Time-Optimal Switching Control Computation of
Nonlinear Systems Using LGI Method

M. R. Navabi*, M. Shamsi® and M. Mani"

ABSTRACT

An accurate and efficient computational method is proposed for the time-optimal switching control
problem of nonlinear systems. The method is based on spectral collocation technique using the Legendre-
Gauss nodes. Spectral method is used to discretize the problem in a sequence of time subdomains separately
and form a nonlinear programming problem. By solving this NLP problem, the optimal control in each
subdomain and the joining times of the subdomains will be obtained simultaneously. The method is

computationally attractive and applications are demonstrated through illustrative examples.

KEYw ORDS

time-optimal control; switching control; spectral; nonlinear system.

1. INTRODUCTION

The time-optimal control problem has been of great
interest for several decades and has been used for a wide
variety of applications such as flight trajectory
optimization, industrial robotics and biomedical. In
practical applications, the control function should be
constrained to upper and lower bounds. When the system
is linear in the control input and the control is bounded,
the nonsingular time-optimal control solution is known
theoretically to be the bang-bang control. Even, when the
system is nonlinear in the control input, the most
frequently encountered optimal control is bang-bang. The
bang-bang control is a special case of piecewise-constant
control that is referred to as switching control.

In general, time optimal switching control solutions can
be hardly obtained analytically, unless the system is of low
order, time-invariant and linear [1]. However, one can
obtain the solution either by numerical solution of the two-
point boundary value problem (TPBVP) arising from
Pontryagin’s minimum principle [2] or by numerical
solution of mathematical programming problem that is
formed by discretizing the optimal control problem [3].
The former approach is known as the indirect method and
the later as the direct method.

Several algorithms have been proposed in the literature
based on these two approaches to solve time-optimal

switching control problem. Examples include the
Switching Time Variation Method (STVM) presented by
Mohler [41,[5], the Switch Time Optimization method
(STO) by Meier and Brayson [6], the Switching Time
Computation (STC) method and the Time Optimal
Switchings (TOS) algorithm by Kaya and Noakes [7],[8],
the Control Parameterization Enhancing Technique
(CPET) by Lee et al [9], the enhanced transcription
scheme by Hu et al [10], a shooting method by Bainum
and Li [I1], a smoothing technique by Bertrand and
Epenoy [12], and a control transcription technique by
Buskens et al [13].

The Spectral collocation methods have been recently
applied to solve optimal control problems [14]-[15]. The
spectral collocation methods are direct methods, which
approximate the state and control functions with Nth order
Lagrange interpolating polynomials. The interpolating
coefficients are the values of the function in collocation
nodes. In this method, the dynamical system is discretized
and the integral terms in the cost function is computed by
a quadrature. Thereby, the optimal control problem is
converted to a nonlinear programming (NLP) problem that
can be solved by well-developed NLP solvers [16].

The spectral methods as direct methods are robust to
the initial guess. They are easy to implement and can be
applied to different problems without any extra work to
derive the optimality necessary conditions for each
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problem. Besides, the underlying approximation of the
spectral method is of spectral accuracy for smooth
problems. This means that the spectral method can offer
an exponentially convergence rate [17].

However, the general methods are not appropriate for
solving time optimal control problems where, there are
discontinuities in the control function. The reason is that
the switching points cannot be handled by spectral
methods and spectral accuracy is lost for problems dealing
with discontinuous functions. In this case, the Gibbs
phenomenon appears in the solution [18], due to
approximations of the discontinuous functions with global
interpolating polynomials.

In this paper, to overcome the above difficulties, we
propose a multidomain method to solve time-optimal
switching control problem. In the proposed multidomain
approach, the total domain is broken into several
subdomains. The control and state functions are
considered continuous in each subdomain and the switches
can occur in the joining points. The spectral method is
then applied to each subdomain. Using this approach, the
resulted NLP problem includes also the switching times as
unknown parameters.

In the proposed method, Integral Operation Matrix is
used to discretize dynamical system and Legendre-Gauss
nodes is used as nodal point. Therefore, this method is
called Legendre-Gauss Integral (LGI) method throughout
this paper.

Since the integral form is used, the initial boundary
conditions are directly imposed to the equations. The
Legendre-Gauss quadrature is used to apply final
boundary conditions. This quadrature is exact for
polynomials of degrees 2N —1 and less, which is two
degrees higher than Gauss-Lobatto quadratures with- the
same Lagrange interpolating polynomial order () [19].

To solve the time-optimal switching control problem,
the Legendre-Gauss Integral (LGI) and Multidomain
Legendre-Gauss Integral (MLGI) methods may be
employed in a cascade way. At first, by using the
Legendre-Gauss Integral method, a guess about the
structure of control function and number of switches are
obtained. Then, by applying MLGI method, optimal
switching times, final time and bang-bang control function
are accurately obtained.

This method provides several advantages over
traditional spectral methods. The size of the resulted
mathematical programming problem is smaller than
others. Also, the Gibbs phenomena does not appear in the
resulted solution and the spectral accuracy is preserved.
Finally, the method can accurately obtain optimal
switching times.

In the following section, the time optimal control
problem is formulated in its differential form and then is
converted to the integral form. We present the details of
the Legendre-Gauss Integral method in section 3. In
section 4, the multidomain Legendre-Gauss Integral

method is described for time optimal switching control
problem. Finally, in section 5, we use two numerical
examples to illustrate our method and make a comparison
with some of the results in the literature. The time-optimal
control of Van der Pol and F-8 aircraft problems are
studied. The results are in excellent agreement with those
reported in the literature.

2. PROBLEM STATEMENT

Consider the time-optimal control problem

min 7,

.t x(7)=f(x(z),u(r),7) )
x(0) =x, )
x(z ) =%, 3
u, su(r)<u,,, €))

where x(r)eR™ is the state vector, u(r)eR™ is the
control vector, 7 is the time independent scalar variable
and £:R™ xR*™ xR -—>R"™ is a nonlinear vector function,

considered to be continuously differentiable with respect
to all its arguments. 7, denotes final time, x, and x;
denote initial and final states respectively, and wu,_, and
u__ denote lower and upper bounds of control function.
In other words, the goal is to find the history of control
function w(r) and corresponding state trajectory x(7)
that minimize the final time 7z, subject to the constraints
imposed on the problem. The constraints include the
dynamical constraints (1), boundary constraints as end
conditions (2)-(3) and box constraints (4).

It is assumed that problem has an optimal solution. In
this paper, the following integral form will be used instead
of above equations

min 7,

st x(r)=x(0)+ _E £(x(t ), u (), )dt ©)
x(0) =x, (6)
x(t,) =%, ™
u, <u(r)<u,, ®)

3. LEGENDRE-GAUSS INTEGRAL (LGI) METHOD

A. Preliminary considerations[18]
Let L, (¢), —1<t <1 denote the Legendre polynomial
of order N . The Legendre-Gauss (LG) nodes ¢,...,t

Iy
are the zeros of L, (t) . No explicit formulas are known
for LG nodes.
numerically [18].

Let 4,(t), j =12,..,N be the Lagrange polynomials

However, they can be computed
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based on LG nodes, that are expressed as:

¢j(t)=Ht—t' >

2t -t
1= T

Jj=12,.,N ©)

with the Kronecker property
J#i

4,¢)=5, ={° S (10)
; 1 J =i

It is more convenient to consider the alternative
expression [19]

(Y4
4 ()= 1 ¢ )N(t)’J

=1,2, ., N
NN +DL, ¢,) (@—t,)

1n.
The N th degree interpolation polynomial A" (), to
h(t) is given by '

GEWIATRG: (12)
j=l

and therefore, by (10)

h"(t,)zh(tj ), j=L2,.,N (13)

the Legendre-Gauss quadrature rule can be used to
approximate integral of a function over [-1,1] as

[, n@yar ~Sw h(t,) (14)

where w , denotes the Legendre-Gauss weights [18] and

can be computed as
2 1

w. = -

B G P 1V (39)
where L; () denotes the derivative of L, (). The
integral of a function over [-1,,] can be approximated

by
g N
[ herde = Ys, ,ht,)
k=1

1s5)

i =12,.,N

(16)

where S, is the j th row and k th column component
of N xN integration operational matrix S. This matrix
can be computed using Legendre-Gauss quadrature (14)
for [-1¢,]

Sj,k = [: ¢k t)dr

¢
- (17

+l£ t_,.+l my
5 ‘¢k((T)( +1)

[ +1Y

=T§¢k @w,

B. Discretization of the optimal control problem

Consider the optimal control problem described by
equations (5)-(8). Since the problem is formulated over
the time interval [0,7, ], and the Legendre Gauss nodes lie

in the domain [-1,1], we use the following linear

transformation to map the physical domain to the
computational domain 7 €[0,7, ]:

r=%—(t+l) (18)

By applying the above transformation to equations (5)-(8),

x, u and f will change and we should use new symbols

for them. However, for simplicity, we will use the same

symbols. Therefore, equations (5)-(8) are reformulated as:
min 7,

. t. x(t)zx(—-l)+—1:2[— [, tx@).u().0dr (19)

x(~1) = x, (20)
x(D)=x, @n
u,, <at)<u_, (22)

The Nth  degree interpolating polynomials to
x()=[x,¢),...x, ¢)] and w@)=[u,(¢),....u, ()] are

expressed as

N

xN@O =YX, 8,0, i=12..n, 23)
j=l

¥ N

wNO)=DU, 60, k=12..,n, (24
J=1

Note that from (13) we have

X, =x"@)i=12,.,n,j=12.,N (25)

Uy, =u; ¢,), k=12..n,j=12,.,N (26)

The above expansions can be expressed in the following
matrix form,

x" (1) = Xo(t) 27
u’ (1) =Ug() (28)
where

o=[40®) 40 - 4OT 9)

X, U are n, xN and n, x N matrices with entries,

X=[X,,1, i=12.,n,j=12,.,N 30)
U=[U,;]l, k=12,.,n,,j=12,.,N 3n
By wusing approximations (27) and (28), we «can
approximate f as

f{x(@),u@t),t)~f{x" @), u" @)t

(x(),u(),t) = £(x" () ()') a2

~Fo()

where F isa n, xN matrix

F=[F,], 33)
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Foo=1(x@)u@,)t,)i=12,..,n,,j=L2,.,N
G4
where f isthe i th component of vector function f .

By substituting (27), (28) and (32) in (19) and using
integration operation matrix § we get to

xtp(t)———xc—l)%mp(r)sf (35)

By collocating the above equation in ¢,,j =12,..,N ,

finally we get to the following discretization of (19) in
matrix form

X=X, +52LFST (36)

where X, isa n, xN matrix with same columns equal to
X,
X, =[x%,,....%,]

37N

Using Gauss quadrature (14), we can compute the state
vector at the final time:
X (1) =x, +-T2LFw (38)

where w is the vector of Legendre-Gauss quadrature
weights

W—“:[W],WZ,"',WN]T (39)
So the terminal condition (7), is disceretized as

t
X, + —zLFw =X, (40)

Finally, the optimal control problem is approximated by
the following nonlinear optimization problem:
Find matrices X, U and the final time 7, to minimize

J=1

subject to

X-Xo—«%—FST =0 41
T,

xo+~§—Fw—-xf =0 42)

“min < uN < umax (43)

4. MULTIDOMAIN LEGENDRE-GAUSS INTEGRAL
(MLGI) METHOD:

The total domain [7,,7;]
and LGI method is applied to each
be the switch times. Note that

is broken into =
subdomains
subdomain. Let ¥,

n, =n, +1.

where n, is number of switching. Also, for simplicity in
notation we set 7. =0 and 7" =7, . So the considered
subdomains are

[, 251, k =1,2,.,n, +1

$

(44)

Since, we are going to solve the bang-bang control
problem, u(?) is considered constant in each subdomain.

Let u(t) and x(r) in & th subdomain denoted by constant
vector u* and vector function x*(¢), respectively. In
each subdomain the dynamic equations, are considered as

¥ (1) =x(0)+ [, f(" O 0" O).0)dr, 747 <t <zf (45)

For imposing the continuity of the states at switch times,
we consider x* (0) in above equation as:

xk(o):{x (Y

Xq ,

k=2,.,n +1

k=1 (46)

In a similar manner explained in the last section, we
discretize the equation (45), but in this time, we consider

u* (¢) to be constant in each subdomain
The final discretized form is

ko k=l

Xt =X +3L—2LF* S, k=L.,(n+)) (@47

where X* is a n, xN, coefficient matrix and F* is a
n, xN, matrix with entries,
P P ko k
Fiy=fiGa )
Also from (46), X! isa n_xN, matrix that for k =1,

each of its columns is equal to x, and for k¥ =2,...,n, +1

(48)

it is obtained by

Xo =Xg +——-——Tf s Friwk (49)
The final condition (7) is applied to X", as

X, =X +£—%“T£:LF"‘W"‘ (50)

Finally, the time-optimal bang-bang control problem
(5)-(8) is converted to the following mathematical

programming problem with unknown matrices X",
vectors u* , switch times T.;k , k=1.,n +1 and final

time 7, ,
min 7,
k k-1
) D (L S 2“ FE(SFY =0 1)
T"’ T”' i
Xpr =2 5 L F"w" -x, =0 (52)
u, <uf <u (53)

5. ILLUSTRATIVE EXAMPLES

In this section, we use numerical examples to illustrate
our method and make a comparison with some of the
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results in the literature. The Van der Pol problem and a
model of F-8 aircraft will be studied.

The LGI and MLGI methods were implemented in

MATLAB ona Pentium 4, 2GHz PC. The resulted
nonlinear optimization problem may be solved by well
developed optimization algorithms [16].
The LGI method provides an approximation of control
function structure and final time. The result of this
method, then, may be used as the initial guess for solving
the nonlinear optimization problem resulted from MLGI
method.

A. Time-optimal control of the Van der Pol problem
The nonlinear controlled Van der Pol equation is given as

X)=x,
. (54)
X,=-x,—(x,-Dx, +u
Several researchers have treated the above equation with
different boundary conditions and performance indexes.
Here the time-optimal control of the Van der Pol problem
is considered. Recently, Kaya and Noakes [7]-[8], Maurer
and Osmolovskii [20] and Burachik et al [21] have treated
this problem.

We use the following boundary conditions and
constraint that has been taken from [20]
X, =[-0.40,0.60] and x, =[0.60,0.401
and the following box constraint over control function
—-1<u <1

The LGI method was employed to solve this problem.
The control function history obtained by the LGI method
for N =30 is shown in Figure 1. In this figure, the Gibbs

phenomenon is observed which presents the discontinuity

in the control function. This was expected, since the
problem has discontinuity in its control function and the
standard spectral methods are not appropriate to solve it.
As it is known from theory, the optimal solution of this
problem is a bang-bang control. The result in Figure 1 is
not bang-bang control, but it shows the switching structure
of the bang-bang control function and an approximation of
switching time.

Figure 1. Control history of LGI method for Van der Pol
problem, N =30, the dot symbols are the control function
values in the LG nodes resulted by solving NLP problem. The

solid line is the corresponding Lagrange expansion (u” (1))

To capture the optimal switching time and find the optimal
final time, the MLGI method was employed. The results
for various values of N are reported in Table 1.

TABLE 1
MLGI METHOD RESULTS FOR VAN DER POL PROBLEM FOR VARIOUS
VALUES OF NV ‘

N iz 5 I£]
5 0.15832008477693 1.25407514033795 6.8604E-07
6 0.15832014575317 1.25407473092406 1.2299E-08
7 0.15832014223252 1.25407472937036 2:2563E-10
8 0.15832014228942 1.25407472935249 2.0657E-11
9 0.15832014228757 1.25407472933630 4.6671E-12
10 0.15832014228746 1.25407472933664 4.8262E-12
11 0.15832014228746 1.25407472933662 4 8155E-12
12 0.15832014228746 1.25407472933662 4.8155E-12

Maurer and Osmolovskii {20] have employed the code
BNDSCO [22] that is based on shooting methods and
reported an optimal bang-bang solution with one switching
time 7, =0.1583201376 and final time 7, =1.25407473 for

this problem.
The results 7, =0.15832008477693
7, =1.25407514033795 obtained by MLGI for N =5 are

in excellent agreement with their reported results, while
our direct method is significantly simpler in comparison to
the indirect method used by them.

The results of MLGI method for N =5, is shown in Figure
2. The resulted control values are #' =1 and u? =—1 in
first and second subdomains, respectively.

and
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Figure 2: numerical results of MLGI method for Van der Pol
problem, N =35

The results for N =10 provide the final time
7, =1.2540747293366 with 14 digit precision, since by
increasing N, we can see no variation in these digits.

To verify the results, the differential equations of the
problem were solved by MATLAB function ode45 using
the control, switching times and final time that had been
provided by MLGI method. Then, the final states obtained
by 0de45 X, 445, Were compared with given final

constraints x, of the problem by computing the error

norm [[E = "xf Xy (oda4s>“'
For N =5, The verification showed that the final
constraints are satisfied with accuracy of 6.8604E-07.

B. Time-optimal control for F-8 aircraft

To show power and accuracy of our method, MLGI
was employed for stabilization of a modern high
performance aircraft with bang-bang control.
The longitudinal nonlinear equations of the motion for the
F-8 aircraft with nonlinearity in states and control are
given as, [23].

%, =—0.877x, +0.47x 7 +3.846x] —
0.019x 2 +x, —0.088x x; —xx,

(55
~0.215u +0.28x 'u +0.47x u’
+0.634°
X, =x, (56)
X%, =—4208x, —0.47x —0.396x; —3.564x
(57

~20.967u +6.265x “u +46x u® +61.4u°

where x| is the angle of attack (in radians), x, is the pitch
angle (in radians), x, is the pitch rate, and the control

input u is the elevator deflection angle (in radians). This
model, originally derived by Grarrd and Jordan [23], has
been used in various control studies [9].[7],[8] have
considered the stabilization of the aircraft with bang-bang

control.
The boundary conditions are considered as

X, =[26.7°,0,0] and x, =[0,0,0], respectively. The

control input is bounded by lower and upper bounds,

u. =-3 and u,, =3. An approximate value of
0.05236 radians for 3'and an exact value of
26.7*7/180rad for 267", was used. Here, the

time-optimal control of this system was considered.

We applied the LGI method with N =30 to this problem.
The resulted control function is shown in Figure 3. In this
figure, the Gibbs phenomenon is observed. The
knowledge of this structure provided by this method is
worthy.

T
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Figure 3: Control history of LGI method for F-8 aircraft,
N =30, the dot symbols are the control function values in the
LG nodes resulted by solving NLP problem. The solid line is the

corresponding Lagrange expansion (# M),

To find the optimal switching times, final time and
controls, we employed MLGI method by using the above
LGl results as initial guess. Considering N=10, we
obtained a solution with 5 switching. The resulted final
time is 7, =5 74216978701382 and the switching times

and controls are as follows: 7,=0.10292206601323,
71 =2.03084964621018, 7} =2.19771496239478,
7}=4.94108126538256, 7. =5.27100440978152,
u'=0.05236, u*=-0.05236, u*=0.05236, u*=-0.05236,

u’=0.05236, u®=-0.05236. The results of MLGI method
for N =10 with five switching, is shown in Figure 4.
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Figure 4: numerical results of MLGI method for F-8 aircraft, five
switching, N =10.

As other local minimizer algorithms, different local
solutions may be obtained with different initial guesses.
Considering initial guesses 7)=1, r?=2, 7’=3 (three
switching), 7,=4 and N =15, a superior result of
7, =3.78151586849429 was obtained with the following
switching times and controls: 7;=1.13276380315143,
72 =1.48025005808784, 2 =3.08914171082237,

u'=0.05236, u*=-0.05236, u’=0.05236, u*=-0.05236.
The above final and switch times are in excellent
agreement with the results reported by Kaya et al. using
STC method [24]. Until now, less than this final time has
not been reported. The results of MLGI method for
N =15 with three switching, are shown in Figure 5. The
results of MLGI method with three switching for various
values of NV are reported in Table 2.

TABLE 2:
MLGI METHOD RESULTS FOR F-8 AIRCRAFT FOR VARIOUS VALUES
oF N
N 7 I£]
5 3.82809229097944 5.9827e-01
10 3.78138514314386 2.5366E-04
15 3.78151586849429 1.0217E-06
20 3.78151658861839 6.4136E-09
25 3.78151659255408 4.7032E-11
30 3.78151659258167 1.3006E-11
35 3.78151659258095 1.1991E-12

In addition, we verified the solutions using ode45. The
results are presented in Table 2. Here, since the final
constraint is X, =[0,0,0], the norm of error E is equal to

%/ aeas| which is the distance of the dynamic variables

of the aircraft to the origin. The results show that N =15
is enough to obtain the optimal control which satisfies the
final constraint with good accuracy of 1E-06.

Different researchers have solved this problem, and

reported different solutions [9],[7],[8],[24]. Kaya and
Noakes [7] have reported a final time 7, =6.6967 and
7, =6.3867 with two and three switching, respectively.
Lee et al. [9] have reported a solution with four switching
and 7, =6.035256. :

A solution with five switching and 7, =5.74217 has
been reported by Kaya and Noakes [8]. Finally, Kaya et
al. [24] have reported a superior new local minima with
three switching and 7, =3.781517 that is significantly
smaller than the other reported results. However, it is
possible that there exist further local solutions. The results

of the MLGI method are in excellent agreement with the
best reported results until now.

Figure 5: numerical results of MLGI method for F-8 aircraft,
three switching, N =15 .

6. DISCUSSION AND CONCLUSION

In this paper, an accurate and efficient direct method,
called MLGI method, is proposed to solve the
time-optimal switching control problem. This method
employs the spectral collocation technique to convert the
control problem to a nonlinear programming problem,
which then can be solved by well-developed NLP solvers.
To illustrate the method, it was applied to the Van der Pol
and F-8 aircraft time-optimal control problems. The
results are in excellent agreement with the best reported

" solutions in the literature for these problems. The method

provides highly accurate results with small number of
nodes and spectral accuracy. This increases the time
efficiency of the algorithm. In addition, for a desired
accuracy, the size of the resulted NLP problem is small.
Therefore, it can be solved by simple nonlinear
programming solvers. The method is computationally
attractive.

In comparison to indirect method that are used to solve
time-optimal control problem, the proposed method
benefits from good convergence property and robustness.
The MLGI can be used without any changes in the code
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for solving different problems. Only a MATLAB function
that defines the state equations of the problem should be
changed. This is a beneficial point in comparison to
indirect methods and Lagrangian-based methods where the
optimality necessary conditions should be derived
analytically for each new problem.

In general, solutions provided by MLGI method are
piecewise-constant control. Bang-bang control solutions
that are obtained by this method for studied numerical
examples are special cases of piecewise-constant control.
Although in this paper we have applied the MLGI method
to solve time-optimal control problems, we should
emphasis that the proposed method can be used for
general Bolza cost functions. This can be achieved by
discretization of the Bolza integral term using Legendre-
Guess quadrature
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