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ABSTRACT

Roller compacted concrete (RCC) is a no slump concrete which is widely used in the construction of
dams and road pavements. Mixture design of such concretes containing minimum cement pastes is necessary
to control the thermal problems in mass concretes. With an accurate model for prediction of RCC
compressive strength, it is possible to optimize RCC mixture design. Nevertheless, RCC is a highly complex
material that modeling its behavior is a difficult task and needs nonlinear modeling methods.

In the present study, attempt was made to propose a neural network niodel for prediction of compressive
strength of roller compacted concretes. Necessary data obtained from the mixture designs of various
laboratory and field test results. Neural network (NN) has strong capability of modeling complex, multi-
variable and nonlinear problems such as RCC mixture design. In the concrete mixtures, minimum cement
pastes are used to design concretes for the required compressive strength. With the proposed NN model in
this investigation, it is possible to estimate the compressive strength of roller compacted concretes as the

output of the model.
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I. INTRODUCTION

Rolier Compacted Concrete is a no slump concrete
which is widely used in the construction of dams and road
pavements. Considering economical benefits and fast
speed of construction in the RCC dams, there is rapid
expansion of this method throughout the world. An
important issue in RCC dam constructions is the mixture
design optimization. Today, RCC dam engineers use
standard codes and recommended methods to design
mixture proportion. In these methods, many limitations
and assumptions are made. Thus, in practice, trial and
error procedure is used and some samples of RCC mixes
with various proportions are made to achieve the required
specification. In addition, for controlling the thermal
problems, reducing cost and optimizing mixtare, using
different type of pozzolans and using new admixture, other

parameters are considered in the mix design and make it
more complicated. In fact, designing and optimizing RCC
mixtures require huge effort in sample preparation.
However, by creating models to predict the compressive
strength of RCC concrete mixtures, time and cost for
designing a concrete mixture proportions are reduced. Due
to the complex behavior and nonlinearity in the RCC
concretes, nonlinear modeling methods must be used to
achieve the model with appropriate accuracy that can
applied to optimize RCC mixtures. One of the most
powerful methods in nonlinear modeling considering all

-effective parameters in paraliel is Neural Network (NN)

modeling method. The following characteristics of
backpropagation neural networks, which have been
adequately described in the literature [1, 2], make them
very attractive and appropriate for predicting concrete
properties.

1. They can establish mapping between inputs (i.e.,
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proportions of concrete constituents) and outputs (ie.,
concrete properties) based on historical data, without any
explicit model being declared, even if those mappings are
highly non-linear. This is especially useful when additives
and admixtures are combined with the basic concrete
constituents [3].

2. They are able to tolerate errors in the training data
because of their generalizing activity and concrete mix
design data very often has 'error’ in the form of high
variability [3].

3. They can be updated based in successive trial mixes,
as retraining of neural network is very easy [3].

4. Their primary weakness of lacking a theory-based
model is mitigated by the general accepted fact that mix
design is essentially an empirical process {31.

There are different backpropagation neural networks.
In this paper, the Multi-Layer Perceptron architecture,
which is the most common method for engineering
applications and can map the inputs and outputs [4], was
used. This type of neural networks is used to model
different concrete mixture design. Yeh {5], Kasperkiewics
[6], Lai [7] and Lee {8] applied the NN for predicting
properties of conventional concrete and high performance
concrete. Bai [9] developed neural network models that
provide effective predictive capability in respect to the
warkability of concrete incorporating metakaolin and fly
ash, Ji-Zong [10] developed an automatic knowledge-
acquisition system based on neural networks to design
concrete mixes. Guang and zong [11] proposed a method
to predict 28-day compressive strength of concrete by
using multi-layer feed forward neural networks. Dias and
Pooliyadda {12] used back propagation neural networks to
predict the strength and slump of ready mixed concrete
and high strength concrete. Also, Ahmet Oztas [13]
developed a NN model for prediction in parallel
compressive strength and slump of high strength concrete
with two hidden layers. The aim of this paper is to present
a NN mode! that can predict the compressive strength of
RCC with high accuracy and optimize the RCC mixture
proportion.

2. MULTI-LAYER PERCEPTRON NEURAL NETWORK

The Multi-Layer Perceptron (MLP) is the most
comrmon neural networks for engineering applications and
can learn any continuous functions with arbitrary accuracy
{14} if suitable numbers of hidden layer neuron are
applied in. A Multi-Layer Perceptron (MLP) is a type of
feed-forward neural network that has the strong
capabilities of learning and nonlinear processing and
processing tolerance characteristics of inaccuracy and
uncertainty and robustness and back propagation is used
for updating the weights of each layer and bias of each
neuron in the layers based on the error at the network
output [10]. As shown in Figure 1, MLP always has at
least three layers, the input layer, the hidden layer, and the
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Figure 1. The architecture of a BP neural network.

More than one hidden layer can be used for some
applications. The presence of these hidden layers allows
the network to present and compute more complicated
associations between patterns [15]. x,, Xp2, ... , Xpw are the
N components of input vector X,, and ¥, and W, are the
connection weights between nodes of different layers. The
nodes (neurons) of neighboring layers are fully connected.
A back propagation network functions on the basis of a
large number of neurons. A neurcn is an information-
processing element. Neurons in the input fayer just transfer
the input data to the hidden layer, with no calculation
happening. While in the hidden layer and the output layer,
a neuron acts as seen in Figure 2 [10]. Function f in the
figure names as "activation function™ and &; is the bias on
neuron j. The tangent sigmoid and sigmoid (Figure 3) are
commonly used in MLP as activation function in hidden
layers and also the linear function is used in the output
layer.
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Figure 2 Neuron and its action.

{

Figure 3. Activation function of neuron; {1) Tangent sigmoeid,
(2) Sigmoid.

The MLP implementation involves two processes. The
first process involves the presenting the patterns (samples
or daia) to input layer and the calculation of the data
following forward form the input layer to the output layer.
The second process involves the calculation of error
between network output and target pattern (Eq .1) and

output fayer [15].
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propagation error signals backward from the output layer
to the input layer and adjusting the connection weights and
neurons bias to minimize the error function (Eq. 1).

1 S, N 5
MSE:NS P ATETD. 0

o j=1 =1

where MSE (Mean Square Error) is the cost function, #;
and oy are the desired output and network output in the
output layer newron J and pattern jth of data respectively,
~ and N is the number of output layer neuron and So is the
number of pattern. '

3. NN MODEL CONSTRUCTION AND DATA:COLLECTION

In order to attain accurate model to use it in
optimization process, different network parameters and
several network architectures were applied and examined.
Database that is used for modeling and development of
NN meodel will is described in the next part.

3.1 Data collection

According to RCC mix design main effective
parameters, the authors collected the necessary data from
Jaghin and Zirdan RCC dams built in Iran. The collected
data consist of 116 RCC laboratory samples. Three types
of mineral additive materials were used; Khash, Trass
{Two Iranian natural pozzolans) and Indian fly ash with
pozzolanic activity of 73, 78.4 and 78.7 percentages,
respectively.

3.2. NN model architecture and configurations

As described above, there are different kinds of NN.
But the multi-layer Perceptron architecture, which is the
mest common NN for engineering application, was
developed in this research. The developed NN has three
layers. In the input Iayer, .there are -11 neurons
comresponding to 11 effective RCC factors that were
dosage of cement, dosage of pozzolan, dosage of water,
dosage of sand, dosage of gravel, maximum size of
aggregate, crushed sand-total sand ratio, crushed gravei-
total gravel ratio, type of sample compaction, pozzolanic
activity and water reducing admixture content. The RCC
sample compaction type is a qualitative value, and needs
to be changed into quantitative value. Values 0 and 1 were
used to quantify Modified Proctor and VeBe compaction
type, respectively. In the output layer, there is one neuron
corresponding to 91-day RCC compressive strength.

The number of hidden layer neurons affects the model
accuracy and model generalization, computing time of the
learning process and learning the mle of the training set
{14]. If only few neurons are presented in the hidden layer
of NN model, it is not possible to learn the rule of the
learning set. When there are too many neurons in the
hidden layer, however, the model fit data points in the
learning set too well. It learns, in addition to the rule of the
data set, the noise in the learning set, and generalization

thus becomes worse [14],

In the present research work, to create model with
acceptable accuracy and generalization, the number of
hidden layer neurons was selected as variable in the range
of 1 to 16 neurons. Two ordinary, tangent sigmoid and
sigmoid, activation functions are employed for hidden
layer neurons in the experiments independently and only
linear transfer function used in the output layer neuron as
activation function. In order to get good generalization, a
method called early stopping has been used as the
stopping criterion of learning process. In this technique,
the available data is divided into three subsets. The first
subset Is the training set, which is used for computing the
gradient and updating the network weights and biases. The
second subset is the validation set. The error on the
validation set is monitored during the training process.
The validation error will normally decrease during the
initial phase of training, as does the training set error.
However, when the network begins to over fit the data, the
error on the validation set will typically begin to rise,
whereas the training error still keeps decreasing. At this
condition, the training is stopped and the network is
considered to be the solution. The test set (3rd set of the
division of the data) error is not used during the training,
but it is used to compare different models. With this
method, it is possible to train the network that has
smoothly regularization the data points or the patterns of
RCC mixtares and the model shows suitable
generalization. Using early stopping method, the data in
the training set, testing set, and the validation set should
have similar characteristics [14]. Therefore, approximately
23 present of the data was selected showing similar trend
in the cumulative frequency of 9l-day compressive
strength with the entire data (see Figure 4).
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Figure 4. Cumulative distribution function for datg sets,

Then, approximately 50 percent of the selected data
was randomly reselected as the validation set and the rest
of the data was used as testing set. In this way, the 116
data are divided into three groups, 89 set as the training
data, 14 set as the validation data, and 13 set as the testing
data. The Training algorithm employed here was the
Levenberg-Marquardt (LM) back propagation algorithm
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with batch-update, seemed to be one of the fastest training
algorithm among all the gradient decent derived back
propagation aigorithms {14]. It is important to note that
with LM algorithm, it is possible to decrease the hidden
layer neurons. Also, each configuration of the network is
trained with 10 simulations, each with different starting
condition (random initial weights and biases).

3.3. Data Pre-processing

Data scaling is another essential step for network
training. One of the reasons for pre-processing the output
data is the application of a sigmoidal activation function
within the network [16]. Outputs limits of tangent sigmoid
and sigmoid functions are [-1,1] and [0,1] respectively
(see Figure 3). Scaling of the inputs in the range [-1,+1]
greatly improves the learning speed, as these values fall in
the region of the sigmoidal activation function where the
output is most sensitive to variation of the input values.
Another reason is that the components which form an
input vector have different quantitative limits, so data
normalization is needed {10]. It is therefore recommended
to normalize the input and output data before presenting
them to the network. There are different methods of linear
transformations to normalize the data. The two
transformation functions used in this work are shown in
Eq.(2) and Eq.(3). The first equation scales data so that
they fall in the range [-1,+1] and the second one scales
data so that they will have the mean and standard
deviation values equal to zero and one, respectively.

X, = X
Xy = Q[WJ__EEH‘._] -1 (2
*max ~ *min
where x; and x,; are the ith pattern of each input or
output parameters after and before pormalization,
respectively, and X, and X, are the maximum and
minimum values of data for each input or output
parameters.
X, —X
i mean
xp = ltme o (3)
Xstd

Where X, and xy, are the mean and standard deviation
values of data for each input or output parameters. The
normalized data sets after transformation with Eq.(2) and
Eq.3) and original data without transformation were
presented independently to the network for training
purposes and reaching to the suitable model.

4, RESOULTS OF NN MODEL CONSTRUCTION

In this research, a program was written in the Matlab
software with the help of its Neural Network Toolbox to
train and test the MLP neural network with different
parameters described in the previous section. After several
processing the network with the best performance on both
training set and the testing set was selected as the final
neural network model, The proposed NN model with 7

neurons in the hidden laver was found vsing the Eq. (2) as
transformation function of pre-processing the data.

The performance of training set, validation set and
testing set can be seen in Figure 3. The results in Figure 5
indicate that the neural network model is successful in
learning the relationship between the different input
parameters and the output (compressive strength). Results
of testing set in Figure 5 also show that the neural network
is capable of generalizing between input variables and
output with reasonably a good prediction. The correlation
coefficient (R) between the network respond and the target
and mean squared error (MSE) for compressive strength
values in training set, validation set and testing set are
given in Table 1. It is clearly seen (Table 1 and Figure 5)
that the proposed NN model is appropriate for prediction
of 91 day compressive strength of RCC mixtures.
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Fig .5. The performance of training, testing and validation sets of
mix-design data,

- TABLE 1
STATISTICAL VALUE OF PROPOSED MODEL

Training Validation Testing

Set Set set
R 0.9402 0.9067 0.9516
MSE  0.0334 0.2300

0.2461

5. OPTIMIZATION OF MIXTURE PROPORTION

it is important to control the temperature of RCC dams.
Post cooling system cannot be used in such dams. The best
way to reduce the temperature in RCC dams is the design
of concrete mixtures with low cement content. Less
cement in the concrete mixtures led to low heat and low
cost concrete. In this investigation, attempt was made to
find RCC mixtures proportions containing minimum
cement pastes for 11 levels of compressive strength (from
10 to 20 MPa) by using the proposed NN model. The
mixtures contain Khash pozzolan which was used in Jagin
RCC dam. The limitations in the model are as follows:

- Concrete mixtures contain no admixtures.

%Amirkabir/ iVol’. 18/ Nop.67-C/ ( Civil Engineering)/ Fall 2007 — Winter 2008

96



- The maximum pezzolan-binder ratio was 0.4.

- The maximum water-binder ratio was 0.7.

. - Effective air content of the mixture was 1.5%.

- Natural aggregate is used with 25.4 mm MSA.

- The specific gravity of pozzolan cement and
aggregates are 2.56, 3.16 and 2.7, respectively.

It'is easy to estimate the minimum cement required for
the mixture using NN model. The proposed model acts as
function that its input parameters are the independent
variables and its output is the dependent variable. The
Matlab Optimization Toolbox includes routines for many
types of optimization. One of them is the constrained

nonlinear minimization. A Matlab program was written to
minimize the binder content in the mixtures. In this
program the proposed NN model consists of a function
with its input and output variables and constrained
equation, and the goal function of the minimization is
defined as the sum of cement and pozzolan contents, The
result of the mixture optimization is seen in Table 2. The
presented mixture proportions have minimum cement
pastes according to required compressive strength and
other proposed constraints. This kind of optimization can
be extended to cost minimization.

TABLE2
OPTIMIZED RCC MIXTURES PROPORTIONS

Concrete ingredients in kg/m®

No. Cement Pozzolan Binder Water MSA Sand Gravel Corgnlp;ias)s,ive
k) G k) k)  @w G  k) REED

1 5842 38.95 97.37 68.16 61.55 11000 1284.5 97

2 60.21 40.00 100.21 69.69 59.05 1094.6 1283.2 11.1

3 60.00 40,00 100.00 68.46 5525 1098.9 1282.3 11.9

4 60,00 40.00 100.00 69.88 50.68 1097.1 1280.2 13.0

5 60.00 40.00 100.00 69.20 45,52 1100.0 1279.2 142

6 60.00 40.00 100.00 68.26 38.71 11000 1281.7 149

7 60,00 40.00 100.00 29.48 254 1021.4 1357.1 15.8

8 64.96 43.30 108.27 75.79 254 1100.0 1253.7 17.3

9 76.63 51.09 127.73 79.30 25.4 1100.0 1226.0 18.1

10 134.12 89.41 223.53 73.02 254 1100.0 1153.5 19.0

11 199.31 132.87 332.18 77.20 53.5 740.61 1400.0 20.0

6. CONCLUSIONS

In this paper, the NN model was developed for
predicting the RCC 91-day compressive strength, The
proposed model performance and its accuracy and
generalization show that the use of NN model will
provide a useful decision-making too! for RCC dam
engineers. The model can present a new method for
RCC mixture proportion designing that is more suitable
and accurate than the traditional methods. The model
will save time, decrease wasting materials and reduce
the design cost. The model is useful to study the effect
of each variation of the mixture components on
compressive strength of RCC concretes. With the help
of the proposed model and ordinary minimization
method, RCC mixtures containing minimum cement
pastes were designed for the required compressive
strengths, The simplicity of optimization of RCC
mixture shows that NN modeling has strong capability
of modeling nonlinear, parallel and multi-variable
problems.
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