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ABSTRACT
Noting that the complete lift of a Riemannian metric g defined on a differentiable manifold M is not 0-

homogeneous on the fibers of the tangent bundle 7M , in this paper, we introduce a new lift g, which is 0-

homogeneous. It determines on T™ =TM \ {0} a pseudo-Riemannian metric, which depends only on the
metric g . We study some of the geometrical properties of this pseudo-Riemannian space and define the

natural almost complex structure J and natural almost product structure é which preserve the property of

homogeneity and find some new results.
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1. INTRODUCTION

The importance of the complete lift g,, (2.5), of a
Riemannian metric g is well known in Riemannian
geometry, Finsler geometry and Physics, and has many

applications in Biology too (see [1]). The tensor field g,

determines a structure  on
TM =TM \ {0}, but g, is not 0-homogeneous on the

fibers of the tangent bundle TM . Therefore, we cannot
study some global properties of the pseudo-Riemannian

pseudo-Riemannian

space (TM,g,). For instance, we cannot prove a

theorem of Gauss-Bonnet type for this space.
In this paper, by means of (3.1), we define a new kind

of lift g, to TM of the Riemannian metric g . Thus &,

determines on TJT/[ a pseudo-Riemannian structure,
which is 0-homogeneous on the fibers of 7M and
depends only on g . Some geometrical properties of §2

" such as the Levi-Civita connection, Riemannian curvature,
are studied.

Almost complex and almost product structures are
among the most important geometrical structures which
can be considered on a manifold [12], [13].We introduce

Almost product structure, Complete lift

the natural almost complex and product structures .J and

o~

Q, respectively by (5.1) and (6.1), they depend only
on g and preserve the property of homogeneity, then we

get almost anti-Hermitian structure (g,,J/) and almost

product structure (gz,é)
Let () be an endomorphism of the tangent bundle

TM satistying Q® =1, where I= identity. Then Q
defines an almost product structure on M . If g is a
metric on M such that g(QX,0Y)=g(X,Y) for

arbitrary vector fields X and ¥ on M , then the triple
(M,g,0) defines a (pseudo-) Riemannian almost

product structure. Geometric properties of (pseudo-)
Riemannian almost product structure have been studied in
[2] to [6]. If, moreover, g is an Einstein metric (i.e.,

Ric(g) = Ag holds, where Ric(g) is the Ricci tensor
defined by R, = K kak and A is a constant) then the triple

(M,g,0)
manifold. Analogously, if JJ is an endomorphism of the
tangent bundle TM satisfying J> =—1I , then J defines

an almost complex structure on M . An almost complex
structure is integrable if and only if it comes from a

is called an almost -product Einstein
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complex structure. If g is a metric on M such that
g(JX,JY)=-g(X,Y) for arbitrary vector fields X
and Y on M then the triple (M,g,J) defines an

almost anti-Hermitian structure.

2. THE COMPLETE LIFT

Let Fl.,k be the coefficients of the Riemannian

connection of M , then NJ}? =T, jh =yT q,.h (x) can be
regarded as coefficients of the canonical nonlinear
connection N of TM , where (x", ") are the induced
coordinates in TM .

N determines a horizontal distribution on 7,’]\7,
which is supplementary to the vertical distribution V',
such that, we have:

TTM =N,@®V,, YuelM. (2.1)
The adapted basis to N and V is given by
6 0

{g;;,—éy—h}wherc
s & ... 0
50 e Ve g @Y

and its dual basis is {dx',5)'} where
5y =dy' +y" T/ dx’. (2.3)
The indices a,b,...,d,b,..., run over the range

{1,2,...,n}. The summation convention will be used in

relation to this system of indices. By straightforward
calculations, we have the following lemma:

Lemma 1. The Lie bracket of the adapted frame of TM
satisfies the following:

0

W XX, 1=y"K, 55

w O
(2) [X,)X_',']:F/, é?:

) (3) [XT’X)*]:Oa
where K ﬁam denote the components of the curvature

tensor of M .

Let (M,g) be a Riemannian space, M being a real
n-dimensional manifold and (TM,7,M) its tangent
bundle. On a domain U < M of a local chart, g has the
components g, (x), (i, /,...=1..,n). Then on the

domain of chart 7 (U)cTM we consider the

functions g, (x, ) = g,(x),V(x,y) € a7 (U) and
put

Ny ll=yg,x)y'y’. (2.4

Then, || ¥ || is globally defined on TML , differentiable

on m and continuous on the null section.
The complete lift of g to TM is defined by

& (%) =2g,()dx'Sy’, V(x,)eTM.  (2.5)
The following properties hold: '

1. g, is globally defined on T™ .

2. g, is a pseudo-Riemannian metric on ™ .

3. g, is not 0-homogeneous on the fibers of TM .

Namely, for the homothety A, : (x,y) —> (x,fy) for

all te R" we get
(8,0 h)(x,y) =2g,(x)dx' 5y’
=1g,(%, ) # &,(%, »)-
Let us consider the F(TM)-linear mapping
J: }((W )= Z(m) , given in the adapted basis by
0=, 1L
ox oy oy ox

for i =1,...,n. It follows that:

(2.6)

4. J is globally defined on TM and it is a tensor
field of type (1,1).

5. J is an almost complex structure on 7M | i.e.,

JoJ=-1

6. J dependsonlyon g.

7. J is a complex structure on TM ifand only if the
Riemannian space M" is locally flat.

8 . The pair (g,,J) is an anti-Hermitian structure on
™ .

Let us consider the F (TJT/I ) -linear  mapping
O:x (ﬁ/ff) - Z(T\M ), given in the adapted basis by

o 0 0 o

o2y-2, o2y-2 e
ox oy oy ox

for i =1,...,n. Then if NQ is Nijenhuis tensor for
(), we have
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5 O a ; 0O
NQ('—I,—"—;')zy Kjia P
ox' ox oy
o 0 )
N T, T )T aK-'s*"““.
Q(é'x' 5)"') Y Foa Sx*
o 0 a , 0
NQ( )=y Kjia

o' oy’ o
where K ﬂas are components of the curvature tensor of

manifold M .
It follows that:

- 9. Q is globally defined on TM and it is a tensor
field of type (1,1).
10. Q is an almost product structure on TM | i.e.,
QeQ=1
11. O dependsonlyon g.
12. N, =0 if and only if the Riemannian space M"

is locally flat.
The previous space, called "the geometrical mode! on

TM of the Riemannian space (M, g)", is important in
the study of the geometry of initial Riemannian space

(M,g) (516D

3. THE 0-HOMOGENEOUS LIFT OF THE RIEMANNIAN
METRIC &

We can eliminate the inconvenience of the complete lift
g, given by the property “3” introducing a new kind of
lift to 7M of the Riemannian metric g .

Definition 2. Let §2 be a tensor field on ﬁ?[ defined
by

- 2 Fe i
&,(%,y) =——g,(x)dx'Sy 3.)

iyl

where || || was defined in (2.4) Then &, is called
the O-homogeneous lift of the Riemannian metric g to
™ .

We get, evidently:
Theorem 3. The following properties hold:

1. The pair (T‘)V[ ,&,) is a pseudo-Riemannian space,
depending only on the metric g .

2. §2 is 0-homogeneous on the fibers of the tangent

bundle TM . ,
In order to study the geometry of the pseudo-

Riemannian space (TA\Z ,8,) we can apply the theory of
the (h,Vv) -Riemannian metric on TM given in the books

[4], [6] and [8]. Looking at the relations (2.5) and (3.1)
we can assert:

Proposition 4. The lifis g, and g, coincide on the hyper
sphere g, (X, )WV =1, for every point x, € M .

4. RIEMANNIAN CONNECTIONS OF TM

Let V be the Riemannian connection of TM with
respectto g, , that is:

G 5_f,,,’5+f,,,a @“4.1)
aoxt T osxm T g

A R BT

&_iayj Ji é\xm Jji aym’

A o = - g +f_'ﬁ 0

a ox! T osx™ ooy

R rr

ETayj Ii é-xm Ji aym

Then, we have

V,ax"=-T,/"ax" T, "sy", (4.2)
s

Vs oy'=-T, ax" - sy",

s

V,dct=-T fax"-T_"sy",

oy
V,oy"=-T fax"-T_"sy",

'

Since the torsion tensor 1 (X ,Y) of V defined by
T(X,Y)=VY—-V,X—[X,Y] vanishes, we have
the following relations by means of Lemma 1 and (4.1).
M F/'=T," @ [,/=T,/+yK,

= h _ = h = h _= h h
(3) Ff, -—F,-; (4) Ffi —Fif +rji

(%) l:j",f:fr}l (6) Fj,ﬁ =T

i

(4.3)

s
j

Furthermore, we have the following lemma:
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of v of the

complete metric g, satisfy the following relations

. L A
Lemma 5. The connection coefficients T g

- h h
(l) rji :Fji
= ho_ a h
@ I)"=y"K,
(3) f]‘ih 2(gl/ é‘fhyj)
o 2y
= 1 h h
HT;,= g,y =5"y)
' S [ 57 Sa ’
& L,F=r,"
6) T =0
%) rﬁ =0
@®) T,/ =- 8"y, +51)
f 2uy P

Proof. By virtue of (2.2) and the connection V

being metrical, that is v§2 = (0, we have:

0=V, 3

& o2
5x™
_ ) 1
=V, (= g,d'sy’)
7 11y 1
"'(n_ T Iyl n ”(V d"lw
T8 I 55)’[‘
Iy
2T
e

2 r r ™ 7 i i
+——(g, L +&, L —&: L =8l )ax'Sy’

Iyl

2
g,,,,.y)/
llll’

and

0=, 3,
"
a2 ( dxl Yy )
ay,,. Iy H
=2— (——*)g,--dx'5yj
" Nyl
+ig,,(ﬁx-df)5y’
Hyll "
2 ———g,dx'V, 5y’
H Il
2 - F
glr Jm ddej

Ty
r &ym

clxl
Iyl R

2
——(-g, T 8.5 —
II | /

Iy : & oyey

It follows that

girfij + g_/‘rl:l’mF = O’ (44)
g, -T5)+g, @, -T,)=0,(45)

girffmr + gjrwfmr =0 (4'6)
girl:jﬁF + gjrf‘iﬁF = O (47)
1
gzrrjm +g}rr1m T 2 gyym =0 (48)
¥l
gl +8,Len =0 (4.9)

From (4.9) we have f};h =0, thus we get (7).
From (4.3), (4.8) and (4.6), we have

8T =8, Tal =8, T = 8 T+
v S sy
- gimy gmyz
=—g, T - Simlj  Smi
Nyl HyII
= 4 glmyj gmjyi
==& m— +
oyIE nyIP

thus we get (3) . From (3) and (4.3), we have (4).
From (4.8),(4) and (4.3) ,we have
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= T 1 1
girr'ﬂ T &mY; T &iVn
20y 2P
8Vn _
Wy
Thus we obtain (8) .
From (4.3) and (4.4) we have
8 fij = —gjr ft‘mF = -gjr (Fth + y ima )
= & fjiF - yaKl‘maj
- gmr rlj + Y ( Jiam Kimaj)
=& fmj +y (Kjtam imaj )
= -gir (ijF + y mja ) + y ( Jiam Kimaj)’
thus we get (2).
From (4.3),(4.5) and (4.7), we have
gir f_/n?F = —gjr FiﬁF = —gjr (fn‘u g - Fmi r)
= gjr (Fmi ’ _fr'n'i F) = ‘—gmr (Fﬂ ’ —fjl r)
=2, @, T, )=, @, ~Ta)
= girrmj ' _g:rfﬁ_/’F
=g, ’ ——glr(f‘j”?F+ij )

Thus we obtain (5) and (6). From (4.5) and (5),
we have (1).

5. THE ALMOST ANTI-HERMITIAN STRUCTURE
(&,7)

The almost complex structure J defined in (2.6) has
not the property of homogeneity. The F (I"JVI) -linear

mapping J: Z(m)——) Z(m), applies the 1-

homogeneous vector fields 'éT'T into 0-homogeneous
x

0 ) .
vector fields — (i =1,...,7) . Therefore, we consider

the F (m) -linear mapping J: ){(m) —> Z(m ),
given on the adapted basis by

7 ly=1 2 (s

~ 8
J“-—‘.‘=" R )
Sy Hyll o "yl ox

o'

It is not difficult to prove:

Theorem 6. j has the following properties:
1.7 isa tensor field of type (1,1) on ™ :
2. j is an almost complex structure on 7,7\\//[ ie,
JoJ=~I
3.7 depends only on the metric g .
4.7 is homogeneous on the fibers of TM .

Proposition 7. In the adapted basis we have the unique
decomposition

5 O o ;0
N, N, +(N;),f —
(5 o —) =( ),, 5o NV;), Py
5 : 0
N2 2y =)t k(Mmfi§
&' oy ox" oy
with
(N) _yl y/5 y K/la >
(NJ')i/k - Iy ”2 .z ,'——yjé',‘ —yaKﬂa )>
(Nj)Tjk =W(yj5’jy _yiaj +yaK1'ias)’
(Npyf =0, (V75" =0, (V)is* =0

Proof. Recall that the Nijenhuis tensor field N,

defined by J is given by

N,(X,Y)=[JX,JY]-J[JX,Y]- J[X,JY]
—[X,Y], VX,Yex(TM).

_By the compatibility and direct computation we have:

-——-—(H yiD= ————(\/ gy Y")

1
[, r_ .y O
TN l(g,syy)
£NWMbﬁQ&ff)
]' r &
-'m‘é;‘(gmy ')
1
T (2g,)’ )—m

5 0
Replacing the basis (——,—) inthe N; and using
ox' "oy

above relation we get the proof.
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Theorem 8. J is a complex structure on TM if and only

if
(5.2)

Proof. Setting N ; =(0in the previous proposition, the

yaKjias ::y’.é'j ”yj§is'

proofis completed.
Theorem 9. The almost complex structure J is a complex

structure on TM if and only if the Riemannian space
(M, g) is of constant curvature 1.

.

Proof. From (5.2) and y, = g,,¥" we obtain
s s o
K, —giaé} gjaé; .

Jia

Theorem 10. We have:

(5.3)

1. (gz,j ) is an almost anti-Hermitian structure on
™ ;
2. (g,,J) depends only on the metric g of the

pseudo-Riemannian space (M, g) .
Proof. '
1. Follows from

E,(TX, Ty ==8,(X,Y) on TM .

~

the equation

2. g, and J depending only on g, the anti-
Hermitian structure (g,, J ) has the same property.

Corollary 11. The almost anti-Hermitian structure
(£,,J) is an anti-Hermitian structure on TM  if and
only if the space (M, g) is of constant curvature 1.

Proof. From the theorem 9 and the first part of
theorem 10, we get the proof.

From (5.3) we have

Rij =(n——1)g,.j, (n>1) 5.4)
where Rrk is the Ricci tensor and
S =n(n-1), (5.5)

where S is the scalar tensor defined by S = R,f .

Corollary 12. If the structure (g, J ) is a Hermitian

structure on TM then (M, g) is an Einstein space with
positive scalar curvature.

Since R, = R, then from (5.4) we get:

Corollary 13. If (W, .7 ) is a complex manifold, then
(M, R, (x)) is a Riemannian space.

6. THE ALMOST PRODUCT STRUCTURE (g,,0)

The almost product structure O defined in (2.7) has
not the property of homogeneity. The F (TM ) -linear
mapping Q' ;{(ﬁ\Zf )—> Z(m ), applies the 1-

homogeneous vector fields X, into 0-homogeneous

0 .
vector fields — (i =1,...,7) . Therefore, we consider

the F(m) -linear mapping @ : Z(W) — Z(m) ,
given on the adapted basis by
~ 0 0 ~ 0 1 6
O =llyll— O =777, (6.1
ox Ay " llylléx
It is not difficult to prove:

Theorem 14. é has the following properties:
1. @ is a tensor field of type (1,1) on ™ ;

2. Q0 i
onm; QOQ=I

an  almost  product  structure

3. @ depends only on the metric g ;

~

4. Q is homogeneous on the fibres of TM .

In order to find conditions that (J be a product
structure, we have to put zero for the Nijenhuis tensor

field of O,
Ny(X .Y)=[0X .07 1-Q[0X .Y 1-Q[X ,0Y |
+[X Y, VXY e yTM).

Theorem 15. The almost product structure Q is a

product structure on TM  if and only if the Riemann
space (M, g) is of constant curvature —1.

Proof. In the adapted baéis, the Nijenhuis tensor is as
follows:
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5 5 Ky s o 5
NG5 = 08, 0,87+ 'K, )_ays

5 0 1 )
N, (—,—) = 8=y =y K )
Q(ax, 6yj) ”ynz(yj, Y0, =y A,,a)gxé

d 0 1 . N
N~(—[,———-——.-):—-—.—~(yi§é_ _y'é‘zs +yaK'iaJ)~_
ot Ny !

a}/ 5

then N 5 vanishes if and only if we have:

VK =6 -y,6):

and the above equation one

(6.2)

According to Y, = g,»ay”
obtains
K/'ias = _(gia5; _g/aé‘is)'

which completes the proof.

(6.3)

Theorem 16. We have:
1. ( gz,@) is an almost product structure on ™ ;
2. (gz,é) depends only on the metric g of the
pseudo-Riemannian space (M, g) .

Proof.
1. Follows from the

£,(0X,0Y)=§,(X,Y) on TM .
2.§2 and @ depending only on g, the almost

equation

product structure (g, é) has the same property.

Corollary 17. The almost product structure (g,,0) is a

product structure on TM  if and only if the space
(M, g) is of constant curvature —1.

o~

Theorem 18. If the structure (g,,(0) is a product

structure on TM then (M, g) is an Einstein space with

negative scalar curvature.
Proof. (6.2) we
R, =(-n)g,, S=n(l-n)for n>1.

From have

Corollary 19. If the almost product structure Q is a
product structure then (M, R, (x)) is a Riemannian
space.

Proof. Since R, = R, then we get proof.
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