A Locally Symmetric AlmostK ähler Einstein Structure on the Cotangent Bundle of a Riemannian Manifold

E.Pevghani; A.Razaviii; A.Heydariiii

ABSTRACT

We introduce a Riemannin metric of diagonal type on the cotangent bundle of a Riemannian manifold and show that T^*M with this metric is locally symmetric Einstein manifold. Also, we obtain a locally symmetric Kähler Einstein structure on the cotangent bundle of a Riemannian manifold of negative constant sectional curvature. Similar results are obtained on a tube around zero section in the cotangent bundle, in the case of a Riemannian manifold of positive constant sectional curvature.

KEYWORDS

Almost complex structure, cotangent bundle, Kähler Einstein metric, locally symmetric Riemannian manifold.

1. Introduction

The differential geometry of the cotangent bundle T^*M of a Riemannian manifold (M,g) is almost similar to that of the tangent bundle TM. However, there are some differences. This is because the lifts (vertical, complete, horizontal, etc.) to T^*M cannot be defined just like in the case of TM.

In [6] V. Oproiu and D.D. porosniuc have obtained a natural Kähler Einstein structure (G, J) of diagonal type induced on T^*M from the Riemannian metric g. The obtained Kähler structure on T^*M , depends on parameters u, which is a smooth function depending on the energy density τ on T^*M .

In this paper, we obtain a Kähler structure on T^*M , which depends on parameters α, β, u , where $\alpha, \beta \in \mathbb{R}$. The vertical distribution VT^*M and the horizontal distribution HT^*M are orthogonal to each other but the dot products induced on them from G are not isomorphic (isometric).

After that, we obtain that G is Hermitian with respect to J and it follows that the fundamental 2-form Ω , associated to the almost Hermitian structure (G, J) is the fundamental form defining the usual symplectic structure on T^*M , hence it is closed.

From the integrability condition for J it follows that the base manifold M must have constant sectional curvature c and the parameter u must be constant.

If the constant sectional c is negative then we obtain a locally symmetric Kähler Einstein structure defined on the whole T^*M . If the constant sectional curvature c of Mis positive then we get a similar structure defined on a tube around zero section in T^*M .

The manifolds, tensor fields and geometric objects we consider in this paper, are assumed to be differentiable of class C^{∞} (i.e., smooth). We use the computations in local coordinates but many results from this paper may be expressed in an invariant form. The well-known summation convention is used throughout this paper, the range for the indices h, i, j, k, l, r, s being always $\{1,\ldots,n\}$ (see [5], [7]). The module of smooth vector fields on T^*M shall be denoted by $\Gamma(T^*M)$.

i E. Peyghan is a Ph.D. student of the Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran (e-mail: e_peyghan@aut.ac.ir).

ii A. Razavi is with the Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran (e-mail:

iii A.Heydari is a with the Department of Science, Tarbiat modares University, Tehran, Iran (e-mail; a heydari@aut.ac.ir),

1. Preliminar

Let (T^*M, π, M) be the cotangent bundle, where M is an n-dimensional smooth manifold. If (U, φ) is a local chart on M and (x^i) are the coordinates of a $p \in \varphi^{-1}(x) \in U$, then a point point $p \in M$, $u \in \pi^{-1}(U)$, $\pi(u) = p$ has the coordinates (x^i, p_i) , $(i=1,\ldots,n)$. The natural basis of the module $\Gamma(T^*M)$ is given by $(\partial_i = \frac{\partial}{\partial x^i}, \partial^r = \frac{\partial}{\partial p})$.

An M-tensor field of type (r,s) on T^*M is defined by set of n^{r+s} components (functions depending on x^i and p_i), with r upper indices and s lower indices, assigned to induced local charts $(\pi^{-1}(U), \Phi)$ on T^*M , such that the local coordinate change rule is that of the local coordinate components of a tensor field of type (r,s) on the base manifold M. A usual tensor field of type (r,s) on M may be thought of as an M-tensor field of type (r,s) on T^*M . If the considered tensor field on M is covariant only, the corresponding Mtensor field on T^*M may be identified with the induced (pullback by π) tensor field on T^*M .

Some useful M-tensor fields on T^*M may be obtained as follows. Let $u, v: [0, \infty] \to \mathbb{R}$ be a smooth functions and let $||p||^2 = g_{\pi(p)}^{-1}(p,p)$ be the square of the norm of the cotangent vector $p \in \pi^{-1}(U)$. The components $g_{ii}(\pi(p)), p_i, u(||p||^2)p_ip_i$ M -tensor fields of type (0,2), (0,1), (0,2) on T^*M , respectively. Similarly, the components $g^{kl}(\pi(p)), p^i = p_k g^{hi}, v(||p||^2) p^k p^l$

define M-tensor fields of type (2,0), (1,0), (2,0)on T^*M , respectively. Of course, all the components considered above are in the induced local chart $(\pi^{-1}(U), \Phi).$

The Levi Civita connection ∇ of g defines a direct sum decomposition

$$TT^*M = VT^*M \oplus HT^*M, \tag{1}$$

of the tangent bundle to T^*M into vertical distribution $VT^*M = \ker \pi_*$ and the horizontal distribution HT^*M .

If
$$(\pi^{-1}(U), \Phi) = (\pi^{-1}(U), x^1, \dots, x^n, p_1, \dots, p_n)$$

is a local chart on T^*M , induced from the local chart $(U, \varphi) = (U, x^1, \dots, x^n)$, the local vector fields $\partial^1 = \frac{\partial}{\partial p_1}, \dots, \partial^n = \frac{\partial}{\partial p_n}$ on $\pi^{-1}(U)$ defines a local

frame for VT^*M over $\pi^{-1}(U)$ and the local vector fields $\delta_1 = \frac{\delta}{\delta x^1}, \dots, \delta_n = \frac{\delta}{\delta x^n}$ define a local frame for

 HT^*M over $\pi^{-1}(U)$, where

$$\delta_i = \partial_i + p_h \Gamma^h_{ik} \partial^k,$$

and $\Gamma_{ik}^h(\pi(p))$ are the Christoffel symbols of g.

The set of vector fields $(\partial^1, \dots, \partial^n, \delta_1, \dots, \delta_n)$

defines a local frame on T^*M , adapted to the direct sum decomposition (1).

We consider

$$\tau = \frac{1}{2} \|p\|^2 = \frac{1}{2} g_{\pi(p)}^{-1}(p, p)$$

$$= \frac{1}{2} g^{ik}(x) p_i p_k, \qquad (2)$$

$$p \in \pi^{-1}(U)$$

the energy density defined by g in the cotangent vector p. We have for all $p \in T^*M$.

From now on, we shall work in a fixed local chart (U,φ) on M and in the induced local chart $(\pi^{-1}(U), \Phi) \text{ on } T^*M.$

3. An almost Kähler structure on T^*M

Consider a real valued smooth function u defined on $[0,\infty)\subset\mathbb{R}$ and real constants α and β . We define the following symmetric M - tensor field of type (0,2) on T^*M having the components

$$G_{ij}(p) = \frac{1}{\beta} g_{ij}(\pi(p)) + \frac{u(\tau)}{\alpha \beta} p_i p_j.$$
 (3)

It follows easily that the matrix (G_{ii}) is positive definite if and only if $\alpha, \beta > 0$, $\alpha + 2\tau u > 0$. The inverse of this matrix has the entries

$$H^{kl}(p) = \beta g^{kl}(\pi(p)) + \nu(\tau)p^k p^l, \qquad (4)$$

$$v = -\frac{u\beta}{\alpha + 2\tau u}. ag{5}$$

The components H^{kl} define symmetric M - tensor field of type (2,0) on T^*M . It follows:

Remark. If the matrix (G_{ii}) is positive definite, then matrix (H^{kl}) is positive definite, too.

Using the M - tensor fields defined by G_{ii} and H^{kl} , the following Riemannian metric may be considered on

$$G = G_{ii} dx^i dx^j + H^{ij} \delta p_i \delta p_j, \qquad (6)$$

where $\delta p_i = dp_i - p_h \Gamma_{ik}^h dx^k$ is the the covariant differential of p, with respect to the Levi Civita connection ∇ of g. Equivalently, we have

$$G(\delta_i, \delta_j) = G_{ij}, \quad G(\partial^i, \partial^j) = H^{ij},$$

$$G(\delta_i, \partial^j) = G(\partial^i, \delta_j) = 0.$$

Note that HT^*M and VT^*M are orthogonal to each other with respect to G, but the Riemannian metrics induced from G on HT^*M , VT^*M are not the same. so the considered metric G on T^*M is not a metric of Sasaki type. Note also that the system of 1-forms $(dx^1,...,dx^n,\delta p_1,...,\delta p_n)$ defines a local frame on T^*T^*M dual to local frame $(\delta_1, \dots, \delta_n, \partial^1, \dots, \partial^n)$

adapted to the direct sum decomposition (1).

Next, an almost complex structure J is defined on $T^{st}M$ by the same M - tensor fields $G_{ij},\ H^{kl}$, expressed in the adapted local frame by

$$J(\delta_i) = G_{ik} \partial^k, \ J(\partial^i) = -H^{ik} \delta_k \tag{7}$$

From the property of the M- tensor field H^{kl} to be defined by the inverse of the matrix defined by the components of the M - tensor field G_{ii} , it follows easily that J is an almost complex structure on T^*M .

Theorem 1. (T^*M, G, J) is an almost Kähler

Proof: Since the matrix (H^{kl}) is the inverse of the matrix (G_{ii}) , it follows easily that

$$G(J\delta_{i}, J\delta_{j}) = G(\delta_{i}, \delta_{j}), G(J\partial^{i}, J\partial^{j}) = G(\partial^{i}, \partial^{j}),$$

$$G(J\delta_{i}, J\partial^{j}) = G(\delta_{i}, \partial^{j}) = 0.$$

Hence

61

$$G(JX,JY)=G(X,Y), \forall X,Y \in \Gamma(T^*M).$$

Thus (T^*M, G, J) is an almost Hermitian manifold.

The fundamental 2-form associated with this almost Hermitian structure is Ω , defined by

$$\Omega(X,Y) = G(X,JY), \quad \forall X,Y \in \Gamma(T^*M).$$

By a straightforward computation we get $\Omega(\delta_i,\delta_j) = 0, \quad \Omega(\partial^i,\partial^j) = 0, \quad \Omega(\partial^i,\delta_j) = \delta_i^i.$

$$\Omega = \delta p_i \wedge dx^i = dp_i \wedge dx^i, \tag{8}$$

due to the symmetry of $p_{h}\Gamma_{ii}^{h}.$ It follows that Ω does coincide with the fundamental 2-form defining the usual symplectic structure on T^*M . Of course, we have $d\Omega = 0$, i.e., Ω is closed. Therefore, (T^*M, G, J) is

4.A Kähler structure on T^*M

We shall study the integrability of the almost complex structure defined by J on T^*M . To do this, we need the following well-known formulas for the brackets of the vector fields ∂^i , δ_i , i = 1, ..., n

$$[\partial^{i}, \partial^{j}] = 0, \quad [\partial^{i}, \delta_{j}] = \Gamma^{i}_{jk} \partial^{k}, \quad [\delta_{i}, \delta_{j}] = p_{h} R^{h}_{kij} \partial^{k},$$
(9)

where $R_{kii}^h(\pi(p))$ are the local coordinate components of the curvature tensor field of ∇ on M. Of course, the components R_{kii}^h define M-tensor fields of type (1,3)on T^*M .

Lemma 1. The Nijenhuis tensor field of the almost complex structure J on T^*M is given by

$$N(\delta_{i}, \delta_{j}) = -\left\{\frac{u}{\alpha \beta^{2}} (\delta_{i}^{h} g_{jk} - \delta_{j}^{h} g_{ik}) + R_{kij}^{h} \right\} p_{h} \partial^{k},$$

$$N(\delta_{i}, \partial^{j}) = -H^{kl} H^{jr} \left\{\frac{u}{\alpha \beta^{2}} (\delta_{i}^{h} g_{rl} - \delta_{r}^{h} g_{il}) + R_{lir}^{h} \right\} p_{h} \delta_{k},$$

$$N(\partial^{i}, \partial^{j}) = -H^{ir} H^{jl} \left\{\frac{u}{\alpha \beta^{2}} (\delta_{l}^{h} g_{rk} - \delta_{r}^{h} g_{ik}) + R_{klr}^{h} \right\} p_{h} \partial^{k}.$$

$$(10)$$

Proof. Recall that the Nijenhuis tensor field Ndefined by J is N(X,Y) = [JX,JY] - J[JX,Y] - J[X,JY] $-[X,Y], \forall X,Y \in \Gamma(T^*M).$

Then, we have $\delta_{\iota}\tau = 0$, $\partial^{k}\tau = p^{k}$ $\nabla_i G_{ik} = 0$, $\nabla_i H^{jk} = 0$, where

$$\begin{cases} \nabla_i G_{jk} = \delta_i G_{jk} - \Gamma^l_{ij} G_{lk} - \Gamma^l_{ik} G_{lj}, \\ \nabla_i H^{jk} = \delta_i H^{jk} + \Gamma^j_{il} H^{lk} + \Gamma^k_{il} H^{lj}. \end{cases}$$

The above expressions for the components of N can obtained by a quite long, straightforward computation. □

Theorem 2. Let M be a connected Riemannian

manifold and dim $M \ge 3$, then the almost complex structure J on T^*M is integrable if and only if the manifold M has constant sectional curvature c and the function u is given by

$$u = -c\alpha\beta^2. \tag{11}$$

Proof. From the condition N=0, one obtains

$$\left\{\frac{u}{\alpha\beta^2}\left(\delta_i^h g_{jk} - \delta_j^h g_{ik}\right) + R_{kij}^h\right\} p_h = 0.$$

Differentiating with respect to $p_h = 0 \ \forall h \in \{1, ..., n\}$, it follows that the curvature tensor field of ∇ has the expression

$$R_{kij}^r = -\frac{u(0)}{\alpha \beta^2} (\delta_i^r g_{jk} - \delta_j^r g_{ik}).$$

Using the Schur theorem it follows that (M,g) has the constant sectional curvature $c = -\frac{u(0)}{\alpha \beta^2}$. Then, we obtain the expression (11) of u.

Conversely, if (M,g) has constant curvature c and u is given by (11), it follows in a straightforward way that

It should be noted that the function u must fulfill the condition

$$\alpha + 2\tau u = \alpha(1 - 2c\beta^2\tau) > 0, \quad \alpha, \beta > 0. \quad (12)$$

Therefore, the theorem can be stated as follows:

Theorem 3. Let M be a Riemannian manifold with constant sectional curvature c and the function $u = -c\alpha\beta^2$, then

- If c < 0 then (T^*M, G, J) is a Kähler
- If c > 0 then (T_a^*M, G, J) is a Kähler ii) manifold, where $T_{\alpha}^{*}M$ is the tube around zero section in T^*M defined by the condition $0 \le ||p||^2 < \frac{1}{c \beta^2}$
- If c = 0 then (M, g) is a flat manifold and iii) G becomes a flat metric on T^*M .

The components of the Kähler metric G on T^*M

$$\begin{cases}
G_{ij} = \frac{1}{\beta} g_{ij} - c \beta p_i p_j, \\
H^{ij} = \beta g^{ij} + \frac{c \beta^3}{1 - 2c \beta^2 \tau} p^i p^j.
\end{cases} (13)$$

5. A Kähler Einstein structure on T^*M

In this section, we shall study the property of the Kähler manifold (T^*M, G, J) to be Einstein.

The Levi Civita connection $\overline{\nabla}$ of the Riemannian manifold (T^*M,G) is determined by the conditions

$$\overline{\nabla}G=0, \quad T=0,$$

where T is its torsion tensor field. The explicit expression of this connection is obtained from the formula

$$2G(\overline{\nabla}_{X}Y,Z) = X(G(Y,Z)) + Y(G(X,Z))$$

$$-Z(G(X,Y)) + G([X,Y],Z) - G([X,Z],Y)$$

$$-G([Y,Z],X);$$

$$\forall X, Y, Z \in \Gamma(T^*M).$$

The final result can be stated as follows:

Lemma 2. The Levi Civita connection $\overline{\nabla}$ of G has the following expression in the local adapted frame $(\delta_1,\ldots,\delta_n,\partial^1,\ldots,\partial^n)$:

$$\begin{cases}
\overline{\nabla}_{\partial^{i}}\partial^{j} = Q_{h}^{ij}\partial^{h}, \ \overline{\nabla}_{\delta_{i}}\partial^{j} = -\Gamma_{ih}^{j}\partial^{h} + P_{i}^{hj}\delta_{h}, \\
\overline{\nabla}_{\partial^{i}}\delta_{j} = P_{j}^{hi}\delta_{h}, \ \overline{\nabla}_{\delta_{i}}\delta_{j} = -\Gamma_{ij}^{h}\delta_{h} + S_{hij}\partial^{h}, \end{cases} (14)$$

where Q_h^{ij} , P_j^{hi} , S_{hij} are M-tensor fields on T^*M , defined by

$$\begin{cases} Q_{h}^{ij} = \frac{1}{2} G_{hk} \left(\partial^{i} H^{jk} + \partial^{j} H^{ik} - \partial^{k} H^{ij} \right), \\ P_{j}^{hi} = \frac{1}{2} H^{hk} \left(\partial^{i} G_{jk} - H^{il} R_{ljk}^{r} p_{r} \right), \\ S_{hij} = -\frac{1}{2} G_{hk} \partial^{k} G_{ij} + \frac{1}{2} R_{hij}^{r} p_{r} \right). \end{cases}$$
(15)

After replacing the expressions of the involved Mtensor fields (equation (12)), we obtain

$$Q_{h}^{ij} = c\beta H^{ij} p_{h}, P_{j}^{hi} = -c\beta H^{hi} p_{j}, S_{hij} = c\beta G_{hj} p_{i}.$$
(16)

The curvature tensor field K of the connection ∇ is obtained from the well-known formula

$$K(X,Y)Z = \overline{\nabla}_{X}\overline{\nabla}_{Y}Z - \overline{\nabla}_{Y}\overline{\nabla}_{X}Z - \overline{\nabla}_{[X,Y]}Z,$$

$$\forall X,Y,Z \in \Gamma(T^{*}M).$$

The components of curvature tensor field Kthe adapted $(\delta_1, \dots, \delta_n, \partial^1, \dots, \partial^n)$ are obtained easily:

$$\begin{cases} K(\delta_{i}, \delta_{j}) \delta_{k} = c \beta(\delta_{i}^{h} G_{jk} - \delta_{j}^{h} G_{ik}) \delta_{h}, \\ K(\delta_{i}, \delta_{j}) \partial^{k} = c \beta(\delta_{j}^{k} G_{hi} - \delta_{i}^{k} G_{hj}) \partial^{h}, \\ K(\partial^{i}, \partial^{j}) \delta_{k} = c \beta(\delta_{k}^{j} H^{hi} - \delta_{k}^{i} H^{hj}) \delta_{h}, \\ K(\partial^{i}, \partial^{j}) \partial^{k} = c \beta(\delta_{k}^{i} H^{jk} - \delta_{j}^{j} H^{ik}) \partial^{h}, \\ K(\partial^{i}, \delta_{j}) \delta_{k} = c \beta(\delta_{j}^{i} G_{hk} \partial^{h}, \\ K(\partial^{i}, \delta_{j}) \partial^{k} = -c \beta \delta_{j}^{i} G_{hk} \partial^{h}, \end{cases}$$

$$(17)$$

The Ricci tensor field Ric of $\overline{\nabla}$ is defined by the formula:

$$Ric(Y,Z) = trace(X \to K(X,Y)Z),$$

$$\forall X, Y, Z \in \Gamma(T^*M).$$
It follows
$$\begin{cases} Ric(\delta_i, \delta_j) = cn\beta G_{ij}, \\ Ric(\partial^i, \partial^j) = cn\beta H^{ij}, \\ Ric(\partial^i, \delta_j) = Ric(\delta_j, \partial^i) = 0. \end{cases}$$
Thus
$$Ric = cn\beta G. \tag{18}$$

By using expression (17), we have computed the covariant derivatives of curvature tensor field K in the local adapted frame (δ_i, ∂^i) with respect to the connection $\overline{\nabla}$ and we obtained in all twelve cases the result is zero, i.e., $\overline{\nabla}K = 0$.

Hence, we may state our main result.

Theorem 5. Assume that the Riemannian manifold (M,g) has constant sectional curvature c, condition (14) are fulfilled and the components of the metric G are given by (20), then

- 1. If c < 0 then (T^*M, G, J) is a locally symmetric Kähler Einstein manifold.
- 2. If c > 0 then (T_{α}^*M, G, J) is a locally symmetric Kähler Einstein manifold.

2. References

- [1] K.P. Mok, E.M. Patterson, Y.C. Wong, Structure of symmetric tensors of type (0,2) and tensors of type (1,1) on the tamgent bundle, Trans. Am. Soc. 234 (1977), 253-278.
- [2] V. Oproiu, A generalization of natural almost Hermitian structures on tangent bundles, Math. J. Toyama Univ., 22 (1999), 1-14.
- [3] V. Oproiu, General natural almost Hermitian and anti-Hermitian structures on tangent bundles, Bull. Soc. Sci. Math. Roum. 43 (91), (2000), 325-340.
- [4] V. Oproiu, Some new geometric structures on the tangent bundle, Pub. Math. Debrecen.55 (1999), 261-281.
- [5] V. OProiu, N. Papaghiuc, A Kähler structure on the nonzero tangent bundle of a space form, Differential Geo. Appl. 11 (1999), 1-12

- [6] V. Oproiu, D.D. Porosniuc, A Kähler Einstein structure on the cotangent bundle of a Riemannian manifold, Balkan Journal of Geometry and Its Applications, 9 (2004), 87-95.
- [7] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, M. Dekker Inc., New York.