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Evaluating Optimum Arrester's Locations in HV and
EHYV Networks Using Simulation Optimization to
Suppress Switching Surge Overvoltages

B. Vahidi, M. R. Bank Tavakoli and S. H. Hosseinian

ABSTRACT

In this paper, the main aim is to introduce a regular procedure to select the location of arresters (voltage
limiters) in a way to optimally confine the risk of flashovers in a given high voltage network.
Mathematically, simulation optimization is used to create an acceptable meta model from a real model
which, on its own, is created to represent a real high voltage network in a transient analyzer program, The
proposed meta model is a three layer perceptron neural network which is learned to estimate the risk
function with arrester locations as inputs and network risk of flashover as output. Genetic algorithm is then
invoked to locate the best position of arresters. The proposed method is then accomplished to set the
location of 5 identical arresters in Iranian South East 400 kV network and the results are shown to be

acceptable by simulating the real model of this network.
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1. INTRODUCTION

Switching overvoltages are one of the most important
aspects for insulation design and coordination in high
(HV) and extra high voltage (EHV) networks. -Proper
limiting of these switching overvoltages will result in
better line performance and fewer switching overvoltage
outages. There are relatively high number of research
papers on estimating the overhead line performance due to
switching overvoltages even phase to ground [1], [2] and
[3] or phase to phase overvoltages [4], [5] and [6].
Application of arresters in high voltage networks is also
studied and some standards are created as a guide for
arrester installations [7]. Recently, some investigations
have been made to evaluate arrester's positions in a
distribution cable network to minimize the lightning surge
risk of failure [8]. Also, in a different work, the authors in
[8] have used artificial neural networks to predict the
lightning failure risk of same distribution cable network
[9]. Although for an extra high overhead line the switching
overvoltages are more important and switching
overvoltage risk evaluation requires different engineering
aspects to be taken into account [1].

In this work, a simulation optimization method is used
to solve the problem of locating best positions for assumed
number of arresters in HV and EHV networks. In
simulation optimization method, a second level model
called Meta model is constructed based on an actual
model (first level model) which represent an existing
physical system. All the analysis is performed on Meta
models and the results is then compared with the results of
first level model or physical system [10]. In this work, this
method is used based on neural network and regression
(only for comparison) as Meta models. Genetic algorithm
is also used to find the optimum positions for some
arresters with the goal of minimizing switching surge risk
of failure in the network. The position of arresters is
discontinuous and there are some nodes of interest which
candidate for arresters. There are four steps to obtain
optimum positions. First, statistical data is gathered from
network with simulation, using a transient program. In this
stage, in each constant position of arresters, switching
overvoltages are obtained by randomly switching the
circuit breakers within their pole closing span. Using these
data, a suitable probability distribution function for
overvoltages in all nodes, can be constructed. Second, risk
of failure is calculated from data acquired and therefore
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goal function for some positions would be available.
Third, 'a three layer perceptron and a regression equation
would be allocated to learn these statistical data. These
Meta models are the core of optimization algorithm, i.c.,
genetic algorithm to get optimum positions as the fourth
stage. In each step, there are measures that ensure good
precision for predictions and results. The Iranian South
East 400 kV network is the subject of simulation in ATP
to collect statistical of overvoltages. All numeric data
processing is then accomplished by use of MATLAB to
obtain the optimum positions of arresters.

The rest of paper is organized as follows. In section 2,
the details of collecting the overvoltages statistical data is
described. The procedure for computing the goal function
values, i.e., switching overvoltage risk of flashover in
nodes and network is presented in section 3. Sections 4
and 5 describe the Meta models and genetic algorithm
respectively. In section 6, the overall optimization
procedure is briefly reviewed. The results of simulation
and optimization procedure for the Iranian South East 400
kV network is presented in section 7. Finally, section 8
concludes the paper.

2. STATISTIC DATA ACQUISITION

With an electromagnetic transient program, power
system can be modeled and maximum switching
overvoltages on network nodes can be obtained, when
arresters are in determined positions. The ideal study
should assume a node on each tower of high voltage or
extra high voltage line which can be candidates to mount
arresters. Practically, such an assumption will increase the
computation volume dramatically. Therefore, it is
applicable that lines or cables divide into some sections
and between each two sections, a fictitious node can be
inserted [11], and these nodes determine the risk of failure
in individual line and total network. To avoid large
number of nodes for simple networks, the number of
sections remains low. In this paper, based on the work of
[10], all lines can be divided into three equal sections and
two nodes inserted in each line (Fig. 1). Switching actions
to close the line can be implemented by statistical switches
having Gaussian or uniform switching action distribution
function. To model the worst case, open ended lines may
be considered and transformers and other equipments may
be ignored. In each cases, arresters locations are selected
randomly and a random generator determines the nodes
for arresters in next case. Afterward, with a constant
number of arresters, maximum overvoltages produced in
each node, in each position of arresters, will be available.
The number of switching actions when arresters are in
determined locations and the number of different cases
due to changing arresters positions should be selected
properly to draw out a well conditioned Meta Model to fit
the real model as precise as possible. All these statistical
sampling can be done step by step (Fig. 2) and enough
information for each node and each case to determine

overvoltages probability distribution function parameters
can be collected easily.

3. GOAL FUNCTION: RISK OF FAILURE

After gathering enough data, goal function should be
evaluated. The most convenient aim in such processing is
to reduce damage probability in network.
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Figure 1: Fictitious nodes and their location on the line.
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Figure 2: Data acquisition flowchart.

Risk of Failure is the probability of danger in nodes.
Based on this probability, another criterion is usually
defined to represent the overhead line performance which
is switching surge flashover rate (SSFOR) [11]. Using
these criteria, a good goal function can be derived for the
network of study, considering all lines can be established.
In the following sections, first risk of failure for one tower
is presented and then the SSFOR for network will be
derived.

A. Risk of Failure in Each Node

To determine the risk of failure in one node, two
probabilistic functions are required: probability of
disruptive discharge (strength function) and probability
density of switching overvoltages (stress function).

According to insulation strength of the node,
occurrence of overvoltages may lead to damage or not.
Probability of disruptive discharge is in the form of (1).

1 v (V——77,.,, )2
F)=—x A VR [
) . gy L exp[ 707 } dv (D
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where
F(v) is probability of disruptive discharge;

7, is the critical flashover voltage (CFO);
o, 1s the standard deviation.

Risk of failure in each node, Fig. 3, can be calculated
from the area under function produced from crossing two
probabilistic functions. Expression for risk of failure is in
the form of equation (2).

b;IIl
R=1/2 [Fv)- f(v)-dv @)
Ey

where

E, is the minimum voltage to consider switching
overvoltage usually 1 pu of nominal line to neutral voltage
and E, is the maximum switching voltage may occurs;

S (v) is the probability density of switching overvoltages.
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Figure 3: Risk of failure in a node of a network.

Usually, normal distribution function is considered to
determine switching overvoltages, although Weibull
distribution function can be used as well. If a normal
distributed function is to be used to represent overvoltage
probability density function according to equation (3),
mean and standard deviation should be determined.

f)=— exp[— (”“’7;"')J 3)
L2 . /4 ]

2 Oy

Mo 1s overvoltage for which probability of occurring

overvoltages less than or equal it is 50%:

o, is the standard deviation of data.

Parameters a and b are required as equation (4) If a
Weibull probability density function is assumed [12].

F()=ba v exp[— (v/a) J, v>0 4)

The integral of equation (2) is multiplied by 1/2
because the insulation strength for negative polarity is
significantly larger than that for positive polarity. Thus,
negative switching overvoltages can be ignored and total
integral should be multiplied by 1/2 .

It reveals from (2) that risk of failure evaluation needs
numerical integration and for each positions calculation
volume will be large. After evaluating risk in each node,
risk of failure in network could be determined from risks
in total nodes.

B. Risk of Failure in Network

Risk of failure in network is calculated using risk of
failure of the nodes. For a transmission line, there are
many towers that may produce flashover on switching
actions. Essentially, all on these towers are nodes in which
faults may occur. Also, just some of these nodes are
selected to place arresters. There are two possibilities to
define network goal function, one to consider just the
interest nodes and define risk of failure as nodes risk of
failure weighted average, equation (5).

1 M .
7 2t RE)
S

=k

@)

Rm'lw =

Using this criterion has the advantage that the
sensitivity of goal function to arrester changing is high and
optimization procedure would be easier. But this goal
function does not represent the real switching risk of
failure in the network, because there are many others
nodes that may lead to flashover. The other criterion can
be the switching surge flashover rate per line of the
network. The switching flashover rate of an overhead line
having »n towers is [11];

SSFOR = (1/2)_[:"' [l -—ﬁ(l -p, )}.f\_ v) v

where

SSFOR is switching risk of failure of overhead line
per switching action;

E, and E, are the min and max voltages for

(6)

integration as defined in previous section; p, is the
probability of flashover at tower i for specified switching
overvoltage and ﬂ(v) is the probability density function

at the opened end of the line.
If the voltage profile in the line be flat, then all p, in

equation (6) are equal. Actually, the switching voltage is
lower at the switched end and higher at the other end of
the line.

Also, for single phase switching actions, the probability
of flashover in each tower may be calculated using brute
force method as (7).

P(F)=[1- (- p M- ps )i - pc)] (7

where

P(F) is the probability of flashover in each tower;

Pa, bp and p. are the probability of flashover in

phase A, B and C, respectively. Thus, the probability of
flashover on each line of network can be derived using (6)
and (7). To prepare the overall risk of the network, one
can use the average risk of failure of all lines.
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N

R, = (I/N)Z SSFOR, 8)
i=1

where

R, is the flashover rate per switching action per

overhead line;
N is the number of overhead lines in the network and

SSFOR, is the switching surge flashover rate of line i.
Using R, as goal function, the aim is to explore a

proper Meta Model from sample data and find the best
places to mount the arresters.

4, META MODELS

The first operators to implement simulation
optimization are Meta models [13]. A Meta model simply
is a function that substitutes the real problem. The more
precise the Meta model, the more accurate the final
results. Meta models are used to simplify the solution
process of complex problems such as Risk of failure,
because the real goal function in this function is
practically unavailable in the same time for all positions.
In this works, two Meta models are used. The accurate
model is a three layer perceptron neural net to substitute
risk of failure function and for comparison regression is
used to evaluate risk of failure as well [14].

Some test points are suggested to examine the goodness
of the model. After learning process, the Meta model can
be used to predict the test positions. If mean square error
of these predictions be small enough, then Meta model is
qualified to be used as the core of optimization algorithm

(Fig. 4).
A. Neural Net

First Meta model mostly used in this area is a feed
forward neural net named three layer perceptron, Fig. 5
[15] and [17]. This neural net and back propagation
learning methods together produce a powerful
approximator [16] Hidden layer of the net normally has
sigmoid function. Also, it can be used for output layer
because risk values are between 0 and 1 and the sigmoid
function lay in the range.

Inputs are arrays with cell number equal to the total
node number in power system. Cells take the value of zero
or one according to existence or nonexistence of arrester
in each node.

Desired outputs are risk of failure in each position.
With this binary encoding, optimization process will be
easier and simpler.

In back propagation with momentum learning method
[18], network parameters will be changed according to (9).
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Figure 5: A three layer perceptron.

R is learning criterion function typically square error
of output layer; b/ (i) is i th cell of bias array of layer /
in learning process of kth pattern; « is learning rate
factor and y is the term of momentum; Aw,™'(i, /) and
AbS' (i) are (i, j) th weight & i th bias errors of layer /

in learning k —1 pattern. After reaching the goal of
learning, if neural net prediction errors for test points was
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not acceptable learning process restarted after changing 1)
goal of learning, 2) number of patterns, 3) number of
middle layer neurons or 4) initial values of weight and bias

arrays.

B. Regression

-Although with nonlinear structure of power system,
regression does not seem to be a good model. But to
produce the possibility of comparison and simplicity of
using regression, it can be used to model risk of failure.

A regression expression may be in the form of (10).

Roe =a1x + ayx, ++--+a,x, (10)

where
a; is ith regression coefficient;

x; is existence variable in node i and can be defined
as (11).

{1
XxX; =
0

Equation (10) is written for arrester number equal or
greater than one and dc term of equation ignored. When
number of data is bigger than nodes, coefficients
developed from statistical equations [11] and when data
are in the range of nodes, coefficients explored from linear
equation solving.

Optimization process with regression is totally simple.
The only constrain is that arrester existence variable
should be in the set {0,1}. We just need to find minimum

Arrester exist innode i
(11)

Arrester doesn't exist in node i

coefficient and set its x; to 1.

5. OPTIMIZATION METHOD: GENETIC ALGORITHM

Genetic dgorithm is an evolutionary computing method
which finds the best solution for the environment by
searching the solution space with a probabilistic exchange
of information between each individuals or chromosomes.
[19] and [20].

- A typical genetic algorithm with initial population and
operators explore good results for problem, Fig. 6.

Although the main steps of genetic algorithm which is

applied on the risk function in this paper is similar to
"literatures [20] and [21], there are some adoption for this
specified goal function which are listed as follows:

a) Goal function in genetic algorithm will be neural net
model of risk function. Because of the minimization nature
of problem, rank selection can be used to select best
individuals and roulette wheel used to select the
chromosomes with proper probability [21]. Probability of
selecting i th chromosome is in the form of (12)

- sﬁtness(z) (12)
Z Sitness(k)
k=1

where fitness(i) is fitness number allocated to

chromosome and § is total number of individuals in
generation. Two chromosomes are selected in each

generation to produce offsprings. One is the best
individual and other elected randomly. Selection also used
to find migrating chromosomes to next generation till total
population remains constant.

b) Mutation is used to give this chance to algorithm to
produce out of order individuals which may be better or
not. In the case of finding arrester optimum positions, after
binary encoding with existence variable equation (10),
genetic algorithm can easily be used to optimize the goal
function. In the case of arresters optimum position
problem, there are two groups of individuals.

Start

-

( Initial population and evaluation I

Initial seleciion

Crossover

Mutation

Evaluating generation to determine
migrating chromosomes and next
generation parents

Convergence?

Figure 6: A simple genetic algorithm flowchart.

Some chromosomes may have more or less ones in
their string than suggested constant number of arresters.
This group has obligatory mutation to fix number of ones.
Here according to number of ones, some zero or one will
be changed.

For chromosomes which have accurate number of ones
in their string of genus, mutation is used to avoid stopping
algorithm in very good chromosomes and some of these
individuals have mutation with changing one or two genus
of their strings. Therefore, the rate of mutation differs in
generations and depends on the proper chromosomes of
the generations.

6. OPTIMIZATION PROCEDURE

With details mentioned before, the optimization
procedure is presented through the flowchart of Fig. 7.
The steps of flowchart are as the same described before,
i.e., after data acquisition the meta model is constructed
with acceptable error in its patterns prediction, then
utilizing an optimization methods the suggested arresters
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positions are identified and if these locations produce
acceptable results when simulating the real network, the
procedure should stop. Otherwise, the learning procedure
restarted after modifying model or learning procedure
parameters and process will be continued. The
optimization algorithm also is repeated with different
starting points and different initial population to make it
sure that same minimum point is derived.
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and parameters

Simulating the network for
predicted positions

RN
Acceptable
results?
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Figure 7: Overall process flowchart.

7. RESULTS FOR SAMPLE NETWORK

Simulation optimization described before, was used to
obtain optimum positions of five arresters which should
locate in the Iran South East 400 kV network, (see Fig. 8).
In addition to substation names and lines codes, all nodes
have numbers that presented without brackets. Also, a
number, which is encircled, is allocated to each line. The
network composes of four 400 kV overhead lines and
BandarAbbas power plant at the end of lines. The other
end of radial lines in Fig. 8 are assumed open to consider
the worst case of overvoltages, also reactors, transformers
and other substation components have been ignored. The
substation surge arresters are removed to test the

algorithm for placing the arresters in the end of open lines.

This method makes addressing easier. Network
simulation was done with WATCOM ATP/EMTP and
graphical interface ATPDRAW 3.6 {22] and [23].

Overhead lines are modeled to study transient
behaviors. Data for modeling lines, switches and arresters
are presented in Appendix I.

In all cases, there were 5 arresters and their positions
were changed. For each position of arresters, 400 single
pole switching action on line breakers in Fig. 8, were
performed and 400 overvoltage values explored from
simulation. Fig. 9, represent the empirical cumulative
distribution function (CDF), normal assumed CDF and
Weibull assumed CDF, for overvoltage in node 4, when
arresters were located in nodes 2, 3, 5, 8, 11.

There is not much difference between these two
distributions and both are the same to represent switching
overvoltages. The Weibull distribution was selected to
calculate risk of failure. Data from simulations are
delivered to MATLAB 7.1 [24] after storing in Microsoft
Excel as interface software. All statistical calculations,
Meta models and optimization are simulated in this
software. Risk of failure then computed using (6) with
numerical integration for different assumption on
insulation strength and arrester different positions. For
simplification, the voltage profiles along the lines are
assumed to be stepwise and for all towers before a node in
Fig. 8, the switching overvoltage of that line is assumed.
Lines were divided into three equal parts and two fictitious
buses supposed. Therefore, a three step voltage profile on
each line is considered. If a flat voltage profile along the
line is assumed, the flashover rate will be much higher
comparing the stepwise voltage profile assumption.

Fig. 10, represent these two cases for flashover per
switching action per line or network SSFOR. Totally, 80
different positions of arresters were simulated which are
listed in Appendix II.
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Figure 8: Iranian South East 400 kV network.
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Figure 11 shows risk of failure of the network for these
80 positions, when BSL is 1050 kV or 950 kV. In this
figure, the standard deviation o/CFO is 5%.

In all optimization procedure the BSL insulation

strength is assumed to be 1050 kV and standard deviation
is supposed to be 5%. Equation (11) is useful to evaluate
CF@ 25] and [26].

BSL = CFO(1-1.28-2_) (n
CFO

where
BSL is basicswitching impulse insulation level;

CFO is critical flashover voltage; o, /CFO is per

unit standard deviation, which is considered 5% for tower
insulation and 7% for station class insulation [27]. Fig. 12
shows the comparison for effects on risk of failure
between these two standard deviation values. From
statistical data, 70 positions are selected to obtain
coefficients of regression and to be the learning patterns of
the neural net which is a three layer feed forward net with
all sigmoid function and has 12 neurons in layer one, 3 in
layer 2 and one neuron in output layer. Scaled conjugate
gradient back propagation algorithm was used for training
the neural net. Performance function (mean square error)
of neural net is depicted in Fig. 13.
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Figure 11: Switching flashover rate in different positions and
effect of BSL.
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After training, the mean square error for remaining 10
points that is predicted by neural net was 0.1%. Therefore
the proposed neural net is qualified to be used in
optimization process. A genetic algorithm with 45 initial
population and 12 offspring per generation has the role of
optimizer. Mutation is done for 5 individuals per
generation excluding the individuals that have incorrect
number of 1 in their strings. Convergence process is
shown in Fig. 14.

Optimum positions predicted by neural net are nodes 3,
4,5, 7 and 9 with predicted flashover per switching action
per line value of 0.0102. Simulation by ATP with arrester
location in predicted optimum position (3, 4, 5, 7 and 9)
givesSSFOR value of 0.0098. This value of SSFOR is less
than all test positions similar SSFOR values, Fig. 15.
Regression method prediction is 0.0034 and is very far
from real simulation result of 0.011 which is bigger than
values of some test points and isn't acceptable as optimum
point. Fig. 16 creates a comparing scheme between results.
Therefore optimum position as predicted by neural net can
be acceptable for an evaluation of minimum SSFOR in the
network. What should be noted is that the algorithm
placed the arresters on the line 3 and 4 ends as expected,
to confine the open end line overvoltages.
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8. CONCLUSIONS AND DISCUSSIONS

A neutral net-genetic algorithm based simulation
optimization was proposed to find best positions for
arresters to set risk of failure of the network as less as
possible. The proposed method was applied on Iran South
East 400 kV network to determine the optimum positions
of 5 arresters.

In this work, a combined procedure of genetic
algorithm and neural nets was used to compute the
optimum position of arresters. Other theoretical approach
may consist of applying genetic algorithm directly on the
network. Practically following hints can be given in this
regard:

1) For arrester location determination, the procedure
inherently includes the time-consuming steps for
simulating the under-study network in time domain to
obtain overvoltages. Applying the genetic algorithm
directly to the model then consume a lot of time which
makes the procedure inapplicable. The time for collecting
sample data is much more relevant and there is the
possibility to concentrate on the samples which models the
scenarios that are more important according to expert
engineering guidelines.
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@@ Amirkabir/ Vol.18/ No.67-A/( Electrical Engineering)/ Fall 2007 — Winter2008 42



Flashover per switching action per line
o
[
L]
[e2]
A

Meural Met  Simulaticn  Regression

Figure16: Comparing Meta models with real simulation.

2) With the proposed method of simulation
optimization, the overvoltage estimation and optimization
steps become independent of each other. Therefore, if
there are experimental values of overvoltages available
(via fast transient recorders), this procedure is still
applicable.

To be noted is that the rate of sampling is not important
in this case because the problem is in the design stage of
the network. Nevertheless, the number of samples should
be selected accordingly and if the error of prediction of
Meta models is not acceptable, the samples will increase
until achieving good prediction errors. The optimum
location of arresters which is obtained in this procedure
will not be exact due to inevitable errors in different
stages. But from the engineering point of view, the results
will be acceptable as the sensitivity of analysis is not too
high [11].

Selecting proper Meta Model and the way of training
the model is very important to explore acceptable results.
In each step of process the goodness of Model and training
procedures should be tested to ensure the goodness
process progress.

9. APPENDIX 1
In this appendix, the network equipment parameters
(according to ATP models) are presented.

TABLE 1
OVERHEAD LINES SPECIFICATIONS

Names and Values
Parameters —"
SD922, SA906
FS928
Average Span Width (m) 400 400
Conducto Phase MARTIN CARDINAL
r Types Shield TNOSAW TNOSAW
Number 3 2
Bundles Spacing (cm) 50 50
Alpha (deg) 90 180
Phase A Y (m) 31.5 31.5
X (m) -18.6 -18.6

Average Sag (m) 5 5
Y (m) 31.5 31.5
Phase B X (m) 0 0
Average Sag (m) 5 5
Y (m) 31.5 31.5
Phase C X (m) 18.6 18.6
Average Sag (m) 5 5
Shield (L) cx 4
Wirel X () 2 i
Average Sag (m) 5 5
Shield Jim) 44 &
Wire2 Xim) - 2
Average Sag (m) 5 5
TABLE 2
CONDUCTOR PARAMETERS
Conductor I.nncr Outer DC Resistance
Radius (cm) | Radius (cm) (ohm/km)
MARTIN 0.6 1.81 0.0425
CARDINAL 0.51 1.52 0.0599
TNOSAW 0 0.49 1.49
TABLE 3
LINE LENGTH
. Approx. Number of
Line Length (km) C—-
SA905 312 780
SA906 314 786
SD922 296 741
FS928 235 588
TABLE 4
SWITCH PARAMETERS
Distribution Gaussian
Mean (s) 0.04
Dev (s) 0.008
Table 5
Arrester Parameters
Nominal Voltage
V) 360
MCOV (kV) 289
V-I Characteristics
v
I (kA) V)
le-10 le-10
le-5 404
0.5 693
1 727
2 740
3 785
5 802
10 836
20 920
40 1064

10. APPENDIX 2

In each position, five nodes are shown that arresters are

located

in them when

evaluating risk of failure.

simulating the network for
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TABLE 6
DIFFERENT LOCATIONS FOR ARRESTERS

POS. POS. "
NO. NODES NO. NO. NODES NO.
1 2.5,7,10, 12 41 1,2,6,7,8

2 2.3,5,8,11 42 1,2,6,8,9

3 1,4,6,9,12 43 1,2,6,8,11
4 1,3,4,6,7 44 1,2,6,10, 12
5 2,3,5,8,9 45 1,2,7,8,11
6 4,8,9,10, 11 46 1,2,8,9,12
7 2,6,8,10, 11 47 1,2,8,10, 11
8 1,4,8,11,12 48 1,2,8, 11,12
9 2,3,4,6,9 49 1,3,4,5,6
10 1,5,6,10, 11 50 1,3,4,5,7
11 1,2, 7:9:12 51 1,3.4,5,12
12 3,5,8,10, 12 52 1,3,4,7,11
13 3,5,7,9,11 53 1,3,4,8,12
14 2.4,6,7,9 54 1,3,4,9,11
15 1,5,9,10, 12 55 1.3,5,6,8
16 2,4,5,7,10 56 1,3,5,9,10
17 2,4,5,9,10 57 1,3,7,8,9
18 4,5,6,9,11 58 1,3,7,8, 10
19 1,2,8,10,12 59 1,3,10,11, 12
20 1,3,6,7,10 60 1,4,5,7, 11
21 1.2, 3, 5,8 61 1,4,5,9,10
22 1,2,3,7,10 62 1,4,5,10, 11
23 3,4,6,9,12 63 1,4,6,10,12
24 1,2,3,8,10 64 1,4,8.9,10
25 1,2,4,5.6 65 1.4,8,9,11
26 1,2,4,6,9 66 1,5,6,11,12
27 1.2.4,6,11 67 1,5,9, 11,12
28 1,2,4,6,12 68 1,6,7, 8, 10
29 1,2,4,7,8 69 1,6,7,10, 11
30 1,2,4,7,10 70 1,6,8,10, 12
31 1,2,4,7,12 71 1,7,8,9,12
32 1,2,4,8,10 72 1,7,10, 11,12
33 1,2,4,9,10 73 2,3,4,5,6
34 1,2,4,11,12 74 2,3,4,5,9
35 1,2,5,6,9 75 3,4,5,7,8
36 1,2,5,6,10 76 2,3,5,6,12
37 1,2,5,6,11 77 2,3,5.7,9
38 1,2,5,6,12 78 2,3.5,9,12
39 1,2,5,8, 11 79 2,3,8,10, 11
40 1,2,5, 11,12 80 2,3,8,10, 12
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