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ABSTRACT

This paper presents a robust algorithm for Voice Activity Detector (VAD) based on GARCH
(Generalized Autoregressive Conditional Heteroscedasticity) Model, Variance Gamma Distribution (VGD)

and binary Markov model.

GARCH models are new statistical methods that are used especially in economic time series. There is a
consensus that speech signals exhibit variances that change through time. GARCH models are a popular

choice to model these changing variances.

Speech signal is assumed to have VGD because the VGD has heavier tails than the Gaussian Distribution
(GD) and the distribution of noise signal is assumed to be Gaussian.

In the proposed method, heteroscedasticity will be modeled by GARCH and then the parameters of the
distributions will be estimated recursively. Finally, using a binary Markov model and comparing it with an
adaptive threshold, leads to the derivation of soft and hard detection.

The simulation results show that the proposed VAD is able to operate down to -5 dB and in nonstatlonary

environments.
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1. INTRODUCTION

Voice activity detection (VAD) refers to the ability of
distinguishing voice from noise and is an integral part of a
variety of speech communication system, such as speech
coding [1], speech recognition, audio conferencing, hands-
free telephony [2], speech enhancement [3], wireless
communication [4], [5] and echo cancellation.

During the last years, numerous researchers have
studied different strategies for detecting speech in noise
and the influence of the VAD on the performance of
speech processing systems. Sohn [1] proposed a robust
VAD algorithm based on a statistical Likelihood Ratio
Test (LRT) involving a single observation vector. Later,
- Cho [6] suggested an improvement based on a smoothed
LRT.

It has been shown recently [7]-{8] that incorporating
long-term speech information to the decision rule reports
benefits for speech/pause discrimination in high noise
environments. For example, Ramirez [9] proposed an LRT
involving multiple and independent observations.

In [10] the method is a little different. But they
incorporate long-term information, too: the signal is first

decorrelated using an orthogonal transformation and then
a Hidden Markov Model (HMM) is employed. Also, they
assumed that the distribution of speech is Laplacian,
because, in [11], it is shown that speech signal has
Laplacian Distribution (LD). In this paper, we assume that
the speech signal has a Variance Gamma Distribution
(VGD), since it is a generalization of LD and in specific
case (A = 1) VGD becomes LD.

Tahmasbi and Rezaei [12] used a GARCH model with
an empirical adaptive threshold function. They showed
that the empirical adaptive threshold function has better
results than of [10].

Note that approaches of [1] and [9] are performed in
frequency domain, but [10] is performed in time domain.
However it takes time to decorrelate signal via
orthogonalization. Our proposed method is performed in
time domain; like [10], it is necessary that the signal be
uncorrelated. To decorrelate signals, we used Generalized
Autoregressive Conditional Heteroscedasticity (GARCH)
model, which could model both noise and speech
heteroscedasticity. However, estimating of GARCH
parameters are time-consuming. So, a predefined
estimation of the parameters is presented to solve this
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problem.

In section 2, the GARCH model is introduced and is
shown that it can model heteroscedasticity and also it is
shown that every GARCH series are uncorrelated. In
section 3, we review elements of Markov Model. Section
4 presents statistical aspects of speech and noise and
adaptive threshold function. In section 5, algorithm of the
proposed method is presented. And section 6 illustrates
the experimental results of proposed method.

2. GARCH MODEL

GARCH models are new statistical methods that are
- used especially in economic time series. GARCH stands
for Generalized Autoregressive Conditional
Heteroscedasticity. Loosely speaking, you can think of
heteroscedasticity as time-varying variance (i.e.,
volatility). Conditional implies a dependence on the
observations of the immediate past, and autoregressive
describes a feedback mechanism that incorporates past
observations into the present. GARCH then is a
mechanism that includes past variances in the explanation
of future variances. More specifically, GARCH is a time
series modeling technique that uses past variances and past
variance forecasts to forecast future variances.

Definition: Let (Z,) be a sequence of ii.d. random
such that Z,
distribution. (Y, ) is called GARCH(q,p) process if
Y, =07, tez

where (0", ) is a nonnegative process such that

o =0y +o ¥ .. +o Y, +B8, +.. +Be, @

and

oy >0 oy 20, i=

variables have standard Gaussian

O

L..,q; B,20,i=L.,p. )
p =0 the process reduced to ARCH(q)
(Autoregressive Conditional Heteroscedasticity of order
Q.

In ARCH(q) processes, the conditional variance is
specified as a linear function of past sample variances
only, whereas the GARCH(p,q) process allows lagged
conditional variances to enter as well. This corresponds to
some sort of learning mechanism [13].

To review elementary aspects of GARCH model,
denote E'M[.] as conditional expectation while condition

For

is on the past information up to time ¢—1 (which is
denoted by ¢, ;. Le. &, , = 0{Z,,,Z, 5,...}, where
G{ } is the sigma field generated by {} ). So

Et—l[‘] = E[ | (bt—l]

and conditional variance is

Q)

TABLE 1
MEAN OF GARCH PARAMETERS
SNR(db)
15 10 5 0 -5
a, 0.0001 | 0.0003 | 0.0006 | 0.0010 | 0.0015
a 0.3325 | 0.2490 | 0.1449 | 0.0672 | 0.0249
A 0.6654 | 0.7316 | 0.8209 | 0.8958 | 0.9462
TABLE 2
VARIANCE OF GARCH PARAMETERS
SNR(db)
15 10 5 0 -5
&, 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
@, 0.0216 | 0.0208 | 0.0098 | 0.0047 | 0.0008
A 0.0232 | 0.0211 | 0.0147 | 0.0096 | 0.0034
TABLE 3
PROBABILITY OF TRUE DETECTION (%)
SNR |15 10 |5 lo |2 |5
P | 9852 | 97.61 [ 97.04 | 94.28 | 90.74 | 75.91
TABLE 4
PROBABILITY OF TRUE DETECTION (%)
Sohn Gazor Ramirez Proposed
SNR 5 }91.05 94.21 95.35 97.01
(db) 0 | 84.62 79.36 87.85 94.34
-2 | 73.28 69.38 80.26 90.69
Moo o Iy
| o |
Silence Speech
is Active
Figure 1: Binary Markov Model for VAD.
Vt—1[~] = V[- | 0,4 (%)
Now suppose (¥, ) is a GARCH process and
q P
e~ > B <1
i=1 j=1
So,
E(y,) = E(0,Z,) = E(0,)E(Z,) =0 (6)
2 272
V(yt) = E(y;) = E(0;Z;) = E(U?)

-—-0L0+ZOLEyt)+EBE

=1
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Figure 2: Results of the proposed VAD with 0 db SNR. (a) Clean speech. (b) Noisy speech with zero SNR. (c) Estimation of noisy

speech via GARCH Model (d) Soft detection. (e) Hard detection.

= (7)

1”i0‘i ”iﬁi

i=1 =1

= V(y,) =

and its conditional expectation and variance is:

Ely, | ¢, = El0,Z, | Y,1,Yy9,---] = 0, E[Z,] = 0 (8)
Viy, [l = E[yf [ YptsYpgsere]

q P
= Eo, + zaiyf—-i + ZB;:O'?—]‘ | yt~17yt—2?"']

i==] =1

q ?
=0 + Zaiyf—i + Zﬁi(’f—j = Gt2.'

J=1

©)

=1

As you can see, the mean and variance of a GARCH
process are constant but its conditional variance is
changing over time. So, in comparison with
Autoregressive Moving Average (ARMA) process,
GARCH could model the time-variation of variance (i.e.,
volatility).

Other interesting properties of GARCH process are:

iy Cou(Y,, Y, ,)=0, for k>0
i) (Y} ) has heavier tails than the Gaussian Distribution

(GD).
Note that property (i) together with normality

assumption of noises ensure that the (Y, ) are independent.

As [14] discussed when the mean level of a series
stayed close to zero over the entire period and changes in
variance (volatility) occurred, then this series could model
through GARCH. It is clear that the speech signals have
these properties (Fig 2.b) and several examples showed
that it could be modeled through GARCH(1,1) and for
example [15] used a GARCH(1,1) for modeling speech.
So, we used a GARCH(1,1) to model the speech signal.
Therefore,

A2 ~ A 2 A A2
& =Gy + &7, +6,6,,
where @,, @, and /3 should be estimated. (We call

garchfit in Matlab to calibrate GARCH model).

The mean and variance of these three parameters for
100 different speeches with different SNR are shown in
Table 1 and 2. As you see, the estimation values are

related to the amount of SNR, i.e., less SNR.more ﬂl and

(10)

less &, and visa versa.
From now on, let us denote Z(t) as estimation of noisy

speech via GARCH. Le. z(t) = §,.

3. BINARY MARKOV MODEL

As the correlation of signal samples in consecutive
frames is strong, the sequences of frame hypothesis states
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can be modeled as a first-order Markov process, which
simply assumes that the current state only depends on the
current data and the previous state. The use of Markov
model can also prevent clipping effect of weak speech,
because when decision is made, the previous state is also
taken into consideration.

Here, we use a two-state discrete (binary) Markov
model to estimate the probability of Voice Being Active
(VBA) at each time frame. As shown in Fig.1, these states

are H (Silence) and H, (Speech, i.e., VBA). To obtain
this, we consider that the sequence of hypothesis is a

binary Markov process with the following probability
transition matrix:

H:{:HOO HIO} (11)
I-‘[Ol Hl]

where I1,,denotes the probability of silence when there

was silence in the previous time instance, I1, denotes the

probability of silence when there was speech in the
previous time instance and so on. In HMM, this matrix is

often determined by I1, =7/ ZqT

iq » Where qu is a

measured number of transitions from pth state to gth
state [10].

4. STATISTICAL ASPECTS

After estimating noisy speech through GARCH model,
the result is a series of data that have heavier tails than the
Gaussian and are independent - by normality assumption
of noises. In such situation some distribution like VGD is
used [17]-[18].

For distinguishing speech or silence we do as follows:

A. Distribution of speech

A random variable X is said to be Variance Gamma
Distribution (VGD) with parameters \,,3 and p. if its

(14

density is given by
2-0.5 i)
fX(x)zC.]x~—,u[ K/l——O.S(alx_zul)eﬂ( #
with
24 (15)

7 2 2 2
C= , Yo=a -pf

VAT (A)2a)
K, (.) is the modified Bessel function of the third kind
(see [19], Ch. 11) and I'(.) is gamma function. The

parameter domain is restricted to 4 >0 andax > | f|. If

[ =0 then the distribution is symmetric and @, 1 are

shape parameters. The moment generating function of X
is given by

16
L(z)= e (LY, zeR (16)

Z

where ¥, = /@’ — (8 + z)* . Therefore, we obtain the

centralized moments by L (0) = E(X ") :

E(X)=u+2%-,>j\— an

v =2a+aly) (19)
N A
In [20] the estimation of the parameters of VGD via
moment matching method is presented. Denote U and K
as skewness and kurtosis, respectively [20]. So their
estimation is:

Assume that X, is an m-dimensional vector of data which $ =3 (19)
is estimation of noisy speech via GARCH model at time - /’v -3
tie, B — v
X, =[x(@®),x(t = 1),..., x(t—m+1]" (12) (k — )V (X) (20)
where ()7 denotes the transposing operation. 5 "
Then, we use the below hypothesis via binary Markov =~ & = \/ + (21
model: k—3)V(X) (v—3\1V(X)
{HO 1 X, is silence (13)
. ; . vy V(X
H,: X, is speech i = E(X)— _____(?)_ 22)
Before starting the next section, we review the -
elementary features of the distribution of speech and
noise, prior and posterior voice activity probabilities.
68
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z(1) = | y(@) |;

Fort =2 toN (length of Y)

fi, = Mean of X,;

67 = Variance of X,;
N 22
&, = sqri(—3);

Oy

compute L, (X,)
Lm (Xt )‘Pt]t—l

Assume that the vector Y is noisy speech and the vector X is its estimated GARCH model
and o, 0,83, are brought out from Table 1 (or by garchfit command in Matlab).

2(t) = sqri(o, + oy’ (¢ — 1) + Byz* (¢ - 1));

compute F,,

Next ¢

B Lm(Xt)Pt;t—l + (1 - Pt]t-l)
Soft _ Detection(t) = log(F,,(X,)) — mlog(C);

Eq. (10)
for ¢ > m use (30)

for ¢ > m use (31)
Eq. (28)
Eq. (43)
Eq. (42)

Eq. (49)

Figure 3:. Proposed VAD algorithm

~ In [20], it is shown that if VU (skewness) is close to zero,
then these estimators could successfully obtain good
approximation to X\, &, (3,4 . On the other hand, in [11] it
is shown that speech signal has a symmetric distribution
(v=10).5%0

6 =0 @3)
i = E(X) @4
=% s s
. 2\ @9
Q= WX—)—

As you can see, estimating of A\ is related to
K (kurtosis). To simplify the computations, we assumed a
fixed value for \. For example, [10] assumed
A =1(LD is specific case of VGD), but one could

consider all of the above equations.
Therefore, by assuming that speech distribution is

symmetric, then for a fixed A, the estimation of the
parameters via the moment matching method is as follows:

If the vector X , Wwas estimated at time 7, then the

estimation of £, and 0[,2 is

m—1

f, = Xt = 1/mzx(t“‘i)

=0

@7

(28)

&, = A2\ / 6
@9

# =V(X) =1/ - -9 -miz) F)

and can be recursively computed via

@31
)

o=y + B, /m o
6! =62, +R [(m—1)[T,~ R /m—2{,_]
R, = a(t) — 2(t —m)

(32

T, = z(t) + z(t — m) (33)
Note that R, and 7, is defined to shorten above
equations.
B. Distribution of Noise
We assume that the noise components are Gaussian,

Therefore, its PDF is given by

1 -hew (34)

fr()=——e
2no

If the vector X, was observed, then the estimation of
4, and o7} are
b, = Xt (35)
& =V(X,) (36)

and can be recursively computed as same as above
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recursive estimations, i.e.,

h, = py, + R, /m (37
& =6, +R /(m—1)[T ~R /m—2{,,] (38)

C. Prior and Posterior Voice Activity Probabilities

The adaptive VAD algorithm starts with GARCH
Model and then parameters of speech and noise are

estimated. So, the prior probability, Pm_1 of VBA at time

¢ is provided. i.e.,

F,,_, = P(speech is presented at time ¢

. . 39
|observation up to time ¢ -1). (39)

Note that a prior probability of VBA is initialized at
By = 1/2 attime £ =1. Based on these assumptions the
hypothesis (13) could be revised as follows:

H,: X, is.silence with the prior
probability (1-£,,,)

H,: X, is speech with the prior
probability P,

fir-1

(40)

Now the objective is to estimate recursively the
posterior probability P,

1t

F, = P(speech is presented at time ¢ 1)
| observation up to time ¢).

This is soft decision rule that estimates the probability
P and PIt-I are

of VBA in each time instance, where It )
estimated probability of VBA, with and without current
information. ,

Based on the Baye’s rule, we can easily derive soft

VAD rule as follows:

P - L,(X)E,, (42)
"L (X)R (- By)
where L, (X,) is the Likelihood ratio at time £, i.e.,
1 P, (x(t - DI H,) )

L,(X,))= E}I By, (x(t =) Hy)

where Py (.| H,) and Py (.| Hy) are probability

distribution function (PDF) of speech and noise,
respectively. A hard decision rule is then given by

H  log(F,(X,)zm
H, log(Pm(Xt)) <"

A prediction of the prior probability for next time

(44)
H(t) =

instance, B, is required to perform the soft decision.

+1jt

This prediction is easily obtained based on the assumed

Markov Model,

(1_131“1:) _ (Hoo Hloj(l“l)m] (45)
F I, II, F,

That is, B
By an(l—Ep)"'Han (46)

D. Adaptive Threshold
As discussed before, speech is active at time ¢ if
log(£),(X,)) 27 (based on HMM). It is better, however,
to compare log(F),(X,)) with a threshold function, 77, at
each time 7, i.e.,
_ |speech log(F, (X)) 27,
log(B, (X,)) <7,

It is natural to assume that the threshold function, 77, be a

(47)

" |Silence

function of parameters of the speech distribution and m .
An appropriate approach is to define

n, =7 +mlog(C) (48)

where T is a constant threshold and C is defined in (15)
and its parameters had been estimated by X, at time 7.
Note that (48) is obtained, empirically. So, speech is
active if,
log(P, (X,))~mlog(C) 2 7
The left side of (49) can be viewed as a criterion for
detecting silenice or speech activity and is a criterion for
soft detection. This criterion will be compared with 7 and
hard detection will be derived.

(49)

5. PROPOSED VOICE ACTIVITY

DETECTION
ALGORITHM :

For implementation of the proposed VAD, its algorithm
is presented and shown in Fig 3.

This algorithm can divide into two parts: algorithms for
t < m and for £ > m. Since for ¢ < m, the length of

vector Xt is less than ™M, so we can not use recursive
Eq. (30-33) and (37-38) for estimating |th,6? and G.
And should use (27-29) and (35-36)
X = [o(t), ot~ 1),..,2(2),2(1)].  Also,

computing soft detection, we use information up to time
t(< m) On the other hand, since log-likelihood is

for
for

motivated by length of segment, so we multiply log-
likelihood bym / t . But for ¢ > m since length of X,

is ™ so, use recursive (30-33) and (37-38).

6. EXPERIMENTAL RESULTS
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In this section, the results of the proposed method are
presented. The spegch signals are obtained from
htp:/fwww.dailywave.com. Fig. 2(a) shows the clean
speech together with -manually marked clean speech
sample. Fig. 2(b) shows the noisy speech with Gaussian
noise and its SNR is equal to 0. GARCH estimation of
noisy speech is shown in Fig. 2(c). Its estimated GARCH

parameters are @, =0.002, & =0.12 and £, =0.83. As

discussed before, Table 1 and 2 show the mean and
variance. of GARCH  parameters for different noisy
speeches with Gaussian noise. Since estimation of
GARCH parameters is related to SNR, so it is possible to
use these approximated parameters instead of using an
algorithm for finding exact estimation of the parameters.

The left side of (49) is computed and shown in Fig.
2(d). This criterion is compared with 7 = —300 and hard
decision is derived. The hard detection is shown in Fig.
2(e).

To evaluate the performance of the proposed VAD, the
speech and silence intervals marked manually then the
hard decision of the VAD is compared with the manually
marked intervals. For Fig 2, the Probability of True
Detection (PTD) is equal to 0.94 and the results of the
proposed method with different SNR are presented in
Table 3. The PTD is more than 96 percent when SNR is
greater than 2, and in very noisy cases (SNR= -5) is near
75 percent which are good results. So, the presented
algorithm can be viewed as a robust algorithm.

The PTD, as evaluation criteria for the performance of
the previous works and presented method are given in
Table 4 with different SNR. As you see, the performance
of the proposed method is more than Ramirez [9], Gazor
[10] and Sohn [1]. Also, to prove the superiority of our
algorithm, we examine our algorithm with non-Gaussian
noises..

As same as Fig. 2, the results of proposed method with
noises of ¢ distribution (with 4 degree of freedom) and
Beta Distribution {with parameters o« = 2.5 and
3 = 1.5) are shown in Fig. 4 and 5, respectively. Since

Beta random numbers are not zero-mean, so we subtract
their mean and then add these noises to clean speech
signal. Also Fig. 6 shows the results of the proposed

method with colored noise. To generate colored noise we
passed white noise through a finite impulse response.

0 (X3 1 1.8 2 25
) Sof Detucion
] : . y
. X L . A :
509 03 3 1.6 Fl 25 3
@) Hard Detection

° T

#

0

H‘I T T T L 1 L] -

ot W UL 1
T 08 ] 1.5 2 25

X1

Figure 4: Results of the proposed VAD for t Distribution noise.
(a) Clean speech. (b) Noisy speech. (c) Estimation of noisy
speech via GARCH Model. (d) Soft detection. (e) Hard

detection.
8) Clean Speech
Hgr - -
e i ¥
- 5.5 g T3 ES 25 3 3.5
2 b) Nolsy Speech
o ”‘—“‘M“W—%— 4
5 o8 1 T 2 EX) ) 38
o) Estimation of nolsy speech via GARCH mode!
1 T
(] 0.8 1 1.8 z 25 3 EX
d) Soft Detection
500 MWW%M i
-1000g 0.8 0 s 2 25 3 3.5
@) Herd Defection
Hq y T 3
H o N : . " y "
o 6.5 1 1.6 ] 2.5 3 X

x 1o
Figure 5: Results of the proposed VAD with Beta Distribution
noise. (a) Clean speech. (b) Noisy speech. (c) Estimation of
noisy speech via GARCH Model. (d) Soft detection. (e) Hard
detection.

8) Clean Speach

0.8 1 1.5 2 2.5

2 T T u

owmw

25 0.5 0 T z 55 3
¢) Estimation of noisy speech via GARCH model

f"(
L . : . .
-89 0.5 1 145 2 2.6
¢} Hand Detextion
™ v - r -
Ho W
[ 0.5 1 35 2 2.5 3

x10'

Figure 6: Results of the proposed VAD with colored noise. (a)
Clean speech. (b) Noisy speech. (c) Estimation of noisy speech
via GARCH Model. (d) Soft detection. (e) Hard detection.
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Note that for Fig. 3 and 5, SNR is 5db and for Fig 4 it
is 10 db.

The PTD for these noisy speeches are 0.96, 0.94 and
0.93, respectively.

7. CONCLUSION

The objective of this paper is to exploit the properties
of new statistical tools such as GARCH model and heavy
tailed distribution for finding a robust algorithm for VAD
in the presence of high level of noise. The results show
that the performance of the presented VAD has been
improved when we take advantage of the adaptive
threshold function.

The complexity of the proposed algorithm is very low
due the fact that it is performed in time domain and
estimations can be computed recursively.
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