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ABSTRACT

This paper applies the Markov models,optimal control theory, eigen vectors and eigen values concepts to
propose a methodology to analyze the transient behavior of Exponential queuing systems. We propose a
procedure to calculate the transient probability, the average queue length and the duration of the system to
reach the steady state. The method is implemented through an algorithm which is developed and tested in
MATLAB software environment. The new method enjoys a stronger mathematical foundation and more
flexibility to analyze the transient behavior of Exponential queuing systems.
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1. INTRODUCTION

Queuing theory and reliability are the most important
applications of stochastic processes. We can use queuing
and reliability models in some systems such as
transportation, airport traffic control, repair and
maintenance and refineries. As is known, a queuing
System experiences a transient state and then enters its
steady state. Most of the authors, have studied queuing
systems in its steady state while ignoring the transient state
effects could increase the error in a queuing system [1].

Bhat [2] studied the queuing model of M/M/w in
transient state using differential equations and Z
transform. Shanthikumar et al. [3], [4], [5] studied the
queuing model of M/M/1 in transient state approximately
using transition rate matrix and it's inverse. Azaron et al.
[61,[7] introduced a new methodology, using continuous—
time Markov processes and shortest path technique, for the
reliability evaluation of an L-dissimilar unit non-repairable
cold-standby redundant system which was considered as a
queuing model.

Amiri et al. [8] introduced a methodology to analyze
system transient survivability and availability with
identical components and identical repairmen. They
employed the Markov models, eigen vectors and eigen
values concepts to develop the methodology for the
transient reliability of such systems.

This paper presents a method for transient analysis of
a queuing system using Markov models,optimal control
theory, eigen-values and eigen-vectors. The

considered system consists of capacities of n customers

and k servers and the service time and the inter-arrival
time are exponentially distributed. A procedure is
proposed to calculate the transient probability, the average
queue length and the duration of the system to reach the
steady state.

The paper is organized is as follows. Section 2
presents nomenclature and definitions. Section 3 deals
with the model and the proposed methodology . Numerical
example is given in section 4. Finally section 5 is devoted
to conclusions and recommendations for future studies.

2. NOMENCLATURE AND DEFINITIONS

A(t): Cumulative arrivals time from O to t

D(t): Cumulative departures time from Q to t

X(t): Number of customers in the system at t

X()=A)-D()

pa(t): Probability of having n customers in the system at
time t

Po(=P(X(t)=n)
Ly(t): The average queue length in the time interval

0.9
L,(®)=2 (n-k)p,(

Ly(t): The average number of customers in the system
in the time interval (0,t)

L) =3 np,®)

n=0

Ly The average queue length in the steady state

L, =lim, 0
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Ls: The average number of customers in the system in
the steady state

L, =LimL,(t)

A: The average arrival rate to the system

p: The average service rate

k: Number of server

n: The capacity of the system

Definition 1. If Q be an nxn matrix then A is an eigen
valye if Q. X=A.X, where X is a non-zero vector and
eigenvector.

Definition 2. Let {X(t): t20} be a continuous-time
stochastic process with finite or countable state space R;
usually R is {0,1,2, ...}, or a subset thereof.

We say {X(t)} is a continuous-time Markov chain if the
transition probabilities have the fallowing property: For
everyt, s20 and jeR,

P(X(stt)=j | X(s)=1,X(u)=x(s), uss)=P(X(s+t)=j |

X(s)=1)

and

pi()=P(X(t+s)=j | X(s)=I)=P(X(D)=j | X(0)=D).

Definition 3. Matrix Q is transition rate matrix if we
have:

(-1 (n-k+2)A

k-1)p

Q=(qy) ii-- Z s
J
where g is transition rate from i to j.

3. THE MODEL AND THE PROPOSED METHODOLOGY

In this paper our aim is the determining of transient
probability, the average queue length and the average
number of customers, for a queuing system with the
following assumptions:

1. The capacity queuing system consists of n identical
and independent arrivals.

2. The system consists of k identical servers.

3. The inter-arrival time is exponentially distributed
with the parameter A.

4. The service time of each customer by each server is
exponentially distributed with the parameter .

Consider X(t) as the number of customers in the system
at time t, we will have the Markov model shown in Figure
1:

(n-k+ D s

kp

Figure 1. State transition diagram of the system with n customers and k servers
Example 1. If we let n=4 and k=3 the Markov model is represented as follows:

4 3x

[ 2u

2\ A

3u 3u

Figure 2. State transition diagram of the system with 4 customers and 3 servers
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Lemma 1. [9] If we consider Q as the state transient
rate matrix and P(t) as the state transient probability in
the exponential Markov chain with the continuous time,
then we have:

P'(1)y=P1)-O

F®)=F0)-0

F,()=F,(0)-P()
in which Q and P(t) are square matrices and, P,(t) and
P.(0) are row vectors.

Theorem 1. Let us consider a continuous time
exponential Markov chain in which P'(1)=P(r)Q , then

we have:

P(f) = e?"
P,(t)=P,(0)-¢%
Proof:
dP(t) a’P(t)
P)y=P()Q =>—— 7 =P)Q0 = 70 =0dt

dP(1)
P

QPO 01 ,C = P(t) =@ gC1
in which I is an identity matrix. Since P(0)=I then we
have P(z)=e? . By Lemmal we will have:

£()=P,(0)- P(t) = F,(0) -

Theorem 2. [10] Let us consider Q as an nxn square
matrix which has n non-repeating eigen values, then we
have

e = . g ]
where t represents time, V is a matrix of eigen vectors
of Q, V'! is the inverse of V, and d is a diagonal matrix
of eigen values of Q defined as follows;

= jQ.dz I P() = 0t + CI = " = 0% o™ = In P(1) = Ot + CT =

A 0 - 0
S0 4 0
L o
0 0 y)

Theorem 3. Let us consider Q as an nxn square
matrix which has repeating eigen values(for example
eigen value J; has been repeated R times), then we

have:
n—1 A
1
-5 a0
i=0

That @;’s are obtained through solving the following
equations:

n—1

e = Za,ﬂf A=A i=12..,n

A (e ,
dﬂ *)-———(Zaz A=

W(e d/12 (Za Ay A=24,

dR—l N n—1
T (e d/l’“ (Z al)y A=,

Theorem 4. Consider Q as the transition rate
matrix.In matrix Q one of the eigen -values is zero and
the remaining eigen values are complex numbers with
the negative real part.

Proof:
Since in every row of transition matrix the

summation of row elements is zero, we can deduce that
one of its eigen value of matrix Q is zero. By Theorem
2 we have

P(t)=V-e"

V= (p, (1)

n
2
py(0) =7+ oy e
k=1

in which A is the k™ eigen value, ay’s are constant
values, and m; is the limiting probability. Using the
contradictory concept, if we assume that one of the
eigen values of Q is a complex number with positive
real part then we have:

ALt —
lime k" =
[ —0
Therefore  lim p,(¢) =
=300

which contradicts the fact that
lim =7,
and therefore the eigen values of Q are complex
numbers with the negative real part.

Theorem 5. Consider P(t) = e%in which Q
is the transition matrix.The time unfil system reaches
the steady state p(r)=I1 can be calculated by the

following formula:
Ing

=
S,
in which & is a very small positive number (ie.
€<0.0001), S, is the largest real part of the eigen- values
excluding the zero element of matrix Q and IT is a
square matrix representing the limiting probabilities.
The elements of matrix P(t) and I are shown as
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follows:
Po® Pa® - Po,(D
P(r) = pm'(t) pu.(t) pl,,_(t)
Pa®  Puw - P
T, T T,
M= Ty 71:1 7,
Ty 7T 7,
Proof:

n n
A’m' —
p,(O)=7; +Za,g.m-e =t “*’Z%m‘e
m=1 m=1

By Theorem 4 all S,, are negative, and i=+-1 (m,
Okjm> Sm» and Cy, are constant numbers). Now suppose
S, is greater then S, then for large values of t we have:

pyO)=m;+ &'
where ¢ is a very small positive number.Therefore we
have:

ij(t) R

8265,4
S -t=Ine
Ineg
t=—"
S

.

Based on the proof of these theorems, we now
propose an algorithm for calculating the transient
probabilities and the average number of customers in
system and queue at time t.

ALGORITHM:

1.Determine the transition matrix Q.
2 Determine the eigen- values and eigen -vectors of

2(10) 2(10)

Figure 3.State transition diagram of the system with 2 repairmen

(Sp+Cppi)t

matrix Q.
3.Determine.,

Pi)=V-e" -V

4 Determine

B)=B,0)-P0)

5.Determine Ly(t) and L(t) as follows:

L) =Y mp, @

n=0

INCEDNCELING

Note that if matrix Q has repeating eigen values,
determine P(f) =e%' according to Theorem 3.We

should note that the complexity of above algorithm is
o).

4. A NUMERICAL EXAMPLE

Consider a system having five identical components.
There are two identical repairmen for repairing this
system. It is assumed that the time to failure of repaired
component is a random variable with exponential
distribution function with the mean of 1/2 hour. The
repair time is also considered to be a random variable
distributed exponentially with the mean of 1/10 of hour.
We want to calculate the transient probabilities, the
average number of failed components at time t , the
average queue length at time t and the elapsed time
until the system reaches the steady state.

SOLUTION:

The graphical Markov model and the transition rate
matrix can  be  represented as  follows:

2(2) 2
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[-10 10 0 0 0 0
10 -18 8 0 0 0
10 20 -26 6 0 0
Q= 0 0 20 -24 4 0
0 0 0 20 -22 2

~2

0 0 0 0 20

According to the algorithm we have:

0]

P()=(1 0 0 0 0 0)
P(=P,(0)-V-e - V' =(p,() p,(®) p,(t) ps(t) p.D) ps (1))
Po(£) =0.0159¢™%% +0.0435¢7°% +0.204e°% +0.12¢™2% +0.224e™"*% +0.392
Py () =-0.0512¢™%% ~0.0912¢7* +0.0201e™% - 0.148¢2% —0.123¢™5% +0.392
P, (1) =0.0541e™% +0.0372¢ 7% ~0.0931e™% - 0.0279¢ ¥ —0.127¢™ +0.1571
P3(2) ==0.0234™2% +0.0273¢ 7% —0.0871e™% +0.054¢ ¥ —0.0179¢™>% +0.0471
P4(1) =0.00507¢™% —0.0206¢ " —0.0373¢™ % +0.0129¢ 2% +0.0306¢™* +0.00942
Ps (1) =—-0.000457¢™%% +0.00377¢*" —0.00679¢™% —0.011e™2¥ +0.0135¢™5% +0.000942

d
L, ()= np, (t)=0.0048e>% +0.00144¢7°" —0.61 16" —0.0452¢ 2% — 0.241¢™% +0.89

n=0

and in the steady state we have  Ls=0.89
d
L,@)=2 (n=2)p,(t)=p,(t)+2p,(t)+3p,(t)=-0.0146e** —0.00268e7"" — 0.182¢90% 4
n=2

0.0466e 2% +0.084¢ ' + 0.069

and in the steady state we have  L,=0.0687 The limiting probability can also be calculated as
According to the Theorem 5 we can also calculate the follows:
elapsed time until the system reaches the steady state. 7=0.3927 71=0.3927 m=0.1571 13=0.0471
. Ine 1n0.0001 -1 14=0.0094  75=0.0009
s -9.02

r

Table 1 represents p,(t), Ly(t),Lq(t), for different values
of t.The system reaches the steady state after one unit

time.
Table 1. py(t), Ly(t),L(0), for different values of t and elapsed time until system reaches the steady state

t | @ | () p,(?) ps(0) P4(?) ps(?) L (1) L,@)
0.05 0.6763 | 0.2748 0.0444 0.00402 0.000192 0.0000037 0.37645 0.004415
0.1 0.5381 | 0.3539 0.0917 0.0146 0.0013 0.00005 0.5867 0.0174
0.15 0.472 0.3796 0.12 0.025 0.00304 0.00016 0.7074 0.0315
0.2 0.4378 | 0.3885 0.1358 0.0326 0.00477 0.000317 0.7787 0.04313
0.25 0.4192 | 0.3916 0.1446 0.0378 0.00619 0.000472 0.8214 0.0516
0.4 0.3986 | 0.3929 0.1543 0.0447 0.00848 0.000784 0.8735 0.064035
0.5 0.3949 | 0.3928 0.156 0.0462 0.00903 0.00087 0.8837 0.066824
0.7 0.3930 | 0.3926 0.1569 0.047 0.00936 0.00093 0.8894 0.06847
1 0.3926 | 0.3926 0.1571 0.0471 0.00942 0.000942 0.89 0.069
1.2 0.3926 | 0.3926 0.1571 0.0471 0.00942 0.000942 0.89 0.069
1.5 0.3926 | 0.3926 0.1571 0.0471 0.00942 0.000942 1 0.89 0.069
2 0.3926 | 0.3926 0.1571 0.0471 0.00942 0.000942 0.89 0.069
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5. CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE STUDIES

In this paper we proposed a methodology to analyze the
transient behavior of Exponential queuing systems.

We employed the Markov models, optimal control
theory,eigen-vectors and eigen-values concepts to develop
the methodology to analyze the transient behavior of
Exponential queuing systems.

We proposed a procedure to calculate the transient
probability, the average queue length and the duration of
the system to reach the steady state.

The following topics are recommended for future
studies:

1- Analyzing the transient behavior of M/G/C model.

2- Analyzing the transient behavior of G/M/C model.

3- Analyzing the transient behavior of G/G/C model.

6. ACKNOWLEDGMENT

The authors are deeply thankful to the Journal and
editing manager for their valuable comments to fully
improve the paper.

7. REFERENCES

[1] D. Gross, C. M. Harris, Fundamentals of Queuing Theory, John
Wiley, New York, 1985.

[21 U. N. Bhat, Transient behavior of multi-server queues with
recurrent input and Exponential service times, Journal of Applied
Probability 5(1968)158-168.

[3] I G. Shanthikumar and U. Sumita, A software reliability model
with multiple-error introduction and remoral,JEEE Transitions on
Reliability R-35(1986)459-462.

[4] 1. G. Shanthikumar and M. Shaked, Temporal stochastic convexity
and concavity, Stochastic Processes and Their Applications
27(1988)1-20.

[51 J. G. Shanthikumar and B. S. Yoon, Bounds and approximations
for the transient bebavior of continues-time markov-chains,
Probability in the Engineering and Information Sciences
3(1992)175-198.

[61 A. Azaron, H. Katagiri, K. Kato, M. Sakawa and M. Modarres,
Reliability function of a class of time-dependent systems with
standby redundancy, European Journal of Operational Research,
164(2)(2005) 378-386.

‘[7] A. Azaron, H. Katagiri, K. Kato, M. Sakawa and M. Modatres,
Reliability evatuation of multi-component cold-standby redundant
systems, Applied Mathematics and computation, 173(1)(2006)
137-149.

[8] M. Amiri and F. Ghasemi-Tari, A methodology for analyzing the
transient availability and survivability of a system with repairable
components, Applied Mathematics and computation,184(2007)
300-307.

[9] A. Hoyland and M. Rausend, System Reliability Theory Models
and Statistical Methods, John Wiley, Third Edition,New
York,1994.

[10] D. Luenberger, Introduction to Dynamic Systems, John Wiley,
New York, 1979.

@@ Amirkabir/ Vol.18/ No.66-B/ ( Mechanical Engineering)/ Spring — Summer 2007



