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ABSTRACT

An improved method for solving the full viscous shock layer (FVSL) equations for hypersonic flows at
low and high altitudes over long slender bodies is presented. This approach can solve both subsonic and
supersonic regions of the shock layer without a starting solution for the shock shape and the global iterations
are limited only to the nose region. In the nose region (where the subsonic or elliptic flow fields prevails),
shock shape is specified from an algebraic expression and corrected through global passes through that
region. The shock shape is computed as part of the solution beyond the nose region and requires only a
single global pass. Under the high Reynolds number (at low altitudes), the Cebeci-Smith (CS) turbulent
model has been analyzed with the present numerical technique for application to long slender bodies. The
surface-slip and the currently corrected shock-slip boundary conditions are employed to account for the low-
density effects. The method of solution is a spatial-marching, implicit, finite-difference technique, which
includes coupling of the normal momentum and continuity equations and uses simple relation instead of
Vigneron pressure condition in the subsonic nose region for instability. The results are compared with
experimental data and other solutions. The comparisons have been shown to yield accurate results.
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Reynolds numbers the flow field can be devided into an

1. INTRODUCTION

Aerodynamic heating is a major problem associated
with all of space missions, and its accurate prediction is
critical to the design of hypersonic vehicles. These
vehicles are typically slender and the calculation of
hypersonic viscous flow fields around the slender
axisymmetric blunt bodies are of prime interest to the
designer of such re-entry vehicles. Re-entry vehicles
operate through a wide range of flow conditions and
require the solution to be valid for different Reynolds
numbers, from low Reynolds numbers at high altitude to
high Reynolds numbers at low altitude.

There are several approaches for treating the problem.
The simplest of these approaches is to employ the
boundary-layer equations [1]. For relatively large

inviscid outer flow and a boundary layer. The classical
approach is to solve the inviscid flow field first, and then
to use the properties on the body surface as edge
conditions for a boundary-layer solutions. Although this
approximation is valid for high Reynolds numbers, its
accuracy decreases downstream of the nose region of blunt
bodies. As the boundary layer grows along the surface, the
streamlines which passed the nearly normal portion of the
bow shock-wave are swallowed by the boundary layer.
Thus, the thick boundary layer and the great entropy
gradients in a hypersonic flow make the classical
boundary-layer approximation inadequate to predict the
flow field. To account for entropy-layer swallowing
effects, the boundary layer solution must be coupled with
the inviscid flow field solution [2]. Typically in this
approach, an inviscid solution to this outer region is
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coupled with a boundary-layer technique. This approach
may lead to computational difficulties in the matching
procedure on a long body, where strong vorticity
interactions occur far downstream. Another approach is to
use the Navier-Stokes (NS) equations [3]. This approach
successfully provides the solution for the stagnation region
of blunt bodies. However, the complexity of the solution
procedure due to the elliptic nature of the equations
requires excessive computing time and computer storage,
which limits their application to short bodies. Thus, it is
desirable to reduce the NS equations to a form which can
be solved efficiently, while concurrently the physics of the
problem is essentially preserved. The methods which have
proven successful for the computation of these classes of
flow fields are the Parabolized Navier-Stokes (PNS) and
Viscous Shock-Layer (VSL) equations [4,5]. The PNS
equations can be used to predict many complex three-
dimensional, steady, supersonic/hypersonic and viscous
flow fields. These equations can be solved using a space
marching technique instead of the time marching
procedure which is usually employed for the NS
equations. They are valid in both viscous and inviscid
regions, and thus unlike boundary layer equations no
special effort is needed for viscous/inviscid interactions.
The principle difficulty in applying the PNS equations to
the hypersonic vehicles is that commonly the algorithms
cannot solve blunt-body flow fields, while most re-entry
vehicle designs incorporate blunted nose in order to
reduce peak heating rates. In addition, the numerical
solution of the PNS equations requires a substantial
amount of computer time and storage.

The third approach is to employ the viscous shock-
layer (VSL) equations. The VSL equations are a subset of
the NS equations and are obtained by retaining terms up to
second order in the inverse square root of the Reynolds
number. The VSL equations were developed by Davis [5]
and yield a simplified set of governing equations that are
uniformly valid through the shock layer to moderately low
Reynolds numbers [6]. The VSL equations are of mixed
hyperbolie elliptic in the subsonic nose region of a blunt
body and are of mixed hyperbolic-parabolic type in the
streamwise direction where the flow becomes supersonic.
The streamwise gradients of pressure and normal velocity
cause the VSL equations to be elliptic in the subsonic nose
region. Moreover, the effects of the unknown shock shape
is to introduce an elliptic type behavior{7].

The VSL method can accurately predict the blunt-body
flow field for a small fraction of the computing time
required by NS schemes. This choice is very desirable for
the preliminary design process where a range of
geometries and flow parameters must be analyzed. The
VSL method has been shown to provide results in good
agreement with experimental data and results of other
methods [8-10]. Numerous computational schemes for the
solution of the viscous shock-layer equations have been
investigated in the past. Davis [5] presented an implicit

finite-difference method to solve the VSL equations for a
wide-angle body (45-deg hyperboloid). Davis [5] obtained
a first global solution using the thin viscous shock layer
(TVSL) assumption, the elliptic nature was then satisfied
with subsequent global iterations. The main difficulties
with the method of Ref. [5] were identified as the shock
shape divergence problem and the slow convergence.
Werle et al. [11] developed an Alternating Direction
Implicit (ADI) technique with an artificial time coordinate
to relax the shock shape from an initial shape. Even with
this relaxation scheme, the instabilities were encountered
with long, slender blunt bodies (where the inviscid region
in the far downstream encompasses a significant portion of
the total shock layer). Hosney et al. [12] and Gordon and
Davis [7] have solved the governing equations as a fully
coupled set. Coupling the equation for shock standoff
distance does result in a convergence problem in Ref. [7].
A relaxation scheme is used there for updating the shock
standoff distance after each global pass, and the first
steamwise derivative of the shock standoff distance is

taken from the previous global iteration to overcome the
convergence problem. In these methods, computational
time and the storage and computing requirements are quite
large. Waskiewicz et al. [13] introduced the more
adequate method. In Ref[13] the normal and global
continuity equations were solved simultaneously for the
pressure and normal velocity. Some papers basically
followed this method and successfully implemented for
blunt bodies [14]-[16].

In the previous papers, an initial shock shape was
required to start the solution of VSL equations. Moreover,
the shock shape extending to the entire length of the body
is globally iterated. The initial shock shape generation and
the global iterations over the entire length of the body
requiring considerable computational effort and run time
respectively. For a slender body, Gupta et al. [6,17]
successively relaxed the shock shape from a wide-angle
body to a slender body. In other words, in the approach of
Ref. [6,17], the initial shock shape is created by the thin
viscous shock layer approximation for a short, wide-angle
body (35-deg sphere cone, for example). The shock shape
obtained from a full viscous shock layer solution to this
body in a sequential manner by reducing the body angles
in steps of 5 to 10 deg. Also, to reduce run time, the shock
shape extending to a location beyond the shock-inflection
point (shock recompression zone) is globally iterated.
However, since this zone persists over an extensive region
for smaller body angles, limiting the global iterations only
through the shock recompression zone may still require
considerable computational time.

The present approach generates its own shock shape
as a part of solution and provide a smooth shock shape in
subsonic and supersonic regions. Therefore, the input
shock shape obtained from a different solution is not
required. It eliminates the need for initial shock shape,
which was required by previous methods of solutions.
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Moreover, the global iterations are limited to the subsonic
region which is small region in the hypersonic flow over
the blunt bodies. In addition, the solution of thin viscous
shock layer equations is not required to solve the full VSL
equations as was done in Refs. [5] and [18]. The VSL
equations in this paper are solved in a shock oriented
(rather than the traditional body oriented) coordinate
system. Note that the use of a body coordinate system
introduces discontinuities in the solution of governing
equations associated with the surface curvature
discontinuity, such as at the sphere-cone tangency point of
a spherically blunted cone [18]. In the present work, shock
oriented coordinate is used and the shock shape is
described by an analytical equation, so the curvature
derivative is well-behaved and the pressure gradient can
be evaluated analytically. The difficulties related to
juncture point are omitted, too. In this paper, the Cebeci-
Smith (CS) turbulence model is implemented to predict
turbulence effects.

The low-density flow conditions are important to
understand since the aerospace vehicle aerodynamics can
significantly be influenced. In this investigation, the
surface-slip and shock-slip conditions are employed to
obtain the results for the low-density flight conditions.

2. ANALYSIS

A brief discussion of the flow governing equations, the
boundary conditions and method of solution are presented
in the following analysis.

2.1 Governing Equations

The conservation equations employed in this analysis
are the steady, viscous shock-layer equations for an
axisymmetric body at zero angle of attack. These
equations are developed in a shock-oriented coordinate
system (s,n) where the s coordinate is tangent to the shock
in the streamwise direction and n is the coordinate normal
to the shock (see Fig. 1).To facilitate the solution, the VSL
equations are transformed to normalized coordinates
(€,11). The nondimensional forms of the VSI. equations in a
normalized shock-oriented coordinate system are:
Continuity Eq.
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In the transformed coordinate system employed here, the
metrics are:

Iy =1+ (g, - Dk
In this study, the molecular and turbulent Prandt] numbers
are assumed to be 0.72 and 0.9, respectively. Sutherland
relation is employed to calculate the viscosity.
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Figure 1: Shock-oriented coordinate system.

2.2 Boundary Conditions

At low altitudes, slip effects are not important, so the
ne slip condition (u=v=0) is applied at the wall. In
addition, the wall temperature and enthalpy are specified
constant. The shock jump conditions are given by the
Rankin-Huguenot relations [5].

At high altitudes, the no-slip boundary conditions are
no longer valid. The density decreases at higher altitudes,
so the continuum flow equations that describe the flow
adequately under high Reynolds number flow conditions
are no longer adequate near the wall. The flow in a region
next to the wall having a thickness on the order of a local
mean free path (the Knudsen layer) cannot be analyzed
through the continuum description because there are
insufficient collisions for this description to be valid. Also,
it is known that as the Reynolds number decreases in
hypersonic flow, the thickness of shock wave increases
such that the Rankine-Hugoniot discrete shock relations
become inadequate. Therefore, the slip and temperature
Jump boundary conditions should be used. The relations
for the surface and shock slip conditions are provided in
the following,

2.2.1 Surface Conditions

Under low Reynolds number high-altitude flight
conditions , the density at the surface of a space vehicle is
sufficiently low so that the velocity, temperature, and
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pressure at the wall are no longer the same as those of the
gas adjacent to the wall. This difference in the values of
various quantities is known as "surface slip,” and the
equations describing this phenomena are known as
surface-slip equations. These equations play an important
role in the accurate prediction of aerothermal environment
of space vehicles entering the Earth's atmosphere. In this
paper, the surface slip condition for a single-species gas as
given by Gupta et al[19 ] are used as the boundary
conditions on the body surface. The nondimensional forms
of surface-slip conditions in the transformed coordinate
system are given as:

velocity slip condition :
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2.2.2 Shock Conditions

The shock slip conditions are the modified Rankin-
Hugoniot relations, which are obtained from the
integration of one-dimensional Nervier-Stokes equations
through the shock transition zone. The integration 1is
carried out from the interface behind the shock transition
zone (where the usual Rankin-Hugoniot shock relations
apply) to free stream. The nondimensional forms of shock
conditions[5] in the transformed coordinate system are
expressed as:
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2.3 Shock Shape

The full VSL equations require an initial shock shape
for the first global iteration. The shock shape obtained in
the first iteration solution is used as the input shape for a
second iteration. This procedure is repeated until the new

calculated shock shape varies little from the input shape.
Most of existing VSL schemes use the various procedures
(thin viscous shock layer, inviscid solution,...) to obtain
an initial shock shape. However, obtaining the initial
shock shape from these procedures require considerable
computational effort.

In the solution procedure used by Davis [5] and Moss
[20] , a first global solution was obtained using the thin
viscous shock layer(TVSL) assumption. The TVSL
approximation, however, fails for slender bodies with cone
angles less than about 30 degree. In Refs.[15] and [21],
the initial shock shape is obtained from an Euler code. In
the approach of Ref[17], a catalog of shock shapes is
created by starting from a large body angle (with TVSL
approximation) through sequential reduction in the body
angles. One has to store these shock shapes for use ina
problem with approximately the same body angle.

In the present approach, the shock shape is generated as
part of the solution. The shock shape is calculated based
upon the method which is presented in Ref. [22]. As
mentioned earlier, the subsonic-transonic region is elliptic
in nature, therefore, a marching scheme is not well posed.
Thus, the complete shock shape for the entire subsonic-
transonic region must be determined iteratively. A
marching procedure is then used downstream of the
subsonic-transonic region where the inviscid layer is
supersonic. Generally, the three-dimensional shock surface
in the subsonic-transonic can be represented by three
longitudinal conic sections blended in the circumferential
direction with an ellipse as:
r=f(x¢
where f(x,¢) isdefined as
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Note that F(x,0) is the radial coordinate of the 3D shock
surface in shock cylindrical coordinate system. The
equation of the longitudinal conic sections is given by
FEHbyx? =2c,x+2dyxf;, =0 k=123

as

where k represents shock profiles for ¢=0°, 90° and
180°, respectively. The shock shape, defined above
includes nine parameters of by ,c; and d;, where K=1,2,3.
For an axisymmetric flow, the total number of parameters
governing the shock surface is reduced to b, and ¢ [221.

The quantities b, and ¢, are determined through a quasi-

Newton iterative procedure. With each variation of these
two parameters, the flowfield is solved for the entire
subsonic region. The values for the calculated shock layer
thickness at two stations near the end of the subsonic
region are compared with the values dictated by the
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geometry. Shock iterations are continued until the
calculated values of n, at these two stations match the
geometric values. Downstream the subsonic-transonic
region, the initial shock shape is calculated by linear
extrapolation of previous values and is corrected
iteratively using the secant method. It is noted that the
shock shape convergence is achieved with four to six
iterations per station. The shock shape for the supersonic
region is described by:

dry AP dPr dPr
r:ri»l+Ax'£]i—l+'—g“[2°d‘;2_1i~l+;:;{‘i] (16)
where the shock derivative is given by
dr _dry  Ax d*r,  dr
megx—l"'l +“2-[zx~2-!i—1 +;;;Ii] an

The only unknown in Eqs.16 and 17 is the second
derivative of r with respect to the x which is proportional
to the shock curvature at the current station. As an initial
value, the curvature at station i is extrapolated from its
values at the previous two stations. Once the shock
geometry and the corresponding jump conditions are
constrained, the governing equations are solved. Then the
calculated and geometric values of n, are compared to

determine the error (Serr). Through successive application
of the secant method (accompanied by a solution to the
fluid equations), Serr converges to a specified tolerance. In
summary, in the subsonic-transonic region, shock shape is
specified from an algebraic relation and corrected through
global iterations through that region. The shock shape is
computed as part of the solution beyond the subsonic-
transonic region. Thus, shock shape is not required as an
input by the user.

3. METHOD OF SOLUTION

The method used for solving the full VSL equations is
a spatial-marching, implicit, finite-difference method
which includes coupling of the continuity and normal
momentum equations. In the normalized shock-coordinate
system (§,mn), the conservation equation for streamwise
momentum and energy can be written in the standard
parabolic form :

2

06 ’f+Ala—"i+A2W+A3+A49K=o (18)

on, on, o
where W represents the dependents variables u# and £,
respectively. The coefficients A, through A, are nonlinear

coefficients. For the energy equation, the nonlinearities are
handled through a simple lagging technique. However, in
order to speed up convergence, the streamwise momentum
equation is quasi-lineralized. In the finite-difference
method used to solve the streamwise and energy
equations, a two point backward differences is used for the
derivatives with respect to €. The derivatives with respect
to the 77, are replaced with three-point central differences.

Replacing the differential terms by the finite-difference
expressions, the governing equations are expressed as:

A4

AW, +BW, ;+CW, s =D (19
Evaluating the coefficients of Eq. (19) at discrete points
across the shock layer along with the boundary conditions
yields a tri-diagonal system of equations which may be
solved using Thomas algorithm. The continuity and
normal momentum equations are first order differential
equations and, when solved independently, pose numerical
difficulties. However, using the coupling approach, these
two first equations are coupled together to form a second-
order system that can be solved using Thomas algorithm.
These equations are solved for the pressure and normal
velocity. The density in these equations is eliminated by
using the equation of state. The resulting equations are
expressed in the finite-difference form at points

@7 +-;—) and (i, j~—%) using a box scheme. The final

form for the continuity equation are : .
4 Vija+B L V,;+C  Pg+D 1Py =E 1 (20)
c, f+ (2% Al ¢ j+= C, fr= e
2 2 2 2
A Vi +B
cimy ’ ey

A Vi +B
nm

nm, je--
)

Vi1 +Cc 1P +Dc 1P =Ec .
J 5 o 5 o 3

nm,_/+z

Vi +C o P +D B =E
,_/+5‘ m"’j+5 ’lm,]+‘§‘

Vi +C 1P+ P =E
nm, j- nm,_[—-z—

j—— nin L
Ry »J 3

gz M e !
The coefficients of these equations are given in the
Appendix. Eliminating p and v alternatively in the
coupled equations, two tridiagonal equations for pressure
and normal velocity are obtained as:
ApPi,j—l +BpPi,j +Cp1:;',j+l =Dp (21)
AV, ja+ BV +CV ja =D, (22)

Equations (21) and (22) are solved in the same way as
the streamwise momentum and energy equations. This
numerical coupling enhances considerably the overall
numerical stability of the VSL solution scheme. Note that
the shock standoff distance is evaluated by integrating the
continuity equation.

Cebesi-Smith(CS)  [23] turbulence model s
implemented in the present method to predict turbulence
effects. The boundary layer edge location is required in
the CS model and there are some criterion for obtaining
the boundary layer thickness. In the present work, the

boundary layer thickness is assumed to be the value of 7,

at point where:

d,
————————(ﬁ—[‘”)so.S (23)
dn,

In the laminar to turbulent transition region, the
composite eddy viscosity &+ is modified using the Dhawn
and Narashima method [24]. For the laminar flow and
slip-conditions, the eddy viscosity is set to zero. Maslen’s
relation [22] is used for the pressure gradient in the
streamwise momentum and energy equations in the
subsonic mnose region. The pressure gradient can be
evaluated analytically because the shock shape is
described analytically. Differentiating Maslen’s relation

with respect to 77,, gives.

8 Amirkabir/ Vol 18/ No.66-B/ ( Mechanical Engineering)/ Spring — Summer 2007 @@



op

1-nv, Kyl , —1 dn, . OP OP
5g :[._(__..Q)YLIL. 1~._../_ﬁ_)+.7l__.__é]_.__+__‘”

2my cos Ty, cosly, n, dE om, 0&
Note that the above relation is a function of 1 and the
relation between m and 7, can be derived from the

(24)

n

continuity equation. In this paper, this relation is given by:
7= 2p.\'hl;xhh3
i

The derivation of equation (25) is described in detail in
Ref.[25] and, hence, is not discussed here.

The solution is started at the stagnation line. The flowfield
along the stagnation line involves a removable singularity
that can be removed by using an explicit limiting form of
the governing equations [26]. This approach yields a set of
ordinary differential equations. Using the stagnation line
solution, the VSL equations are solved at the next down
stream location by employing a two point backward-
difference approximation for the streamwise derivative.
The solution is iterated until it converges. This procedure
is repeated until a global solution at all locations is
obtained. It is mentioned that at each location the
equations are solved in the following order: 1)energy, 2)
streamwise momentum, 3) integration of continuity for
n,, 4) solving the continuity and normal momentum

ny(n}=1n,) =203 +3n} (25)

equations simultaneously for p and v 5) solving the
equation of state for p.

4. RESULT AND DISCUSSION

Numerical solutions of the viscous shock-layer (VSL)
equations with the present method for the high and low
Reynolds number hypersonic flow over long slender
bodies are obtained. Results are for the laminar,
transitional, and turbulent flow over slender bodies. The
accuracy of these results is demonstrated by comparisons
with the experimental data and other predictions. The
surface and shock slip boundary conditions are
implemented in the present method to obtain results for
the low-density (high altitudes) flight condition. At the
wall, although both variable temperature and constant
temperature conditions can be imposed, in the present
work only the constant wall temperature condition is
considered.

In Figs. 2 to 3, the laminar heating results from the
present method are compared with experimental data.
Figure 2 presents laminar heating rates over a blunted 15-
deg cone at a freestream Mach number of 10.6 for nose
radius of 0.009525m and 0.02794m. It can be seen that the
results from the present method is in good agreement with
the experimental data [27]. Figure 2 also illustrates the
blandness effect problem. It can be seen, as is expected,
the heating rate for R,=0.02794m nose is dramatically

less than that for 0.009525m. In Fig. 3, the data were
measured over a blunted 12.84-deg cone at a freestream
Mach number of 10.16 and the surface heat transfer rate
agrees excellently with the experimental values of Miller
[28]. The results obtained by the present viscous shock-

layer (VSL) are compared with parabolized

Navier-Stokes(PNS) predictions [29] for a long S5-deg
sphere cone in Fig. 4. The VSL results are about 5-12%
lower for most of the body length as compared to the PNS
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Figure 2: Heat transfer comparison for 15 (deg) sphere-cone
with laminar flow.
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Figure 3:Heat transfer comparison for 12.85 (deg) sphere-cone
with laminar flow.
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Figure 4: Surface heat transfer rate distribution for a 5 (deg)
sphere-cone with laminar flow.

results. The PNS predictions employ fourth-order explicit
and second-order implicit smoothing terms, whereas the
present VSL calculations do not use any smoothing,
Furthermore, the stability of PNS solutions restricts the
reduction of the normal grid spacing adjacent to the wall
(required for accurate heat transfer predictions) if a
relatively large marching step size is required for a long
body. Since the PNS requires a starting solution that
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describes the subsonic region, any starting solution errors
distort the PNS results in the nose region. In the VSL, the
starting profiles are created as a part of solution and, thus,

1072 g
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Figure 5: Stanton number distribution for a 7 (deg) sphere cone
with turbulent flow.
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Figure 6: Surface heat transfer rate distribution for a 5 (deg)
sphere-cone.
the method is self starting.

The results for the turbulent flow are illustrated in
Figures 5 and 6. Cebesi-Smith turbulence model is
implemented in the present method to predict turbulence
effects. The definition of the boundary edge is based on
the gradient of the total enthalpy [Eq.(23)]. The results for
the Stanton number distributions for a 7-deg sphere cone
are given in Fig. 5. The transition to turbulence is
initialized at §, =4.8 as given by the data of Carver [30].

In Figure 5, the heating results from the present method
are seen to compare well (generally within 10 percent)
with the experimental data [30]. In Figure 6, the computed
heating from the present method and the VSL3D method
[15] are presented for a S-deg blunt Cone at a Mach
number of 15. The results of laminar and turbulent flow
calculations are shown in this Figure. The transition point
is specified to be at S,=192. The laminar results of

VSL3D and present method are in good agreement (within
7%) and the turbulent results of the present method are
approximately 5-12% lower than VSL3D values.Results at
low Reynolds number conditions have been presented in
Figs 7 to 9. At high altitudes, the assumption of a
continuum flow becomes tenuous and the no-slip
boundary conditions are no longer valid. As such, the slip

boundary conditions should be used. The low-density
effects are characterized

100 M, =182

- T, =45'K

- T, =332.87"K
R, =0.00191
Re, , = 1017
& =0.193

\ P— Prasant {with alip)
610‘ — — =~ — —Presant(without slip)
- (@] Experimental data (Ref. 28}
i I

Sy

Figure 7: Stanton number distribution for a 10 (deg) sphere-
cone with £ =0.194.
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Figure 8: Stanton number distribution for a 5 (deg) sphere cone
as a function of &.

Figure 9: Stanton number distribution for a 10 (deg) sphere
cone as a function of e.

by the Reynolds-number parameter [5], €, and become
generally significant for values of ¢ greater than about 0.1.
Results obtained for a 10-deg sphere-cone and £=0.193 by
the present method are compared with the heat transfer
data of Boylan [31] in Fig. 7. The present calculations
with slip conditions are in good agreement with the data of
Boylan. Using the slip boundary conditions decreases the
heat transfer rate and improves the agreement of the VSL
predictions with the experimental data. Figures 8 and 9
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show the effect of cone angle with slip boundary
conditions. Results have been calculated for five and ten
degree sphere cones, 0.0254 nose radius and high Mach
number flow (Mw=20) over highly cooled surface
(Tw=300K). According to Figs. 8 and 9, increasing in & or
altitude causes slip effect to be increased. Furthermore for
great S, its effect is insignificant. These Figures also

show that the heat transfer rates for € less than 0.1 are the
same for slip and no-slip Conditions, therefore, the slip
conditions should be used for ¢ greater than 0.1. Figure 9
illustrates that the Stanton number values for a 10-deg
sphere-cone are higher than those for a 5-deg sphere-cone
at the corresponding body locations for a given Reynolds-
parameter (or altitudes). This result is valid for both cases
of with and without slip condition. Finally, Figure 8 and 9
indicate that the largest slip effects occur in the nose
region.

5. CONCLUSIONS

A new technique to solve VSL equations is proposed
with increases computational efficiency. In the present
method, initial shock shape is not required and the global
iteration is confined merely to nose region. The shock
shape is defined with an algebraic (conic) equation and is
iterated globally in the nose region till the calculated body
matches with the real body at the end of the subsonic
region. In the supersonic region, the marching scheme is
well posed. Hence, the shock shape and flow field can be
determined in each station and there is no need for global
iteration. In previous methods [7,16,17] Vigneron’s
relations were used for subsonic region for stability and
convergence. However, using this relation requires an
initial flow field solution. In the present work, a relation
for pressure gradient in the streamwise direction is derived
using the Maslen’s equation and is used instead of
Vigneron’s relation for stability of numerical solution. In
supersonic region the pressure gradient can be calculated
readily and there is no need for the above relation. Since
the subsonic region is only a small portion of the flow
field for hypersonic flows over slender bodies, and the
global iteration is confined for this region only in the
present method, a dramatic reduction in CPU time is
achieved. Moreover, the shock shape is described in three
dimensions that makes this technique extendable to three
dimensional flows. Moreover, by using the shock
coordinated systems the junction point problem in sphere-
cone configurations is solved. The Cebeci-Smith (CS)
model has been used to define eddy viscosity in the
present work. The obtained results from the present
method show that the CS model adequate for turbulent
flows. In the laminar to turbulent transition region, the
composite eddy viscosity is modified using the Dhawan
and Narashima method [22]. Under the low density flow
condition, the surface and shock slip conditions have been
implemented in the present VSL method for a perfect gas.

Results of the present method compare quite favorably
with experimental data and other predictions. In
conclusion, a wide range of flow conditions have been
considered and a method for analyzing the flow is
demonstrated.

6. APPENDIX

The coefficients for Equations (20) are obtained as
follows:
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7. NOMENCLATURE

H total enthalpy, h+V*/2

h static enthalpy, h'/V,>

M Mach number

n normal distance from the shock, n'/R,

p Pressure, p”/ (P Ve 2)

Pr Prandtl number, p.*Cp*/k*

Pr, turbulent Prandtl number, M*Cp'/k*

R radius of Curvature

r radius measured from axis of symmetry, 'R,

S Coordinate measured along the shock wave, S'/R,
T temperature T/ Tt

T reference temperature, Ve, e,

u velocity component tangent to the shock wave, u /V
v velocity component normal to the shock wave, v na
T, ¢ bodyand shock angle

¢ Reynolds number parameter, (ef PoltoRr) '
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€' normalized eddy viscosity, p+/
1 stream function ratio, n/mg,

Mn normalized n Coordinate,1-n/n,,
6 accommodation coefficient

x Curvature, 1/R

p dynamic viscosity, p.*/p,ef*

& normalized S Coordinate, £=S

p density, p*/p,

v stream function

Subscripts:
i: Denotes i-th Stream wise Station
Denotes j-th Point within Dhock layer
: Shock Value
Body Valve
nose Value
turbulent value
: wall Value
Edge of Knudsen layer -
oo: Free stream Condition

?egs-:;.:jpjg'.—:-:‘.

Superscripts:
* dimensional quantity
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