Quasi-Permutation Representations for the Group GL(2,q) When Extended by a Certain Group of Order Two

M. Ghorbany

ABSTRACT

A square matrix over the complex field with non-negative integral trace is called a quasi-permutation matrix. For a given finite group G, let c(G) be the minimal degree of a faithful representation of G by complex quasi-permutation matrices. Let r(G) denotes the minimal degree of a faithful rational valued complex character of G. In this paper, we will calculate c(G) and r(G) for the group GL(2,q) when extended by a certain group of order two.

KEYWORDS

General linear group, quasi-permutation representation, faithful representation.

1. INTRODUCTION

In [10], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. Also, Wong studied an extension to which some facts about permutation groups generalize to the quasi-permutation groups. In [3], the authors investigated further the analogy between permutation groups and quasipermutation groups. They also worked over the rational field and found some interesting results. By a quasipermutation matrix, we mean a square matrix over the complex field C with non-negative integral trace. For a finite group G, let c(G) be the minimal degree of a faithful representation of G by complex quasipermutation matrices and let r(G) denotes the minimal degree of a faithful rational valued character of G. In [3], the case of equality has been investigated for abelian groups. In [4], the above quantities have been found for the group GL(2,q). In this paper, we will apply the algorithms in [1] forthe group $H_2^2(q)$, where

$$H_2^2(q) = \langle GL(2,q), \theta \mid \theta^2 = 1, \theta^{-1}A\theta = (A^i)^{-1} \rangle.$$

2. BACKGROUND

Let GL(2,q) denotes the general linear group of a vector space of dimension 2 over a field with q $\theta: GL(2,a) \to GL(2,a)$ elements. the automorphism of GL(2,q) given by $\theta(A) = (A^{i})^{-1}$, where A' denotes the transpose of the matrix $A \in GL(2,q)$. In this case, one can define the split extension GL(2,q). $<\theta>$, that following the notations used in [6] is denoted by $H_2^2(q)$. Therefore we have

$$H_2^2(q) = \langle GL(2,q), \theta | \theta^2 = 1, \theta^{-1} A \theta = (A')^{-1} \rangle.$$

Now let G denotes the group GL(2,q) and let the split extension of G by the cyclic group $\langle \theta \rangle$ of order 2 is denoted by G^+ . Since $[G^+:G]=2$, we have $G^+ = G \cup \theta G$, and the elements of G^+ which belong to G are called positive and those outside G are called negative elements. A conjugacy class in G^+ is called positive if it lies in G, otherwise it is called negative. We may assume that using [7], one can obtain information about conjugacy classes and complex characters of G, therefore so far as conjugacy classes of G+ are concerned, one must pay attention to negative conjugacy classes of G^+ .

By [8], all the conjugacy classes of $H_2^2(q)$ are real and if $A \in GL(2,q)$ is a real element, then we have

M. Ghorbany is with the Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran (e-mail: m_ghorbani@iust.ac.ir).

$$\left|C_{H_{1}^{2}(q)}^{(A)}\right| = 2\left|C_{GL(2,q)}^{(A)}\right|$$

and if A is non-real, then

$$\left|C_{H_2^2(q)}^{(A)}\right| = \left|C_{GL(2,q)}^{(A)}\right|.$$

One can show that there is a one-to-one correspondence between the set of negative conjugacy classes of G^+ and the set of equivalence classes of invertible matrices in G.

Now we begin with a summary of facts relevant to the irreducible complex characters of $H_2^2(q)$.

As remarked earlier we have

$$H_{2}^{2}(q) = GL(2,q). < \theta >$$

and $\chi \in Irr(GL(2,q))$ is invariant under θ if and only if χ is a real valued irreducible character of GL(2,q) and in this case there is $\varphi \in Irr(H_2^2(q))$ such that $\varphi \downarrow_{GL(2,q)} = \chi$ and φ is called an extension of χ . In fact, since $\frac{H_2^1(q)}{GL(2,q)} \cong Z_2$, therefore there are two extensions of χ , say φ and φ' , whose valued on a negative element θg are related by $\varphi'(\theta g) = -\varphi(\theta g)$. Therefore, it is enough to find the values of one of these extensions. Now by using [9], it is easy to detect the real-valued irreducible characters of GL(2,q). In [5], the character table of the groups $H_2^2(q)$ is given. Each of the irreducible characters with integral coefficients.

In this paper, we use the same notations as used in [5] for irreducible characters of these groups.

 $\label{eq:Table 1} \text{The Character Table of the Group } \ H_2^2(q) \ , \ \ q \ \ \text{even}.$

$C_{H_2^2(q)}^x$	2q(q2 -	2q	2(q-1)	2(q+1)
χ	θЈ	θΙ	$\theta\begin{pmatrix}0&1\\-v'&0\end{pmatrix}$	$\theta \begin{pmatrix} 0 & 1 \\ -u^m & 0 \end{pmatrix}$
χ_1^{q-1}	1	1	1	1
χ_q^{q-1}	q	0	1	-1
$\chi_{q+1}^{(i,q-1-i)}$	q+1	1	$\alpha^{il} + \alpha^{-il}$	0
$\chi_{q-1}^{(q-1)j}$	q-1	-1	0	$-\left(\beta^{jm}+\beta^{-jm}\right)$

$$\begin{split} GF\big(q\big)^* &= <\nu>, 1 \le l \le \frac{q-2}{2} \ , \ 1 \le m \le \frac{q}{2} \ , \ 1 \le i \le \frac{q-2}{2} \ , \ 1 \le j \le \frac{q}{2} \\ , \quad GF\big(q^2\big)^* &= <\sigma>, \sigma^{q-1} = w \ ; \alpha, \beta \in C \quad \text{are primitive complex} \quad (q-1) \ \text{th} \quad \text{and} \quad (q+1) \ \text{th} \quad \text{roots} \quad \text{of unity respectively} \, . \end{split}$$

 $\label{eq:Table 2} \text{The Character Table of the Group } \ H_{\scriptscriptstyle 2}^{\scriptscriptstyle 2}(q) \ , \ \ q \ \ \text{odd.}$

The Character trades of the choos 112 (4); 4				
$2q(q^2-1)$	4(q-1)	4(q + 1)	4 <i>q</i>	
$\theta \begin{pmatrix} 0 & 1 \\ -l & 0 \end{pmatrix}$	$\theta \begin{pmatrix} 0 & 1 \\ l & 0 \end{pmatrix}$	$\theta \begin{pmatrix} 1 & 0 \\ 0 & -\delta \end{pmatrix}$	$\theta \begin{pmatrix} 1 & -2 \\ 2 & 0 \end{pmatrix}$	
1	1	. 1	1	
1	$(-1)^{\frac{q-1}{2}}$	(1) ¹	1	
q	ı	-1	0	
9	$(-1)^{\frac{q-1}{2}}$	$(-1)^{\frac{\varphi-1}{2}}$	0	
- 0	0	0	\sqrt{q}	
q+1	2(-1)	0	1	
q-1	0	-2(-1) ^j	-1	
	$ \begin{array}{c} \theta\begin{pmatrix}0&1\\-l&0\end{pmatrix} \\ 1\\ q\\ q\\ 0\\ q+1 \end{array} $	$ \begin{array}{c cccc} \theta\begin{pmatrix} 0 & 1 \\ -l & 0 \end{pmatrix} & \theta\begin{pmatrix} 0 & 1 \\ l & 0 \end{pmatrix} \\ 1 & 1 & 1 \\ 1 & (-1)^{\frac{q-1}{2}} \\ q & 1 \\ q & (-1)^{\frac{q-1}{2}} \\ 0 & 0 \\ q+1 & 2(-1) \end{array} $	$ \begin{array}{c ccccc} 2q(q^2-1) & 4(q-1) & 4(q+1) \\ \theta\begin{pmatrix} 0 & 1 \\ -l & 0 \end{pmatrix} & \theta\begin{pmatrix} 0 & 1 \\ l & 0 \end{pmatrix} & \theta\begin{pmatrix} 1 & 0 \\ 0 & -\delta \end{pmatrix} \\ 1 & 1 & 1 \\ 1 & (-1)^{\frac{q-1}{2}} & -(-1)^{\frac{q-1}{2}} \\ q & 1 & -1 \\ q & (-1)^{\frac{q-1}{2}} & (-1)^{\frac{q-1}{2}} \\ 0 & 0 & 0 \\ q+1 & 2(-1) & 0 \end{array} $	

	CONTINUE OF TABLE 2				
C'x H ₂ (q)	4 q	2(q-1)	2(q+1)		
χ	$\theta \begin{pmatrix} d & -2d \\ 2d & 0 \end{pmatrix}$	$\theta \begin{pmatrix} 0 & 1 \\ -\nu' & 0 \end{pmatrix}$	$\theta \begin{pmatrix} 0 & 1 \\ -\omega^m & 0 \end{pmatrix}$		
\mathcal{X}_{1}^{q-1}	1	1	1		
$\chi_1^{\frac{q-1}{2}}$	1	(- 1) ^y	· (-1) ^m		
χ_q^{q-1}	0	1	-1		
$\chi_q^{rac{q-1}{2}}$	0	(-1) ^y	- (- 1) ^m		
$\chi_{q+1}^{\left(q-1,\frac{q-1}{2}\right)}$	$-\sqrt{q}$	0	0		
$\chi_{q+1}^{[i,q-1-i]}$	1	$\alpha^{il} + \alpha^{-il}$	0		
$\chi_{q-1}^{(q-1)j}$	-1	0	$-\left(\beta^{jm}+\beta^{-jm}\right)$		

 $GF(q)^* = \langle v \rangle, 1 \le l \le \frac{q-3}{2}, 1 \le m \le \frac{q-1}{2}, 1 \le i \le \frac{q-3}{2}, 1 \le j \le \frac{q-1}{2},$ $GF(q^2)^* = \langle \sigma \rangle, \sigma^{q-1} = \omega; \alpha, \beta \in C$ are primitive complex (q-1) th and (q+1)th roots of unity respectively and δ, d are fixed non-squares in GF(q).

3. QUASI-PERMUTATION REPRESENTATION

We can see all the following statements in [1][2]. Definition 3.1. Assume that E is a splitting field for G and that $F \subseteq E$. If $\chi, \psi \in Irr_E(G)$, we say that χ and ψ are Galois conjugate over F if $F(\chi) = F(\psi)$ and there exists $\sigma \in Gal\left(\frac{F(\chi)}{F}\right)$ such that $\chi^{\sigma} = \psi$. It is clear that this defines an equivalence relation on $Irr_E(G)$, where $F(\chi) = \langle Q, \chi(g) : g \in G \rangle$.

Let η_i for $0 \le i \le r$ be Galois conjugate classes of irreducible complex characters of G. For $0 \le i \le r$, let φ_i be a representative of the class η_i , with $\varphi_0 = 1_G$. Write $\psi_i = \sum_{\chi_i \in \eta_i} \chi_i$ and $m_i = m_Q(\varphi_i)$ and $K_i = \ker \varphi_i$. We know that $K_i = \ker \psi_i$. For $I \subseteq \{0,1,2,...,r\}$ put $K_I = \bigcap_{i \in I} K_i$. By definition of r(G) and c(G) and using above notation we have:

$$r(G) = \min \{f(1): \xi = \sum_{i=1}^{r} n_i \psi_i, n_i \ge 0, K_I = 1 \text{ for } I = \{i, i \ne 0, n_i > 0\}\}$$

$$c(G) = \min \{\xi(1) : \xi = \sum_{i=0}^{r} n_i \psi_i, n_i \ge 0, K_I = 1 \text{ for } I = \{i, i \ne 0, n_i > 0\} \}$$

where $n_0 = -\min\{\xi(g)|g \in G\}$ in the case of c(G).

In [1], the authors defined $d(\chi)$, $m(\chi)$ and $c(\chi)$ [See Definition 3.4]. Here, we can redefine it as follows:

Let χ be a complex character of G, such that $\ker \chi = 1$. Then $\chi = \chi_1 + \dots + \chi_n$ for some $\chi_i \in Irr(G)$.

Definition 3.2. Let χ be a complex character of G such that ker $\chi = 1$. Then define

$$(1) d(\chi) = \sum_{i=1}^{n} |\Gamma_{i}(\chi_{i})| \chi_{i}(1)$$

$$(2) m(\chi) = \begin{cases} 0 & \text{if } \chi = 1_{G} \\ |\min\{\sum_{i=1}^{n} \sum_{g \in \Gamma} \chi_{i}^{\alpha}(g) : g \in G\} & \text{otherwise} \end{cases}$$

$$(3) c(\chi) = \sum_{i=1}^{n} \sum_{\alpha \in \Gamma(\chi)} \chi_i^{\alpha} + m(\chi) \mathbf{1}_G$$

Sa

$$r(G) = \min\{d(\chi) : \ker \chi = 1\}$$
 and

$$c(G) = \min\{c(\chi)(1) : \ker \chi = 1\}.$$

Lemma 3.3. Let $\chi \in Irr(G)$. Then

$$(1) c(\chi)(1) \ge d(\chi) \ge \chi(1)$$

$$(2) c(\chi)(1) \leq 2 d(\chi).$$

Equality occurs if and only if $Z(\chi)/\ker \chi$ is of even order.

Proof. (1) follows from the definition of $c(\chi)(1)$ and $d(\chi)$. For (2) See [1 Lemma 3.13].

Lemma 3.4. Let ε be a primitive n – th root of unity.

Then $\varepsilon^j + \varepsilon^{-j}$, $1 \le j \le n$ is rational if and only if

$$n = j,2j,3j,4j,6j,\frac{3}{2}j,\frac{4}{3}j,\frac{6}{5}j$$
.

Proof. See [2 Corollary 3.2].

Lemma 3.5. If $\chi \in Irr(G)$, then $\ker \chi = \ker \sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$.

Moreover χ is faithful if and only if $\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is faithful.

Proof. See [1 Lemma 3.5].

Let $G = H_2^2(q)$, q be even, then G has four types of conjugacy classes, and four types of irreducible characters $\chi_1^{(q-1)}, \chi_q^{q-1}, \chi_{q+1}^{(i,q-1-i)}, \chi_{q-1}^{(q-1)j}$.

Let $G = H_2^2(q)$, q be odd, then G has seven types of conjugacy classes, and seven types of irreducible characters

$$\chi_1^{\left(q-1\right)},\chi_1^{\frac{q-1}{2}},\chi_q^{q-1},\chi_q^{\frac{q-1}{2}},\chi_{q+1}^{\left(q-1,\frac{q-1}{2}\right)}\chi_{q+1}^{\left(i,q-1-i\right)},\chi_{q-1}^{\left(q-1\right)j}\;.$$

Lemma 3.6. a) let $G = H_2^2(q)$, $q = p^n$, p be an even prime. Then $\left(\beta^{jm} + \beta^{-jm}\right)$ is rational if and only if q = 2, where β is a primitive complex (q+1)th root of unity.

b) let $G = H_2^2(q)$, q be an odd prime. Then $\left(\beta^{jm} + \beta^{-jm}\right)$ is rational if and only if q = 3 or 5, where β is primitive complex (q+1)th root of unity.

Proof. a) By Lemma 3.4 we know that $\left(\beta^{jm} + \beta^{-jm}\right) \in Q$ if and only if

$$q+1 = jm,2 jm,3 jm,4 jm,6 jm,\frac{3}{2} jm,\frac{4}{3} jm,\frac{6}{5} jm$$

where $1 \le j \le \frac{q}{2}$ and $1 \le m \le \frac{q}{2}$. Now it is easy to see that $\beta^{jm} + \beta^{-jm}$ is rational if and only if q = 2. Case (b) is proved similarly.

Theorem 3.7. Let $G = H_2^2(q)$, where q = 2,3,5. Then $r(H_2^2(2)) = 1$, $c(H_2^2(2)) = 2$ $r(H_2^2(3)) = 2$, $c(H_2^2(3)) = 3$

$$r(H_2^2(5)) = 4$$
, $c(H_2^2(5)) = 6$

Proof. By Lemma 3.6 and Tables (1), (2) we know that $\chi_{q-1}^{(q-1)j}$ is a rational values character, so $d = \left(\chi_{q-1}^{(q-1)j}\right) = q-1$ and this is the minimal values. This implies r(G) = q-1. Now we have

$$m\left(\chi_{q-1}^{(q-1)j}\right) = \begin{cases} 1 & if \quad q = 2,3\\ 2 & if \quad q = 5 \end{cases}$$

Therefore,

$$c\left(\chi_{q-1}^{(q-1)j}\right)\left(1\right) = \begin{cases} q & \text{if} \quad q=2,3\\ q+1 & \text{if} \quad q=5 \end{cases}$$

This completes the proofs.

Theorem 3.8. Let $G = H_2^2(q)$, $q = p^n$, then

$$1) r(G) = q$$

2)
$$c(G) = q + 1$$

Proof. Let q be even, then by Table (1) and Lemma

3.3 we have
$$d\left(\chi_{q+1}^{(i,q-1-i)}\right) \ge q+1, c\left(\chi_{q+1}^{(i,q-1-i)}\right)(1) > q+1,$$

$$d\left(\chi_{q-1}^{(q-1)j}\right) = \left|\Gamma_{j}\right| (q-1) \ge q-1$$

where
$$\Gamma_j = \Gamma(Q(\chi_{q-1}^{(q-1)j}:Q)).$$

By using Lemma 3.6 if $q \neq 2$, then $|\Gamma_j| \geq 2$. So in this case

$$d(\chi_{q-1}^{(q-1)j}) \ge 2(q-1),$$

and $c(\chi_{q-1}^{(q-1)j})(1) \ge 2q$

The character χ_q^{q-1} is a rational values character so, $d(\chi_q^{q-1}) = q$, and by Table(2) $m(\chi_q^{q-1}) = 1$.

Now let q be odd, by Table (2) we have $d(\chi_q^{q-1}) = q = d(\chi_q^{\frac{q-1}{2}})$, since χ_q^{q-1} , $\chi_q^{\frac{q-1}{2}}$ are rational values characters.

The character $\chi_{q+1}^{\left(q-1,\frac{q-1}{2}\right)}$ is a rational values character so by Table (2) $d\left(\chi_{q+1}^{\left(q-1,\frac{q-1}{2}\right)}\right)=q+1$ and $m\left(\chi_{q+1}^{\left(q-1,\frac{q-1}{2}\right)}\right)=\sqrt{q}$.

By Lemma 3.3 we have $d\left(\chi_{q+1}^{\left(i,q-1-i\right)}\right)\geq q+1$ and $m\left(\chi_{q+1}^{\left(i,q-1-i\right)}\right)\geq q+2$.

Finally, if $q \neq 3.5$ then by Lemma 3.6 $\chi_{q-1}^{(q-1)j}$ is not rational, so $|\Gamma| \geq 2$ where $\Gamma = \Gamma(Q(\chi_{q-1}^{(q-1)j}:Q))$ therefore $c(\chi_{q-1}^{(q-1)j})(1) \geq d(\chi_{q-1}^{(q-1)j}) \geq 2(q-1) \geq 2q$.

The values are set out in the following Tables.

TABLE 3 (q is even)

х	$d(\chi)$	$c(\chi)(1)$
χ_1^{q-1}	not faithful	not faithful
χ_q^{q-1}	q	q+1
$\chi_{q+1}^{(i,q-1-i)}$	≥ q +1	> q+1
$\chi_{q-1}^{(q-1)j} \geq 2(q-1)$		> 2q

TABLE 4 (q is ODD)

TABLE T (4 18 ODD)				
χ	$d(\chi)$	$c(\chi)(1)$		
χ_1^{q-1}	not faithful	not faithful		
$\chi_1^{\frac{q-1}{2}}$	not faithful	not faithful		
χ_q^{q-1}	q	q+1		
$\chi_q^{\frac{q-1}{2}}$	q	q+1		

Now by Tables (3), (4) we have:

$$\min\{d(\chi): Ker(\chi) = 1\} = q$$

And $\min\{c(\chi): Ker(\chi) = 1\} = q + 1$.
Hence the result is follows.

4. REFERENCES

- [1] H. Behravesh, "Quasi-permutation representations of p-groups of class 2", J. London Math. Soc. (2) 55, 251-26, 1997.
- [2] H. Behravesh, "The rational character table of special linear groups", J. Sci. IR. I. Vol. 9 No. 2, 173-180, 1998.
- [3] J.M. Burns, B. Goldsmith, B. Hartley and R. Sandling, "On quasi-permutation representation of finite groups", Glasgow Math. J. 36, 301-308, 1994
- [4] M. Darafsheh, M. Ghorbany, A. Daneshkhah and H. Behravesh, "Quasi-permutation representations of the group GL(2,q)", Journal of Algebra 243, 142-167, 2001.
- [5] M.Darafsheh, F. Nowroozi Larki, "The character table of the group GL(2,q) when extended by a certain group of order two", Korean J. Comput. Appl. Math. 7 no 3, 643-654, 2000.
- [6] W. Fiet, "Extension of Cuspidal Characters of GL(m,q)", Publications Mathematical, 34, 273-297, 1987.
- [7] J. A. Green, "The Characters of the Finite General Linear Groups", Trans. Amer. Math. Soc. 80, 402-447, 1955.
- [8] R. Gow, "Properties of the Characters of the Finite General Linear Group Related to Transpose-inverse involution", Proc. London Math. Soc. (3), 47, 493-506, 1983.
- [9] R. Steinberg, "The representations of GL(3,q), GL(4,q), PGL(3,q) and PGL(4,q)", Can. J. Math. 3, 225-235, 1951.
- [10] [10] W. J. Wong, "Linear groups analogous to permutation groups", J. Austral. Math. Soc (Sec. A) 3, 180-184, 1963.