mean complex Gaussian process as:

100 = o] -2 |

where o, and g are, respectively, variance and mean of

x=s+n=x,+jx, =5 +n,+ j(s;, +n)

©)

noise,
The conditional density function of a complex
observation x assuming s is given by

fu(X18)= T_ﬁexp[ s }

For N complex the

conditional probability distribution function (pdf) of the
observations assuming s can be estimated as follows,

FuX18)=11,,(X,15)=

Q)

observations x', x*,..., x,

®

N ¥ 2
)" ox = 500, -5 47|

The N observations are obtained from the
measurements in the moving window W centered at the
pixel whose value s is to be estimated. We assume that s
and » are statistically independent. The ML estimation of
s, by maximizing the log-likelihood of (8) is given by

" X

Spr, = ‘ATEIX,' —H ©®
Using (5)-(9), it can be shown that
EG$)=E®)-u=8,, (10-a)
E(xs) = EQr*) - pE(s) ~ o7 — 1 (10-b)
E(s) = E(x*) =246, ~ 0} ~ t* (10-c)
From (10), the following equality can be derived.
Define : ol = E[xs]-§,, .E[x]

Define : ol =E[s*]-5,," "
Define: o? = E[(x— E[x])*]= E[x*]- E*(x) (1
then ol =c’=0}~-0}

Using (3), the value of the weighting factor g for CG
noise model can be obtained as follows:

p=E o ("”“‘2) (12)

ox+u
By replacing (12) in (4), the mean square error (MSE)
is given by

o',,2+y2

e= (0} ~oD (B2 = (0} + 1) (13)

where it is seen that the error function in (8) is valid only
foro, 2o, . Therefore, this method cannot be used for

o, <o, [18]. Foro, <o, , the best approximate can be

obtained from ML estimation. Equations (13) is modified
by sign operator to eliminate artifacts produced by the
negative value of difference variances as:

_(J,,+y2) o, >O"

0 o, <0,

B = (14)

B. Modified SAML

Referring to (13) and (14), it is seen that the probe lift-
off is an effective parameter on the quality of defect
detection. Although (3) is obtained for minimum error,
one should be careful that it may cause elimination of high
frequency details of a defect (second term of (1)). The
objective is thus to find the value of 5 such that it provides
the best detection of defect details while minimizing the
error (noise). This is done by introducing an enhancing
factor in the second term of (1) as follows:

§=8,, +B@).[x~0as,, ] (15)
The error function (8) changes to:
e=Eyl(s—3)*1= Eyl(s - 1)1+ (16)

B(a)? By [(x - atdpgr)* 1~ 2(a) B [(s ~ Sy Yo~ a2y )]

To minimize the error relative to S, we differentiate
(20) with respect to # and set the result equal to zero. This

leads to
Ey [(r—a 5y )(5=5p)]
)=
A@) Ey [t ip )] (17)
By replacing the statistical values of additive CG noise,
the result of the weighting factor and error function can be
obtained as follows.

1 (o2 Hu~aDdg ) _ al-o}
A =1 E(x-ady )] ol{u—(a-Digl (18)
e(@)=Ey[(s—5,,)"1- B(@) Ey[(x—a$,4)°]
(19)

2 2y cofHu—(a-1)dp I*

=(0; —o, ) (ARt oML

( ) (“%*‘[#*(ﬂ*l)-fML}z

It can be shown that the maximum value of 8 in (18)
and the minimum value of error function in (19) can be
obtained by the following value of the enhancing factor, o.

a=1+/Sy) = Eylxl/ 5y, (20)

From (20), the best estimate of the original signal,
weighting factor for maximum details £, and error
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function for minimum error e, can be obtained as

follows,
5= S+ B @~ D = (= Brg )5 + B =1 Q1)
a3
B =1 "CF) T2 @2)
0 o, <0,
emin = O-j (1 - (2—2)2) = O-: 'ﬂmax (23)

C. Numerical Comparison

It is important to examine the ability of the proposed
algorithm in the presence of various SNRs. One definition
of SNR is the ratio of the two variances of n and x [11].
Fig (1) shows variations of the weighting factor in (18) for
several values of the enhancing factor defined in (20).
Equation (21) is the best estimation of §with the
minimum suppression of details of the original signal. It
can be seen that the value of £, in (22) directly affects

the high frequency details of the original signal in (21).
Referring to Fig (1), it can be seen that foro, >> 0o,

the value of B is less dependent on the value of a.
However, for comparable values of the two variances, the
AML technique may eliminate the details of a defect while
suppressing noise. Thus, the value of « becomes important
for detection of the details of an image, indicating that
a=1 is not considered as the best approximation. On the
other hand, the ratio result of error functions (13) and
(23), given below,

e, ol.p -4
_ﬂ_ = n max - max S 1
e (it B -8 @4
shows that the minimum error is obtained in the case of
the modified AML (MAML) method.
It is worth noting that the results are given

foro, > o, . Otherwise, both the AML/MAML methods

lead to ML estimation. Table (1) shows the general form,
AML and MAML filters with their corresponding
weighting factors.

4. BOUNDARY DETECTION OF A DEFECT

Referring to (19) onecan see that the edge detection
operators can be calculated by spatial gradient from §as
follows.

V{st=V{8i }+ V{Blx - asy, 1} =
BVx}+ xV{B,}+ V{S,.} ~ Via B, S }
Well-known edge detection operators such as Sobel,
Prewitt and Canny can be used for V{x}=V{x,}+ V{x;}
[11, 19]. The indices (r), and () point to the real and
imaginary parts of the impedance variations which is
mapped as two dimensional C-Scan Images.
As seen in (25), the linear spatial gradient of the noisy

(25)

image (x), V{x}, is multiplied by f,. Also, (24) confirms

that the value of §, is obtained for a minimum error. Thus,
we can heuristically expect that the boundary detection
operator is sharpened when using a weighting factor.

5. RESULTS

To examine the validity of the proposed method,
several simulated and experimental tests were carried out.
For brevity, we present the results associated with a
simulated circular object and a semi-circular hole in an
iron block.

A. Simulated Results

To study the simulated results, a simulated circular
object with gradient changes on its intensity is used. Fig
(2-a) shows the original object and the image shown in Fig
(2-b) is obtained by addition of Gaussian noise. The
results of three methods, ie, the Wiener, SAML and
MSAML filters are compared with three sizes of local
windows (W=3*3, 5*5, and 9*9). Increasing the size of
local window in the Wiener filter results in blurring the
edges of the object and eliminating the details, as shown in
Figs (3-a, b and ¢). Using the SAML filter, a better
contrast is achieved; however, increasing the size of the
local window (e.g., W=9*9) causes blurring in the edges
of the recognized object. The results of the SAML filter
are shown in Figs. 4 (a), (b), and (c). Figs. 4 (d), (e) and
(f) show the results of the weighting factor S that
correspond to the enhancement of the object boundary.
Figs. 5 (a), (b) and (c) show the results of the noise
removal for the MSAML filter and Figs. 6 (d), (e) and (f)
shows the boundary detection enhancement for the object
which is obtained from weighting factor £_. .

Figs. 6 (a), and (b) show the results of error between
the original and the filtered noisy image when the Wiener,
SAML and MSAML filters are used, respectively. From
Figs (4-6), it is seen that the results of the MSAML and
SAML filters are better than the corresponding results of
the Wiener filter. Also, the most successful results for
boundary detection are obtained from the MSAML filter.
Furthermore, The MSAML filter, in addition to better
contrast in object detection, has better sharpness relative
to the corresponding results of the Wiener and SAML
filters.

B. Experimental Results

The proposed image enhancing methods are applied to
a C-scan image from inspecting defect on the iron surface
area, using the eddy current technique. The surface of the
sample has porosity which, in turn, makes it difficult
detect surface defects. Figs. 7 (a), and (b) are C-Scan
images of real and imaginary parts of an impedance
variation of the absolute EC probe with frequency 100
KHz. Fig. 7 (c¢) also shows the absolute impedance
variation of the probe. The complex values of mean and
variance of these images are, respectively, estimated to
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bey, =0.2093, o, =0.0549, u, =0.1930, o, =0.0802.

We first compare the noise suppression results of the
AML (Figs. 7 (g), (h) and (i)) and MAML (Figs. 7 (), (i)
and (k)) filters with those obtained using the Wiener filter,
Figs. 7 (d), (e) and (f). A comparison of the results shown
in Fig 8 demonstrates that the AMIL and MAML filters are
more appealing over the Wiener filter for noise filtration.

Next, we compare the defect detection capability of
various filters. Figs. 8 (a), and (b) and 8 (c), and (d) show,
respectively, the results of AML and MAML edge
enhancement for the real and imaginary parts of the C-
Scan images given in Figs. 7 (a), and (b). These results
show that the MAML boundary detection operator
performs more effectively in detection of details (such as
porosity) relative to its AML counterpart.

6. CONCLUSION

A nonlinear adaptive filter based on maximum
likelihood criterion (AML) is designed for defect
detection in EC inspection of materials. The model of EC
noise in this filter is assumed to be non-zero mean
complex Gaussian process. The AML filter is modified by
an enhancing factor for better detection of defect details.
Also, an edge detection operator is introduced for
boundary detection of defects. This method is successful
when the signal energy is larger than the variance of noise.
Otherwise, the maximum likelihood estimation is found to
be more efficient. Simulated and experimental results
demonstrate that both the AML and MAML filters are
superior over their rival Wiener filter. In addition, the
MAML boundary detection operator is found to be more
effective in detection of details of a defect as compared to
its corresponding AML counterpart,
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Fig 1. Variation of weighting factor 8 versus ((%)2) for different

values of scaling factor a whenoy,=1, u=06and

SML=1(a,, =16).
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a) b)
Fig 2. Simulated images of a circular object in noise-free and noisy
conditions. a) Original Image, b) Real Gaussian noise with #=0.2
and 6,=0.005 is added

a) W =3x3 b) W =5x5 C) W=9x9
Fig 3. Reconstructed images of the circular object shown in Fig, 3(b) when using the
Wiener filter with different local window sizes.

d) W =3x3 e) W =5x5 D w=9x9

Figs. 4 (a), (b) and (c), Reconstructed images of the circular object shown in Fig. 3(b)
when using the AML filter with different local window sizes; (d), (e), and (f) Their

respective weighting factor () images.

b) Filtered with W =5x5

d) W =3x3 €) W=5x5 ) W=9%9

Fig. 5 (a), (b) and (c). Reconstructed images of the circular object shown in Fig. 3(b)
when using the MAML filter with different local window sizes; (d), (e), and (f) Their
respective weighting factor (B) images.
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a) Wiener Filter b) SAML and MSAML Filter

Fig 6. Errors between the original circular object (Fig. 3a) and its reconstructed image versus noise variance when using (a) the Wiener and (b) the AML and
MAML filters. Results are obtained and compared for window sizes of 3x3 ,5x5, 7x7 and 9%9.

o | D i
Fig. 7, Reconstructed tmages of a surface inclusion in a mild steel specimen using its C-scan EC data.
(a) Real, (b) imaginary, and (c) magnitude of the original data and their respective Wiener filter (d), (e), and (f), AML filter (g), (h), and (i), and
MAML filter reconstructed images when using a window size 77 = 5x5.

Y
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d)

Fig 8. Enhancing factor of the boundary detection operator when
using the (a, b) AML and (c, d) MAML filters for a window size
of W = 5x5 . (a) and ¢) are real parts and b) and d) are imaginary
parts.)

<)

Table 1: Signal estimation models and their weighting factors.

Signal Estimation Weighting Factor
g,20, o, <0,

P 2 2.2 _ 1 (opHua-Dig )

General Form § =8 + By lx—05)y ] 5=5,, B, = —-W
~ ~ ~ A A a%ﬂlz
AML (a=I) §=8yy + Blx~51y] $=8y B=1-C5 )
. X

MAML 5= (1= Buw)Spa. + Brow [x — 4] §=854 p=1- (%L;‘)Z
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