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ABSTRACT

This paper investigates the stability analysis of self-feedback neural network structures, i.e., some kind of
recurrent neural networks comprised of self-feedback neurons. Theoretically, it will be shown how the
number of fixed points and their stability properties are influenced by the network parameter values. A -
number of explicit equations among network parameters such as self-feedback coefficients, input weights
and the number of equilibrium points are obtained and it will be proven that each neuron has, at most, three
fixed points, such that two of which are asymptotically stable and the other is unstable. Since the dynamical
equations that describe these types of networks are uncoupled, it is easy to generalize these results to higher
order dimensions. Several simulations are provided to demonstrate the effectiveness of the analytical results

presented in this paper.
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1. INTRODUCTION

In recent years, neural networks have been widely used
because of their remarkable capabilities as generalization;
parallel processing, nonlinear system modeling,
adaptation, and function approximating [1-3]. In the
conventional structure of an artificial neural network, a
neuron receives its input either from other neurons or from
external inputs (input vector). A weighted sum of these
inputs constitutes the argument of a fixed nonlinear
activation function. The resulting value of the activation
function is the neural output. This class of neural
networks, namely FFNN (Fig.1.a), is a static mapping and
experiences some difficulties in representing a nonlinear
dynamical system [4-6]. On the other hand, recurrent
neural networks (RNN) are capable of approximating
dynamically and are more appropriate than FFNN when
applied to a nonlinear dynamical system [7-8]. There are
many RNN models that consist of both feed-forward and
feedback connections between layers and neurons forming
complicated dynamics [9].

Diagonal recurrent neural network (DRNN), a modified
form of fully recurrent neural network (FRNN,

Fig.1.b), was firstly put forward by Ku and Lee {10].
DRNN is a two-layer network (Fig.1.c), where the hidden

“layer contains self-feedback neurons while the output layer

is comprised of linear neuron. The self-feedback
connection of hidden neurons ensures that the output of
DRNN contains the whole past information of the system
even if the inputs of the DRNN are only the present states
and inputs of the system. Since there is no interlink
between neurons in the hidden layer, the DRNN has
considerably fewer weights than the FRNN and the
network is noticeably simplified [11]. ‘

Hopfield presented continuous-time feedback neural
networks, which provided a way of storing analog patterns
[12]. Storage of analog pattern vectors with real-valued
components using feedback neural networks is of great
interest, since in applications such as associative
memories, pattern recognition, vector quantization and
image processing, the patterns are originally in analog
form and costly quantization may be avoided [13-15]. The
authors of this paper in [16] investigated the stability
analysis of auto-associative memory and demonstrated
how the stability properties of fixed points depend on
network parameters values.

i. M. Amiri is with the Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; To

whom correspondence should be addressed, phone: +98-21-6454-2394; (e-mail: mamiri@bme.aut.ac.ir).
ii. M. B. Menhaj is with the Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave.,

Tehran, Iran; (e-mail: tmenhaj@ieee.org).

iii. A.Fallah is with the Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave.,

Tehran, Iran; (e-mail: afallah@aut.ac.ir).

8 | Amirkabir/ Vol. 18/ No.66-A/( Electrical Engineeﬁng)/Spring-SummerZOW.@@



Uk)

O Sigmoid

@ Linear neuron

Uk)

Figure 1: Three structures for neural networks: a) Feed forward
neural network b) Fully recurrent neural network c¢) Diagonal
recurrent neural network.

The rest of this paper is organized as follows: In
Section 2, some relevant definitions and theorems will be
introduced and then the DRNN mode] will be described.
The stability of a self-feedback neuron and its
generalization to higher dimension will be fully
investigated in Section 3. In Section 4, the experimental
results will be presented. Finally, Section 5 concludes the

paper.
2. METHOD

A. Preliminaries

In general, dynamical systems may be discrete or
continuous, depending on whether they are described by
differential or difference equations. The difference
equation for a general time-invariant discrete dynamical
system can be written as:

X =f(x) k=01,.. 0
where 1R — R can be a linear or nonlinear function of
x; . The following definitions and theorems are of interest
in (1) [7]):

Definition 1. A point X € R is an equilibrium point for
the dynamical system (1), or a fixed point for map f, if
fE)=%x. '

Definition 2.a. A fixed point. ¥ of (1) is said to be
stable if for any £>0 there exists §>0 such that

whenever|x, —X| <8, the point ¥ satisfy|x, —¥|<¢.
Definition 2.b. A fixed point ¥ of (1) is said to be
unstable if it is not stable.
Definition 2.c. A fixed point X of (1) is said to be
asymptotically stable or an attracting fixed point of the
function f'if it is stable and, in addition, there exists » > 0

such that for all x, satisfying |x,—% <7, then

sequence x; satisfy lim x, =% .
k~>o0

Theorem 1. Letf:R—>R be continuously
differentiable in a neighborhood ofx, then ¥ is
asymptotically stable if |f'(¥)]<1 and is unstable
if] f/(®) > 1.

Theorem 2. Assume that f has a continuous second
derivative at an equilibrium point ¥ and suppose that
f'E)=land f/"(X)#0. Then ¥ is a  semi-stable
equilibrium solution of (4). In particular, the following
statements are true.

ay If f"(X)<0, then X is a semi-stable from above
equilibrium solution of (1).

b) If f"(¥)>0, then X is a semi-stable from below
equilibrium solution of (1).

B. The Diagonal Recurrent Neural Network

The architecture of the DRNN model is depicted in
Fig.1. The mathematical description is as follows [8]:

S, =WP X, (k=1)+ Y W u(k) )
i=l

X (0= f(8,(0)) 3)

Ook) = ZW;’ X (k) @)

=1
where u; (jk) (i=1,..,n) denote the external input, and
S;(k), X;(k) (j=1,...,m) are the input and output of the
;™ neuron of the output layer, respectively. f(1) is the
defined by f(A)=1/1+e?).

W,JI , WJ-D are connection weights from input to output layer

activation  function

and within the output layer, respectively.
D
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Figure 2: Single self-feedback neuron.
3. STABILITY ANALYSIS

A. Single Self-Feedback Neuron

The self-feedback neuron model is illustrated in Fig. 2.
It can be described by the following equations:
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s(k) = wiu(k)+w{’ f(s(k-D) Q)
x(k) = f (s(k)) (6)
From (5) using definition (1), s(k) at the fixed point

can be represented as:

§=wiuk)+wl f) Q)

which yields:
1

) = (W—llb—]f —[%}u(k) )
Now let:

a=1/w’ ©)
and -

b=wl /WP )ut)=wl.auk)  (10)
Therefore:

fG)Y=as-b ¢h))
Suppose that ¥ is the neuron output at § :

X=f() (12)

and let .5 —b=g(F).

There are three different situations for fixed points,
based on different intersection situations between line g(s)
and curve f{s): 1) Two fixed points; 2) Three fixed points;
and 3) One fixed point.

A.1 Two fixed points

In this case (see Fig. 5), the slopes of the two functions

f(3), g(s5) are the same. Thus:

f'G)=a = fEN-fBE)]=a (13)
Since X = f(5), we can rewrite (13) as:

¥ -X+a=0 (14)
which re'sults:‘ , ;
- l++1-4a _ 1-4l1-4a
A= R — 19

Therefore, we should have 0<a <025 or wlD >4 . To
determine the value of b, we use the following;:
1-x

By substituting ¥; and X, from (15) into (16), we obtain:

- [-V1-4a| _ 1++1-4a
5 =ln| e | =10 ——— an
1++1-4a I-vl-4da
From (11), (15) and (17) we can conclude:
1+\/1~4a)_1+\/1——4a

1-J1-4a 2

b =as5|-x; =aln(

(18)

- - 1-4/l-4a | 1-+1-4a
by =a.5,~%, =a.ln -
, 1+v1-4a 2
- For stability analysis of each of these fixed points, we

combine (5) and (6) and rewrite the result in terms of @
and b as follows:

*(k) = f(—‘—x(k—l)+3) (19)
a a
1 b .
Denote p(x)= f(—x+—) to obtain:
a a
P ==5(1-5) 20)
P'(F) =¥ (1-F)(1-2%) @)
a

If we set (20) equal to one, we will obtain (14). So, in this
case, we should use Theorem (2) to determine the stability
of fixed points.
If p"(X) >0, then according to (21) the fixed point, which
is smaller than 0.5, is semi-stable from below, and the
other fixed point is asymptotically stable. If p"(X)<0,
then the fixed point, which is greater than 0.5, is semi-
stable from above, and the other one is asymptotically
stable. Since in applications such as control, semi-stability
is equivalent to instability, therefore, in this paper, we
regard them as unstable equilibrium points.
A.2 Three fixed points

In this case, the line g(5§)=a.5-b has three
intersections with f(3), two of which are asymptotically
stable, and the other is unstable. Indeed, the two lateral
fixed points are always stable. To determine the condition
for b that leads to two stable fixed points, we utilize (20)
and theorem (1) as follows:

lp'(®)|<1 = [f1-3)|<a (22)
which yields:
o ltvl=da o 1-vl-da 23)

2 2
The two inequalities in (23) imply the two aforementioned

asymptotically stable fixed points.
Since X = a.5 —b , we can rewrite (23) as:

a5, b >1t¥174e *1‘1?;*4“ :b<a§3-1_+_____~/12“4“ (24)
And
aE’z—b<1————————~——-— ';—4“ = b>a§2—1—1——— ‘12—4‘1 (25)

Using (24), (25) and (17), we obtain the following
condition for this case:

m(l—\/l—4a]_l-—\/l—4a <

1+v1-4a 2
(26)
<aln 1++1-4a _“"‘““4“
1-+1-4a 2

A.3 One fixed point
In order to have one stable fixed point, according to

(18) and( 26), b should satisfy:
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b, 27)

b>aln 1++/1—4a __l+\/l—4a _
T l1-41-4a 2

1-+/1-4a 1—~+/1~4a
b<a.ln - ;:b

s 28
1++/1-4q 2 @8)
The aforementioned situations are summarized in Table 1.
As we can see from this table, one neuron has at most three
fixed points; two of which are asymptotically stable and the
other is unstable.

Table 1
Stability analysis of fixed points in self-feedback neuron

Condition
WlD o4, Wll _ bw,D Results
u
b=by or Two fixed points; One point is semi-
b=b, stable and the other one  is
asymptotically stable.

Three fixed points; Two lateral points
by <b<h are asymptotically stable and the other
point is unstable.

b>b or
b<b, One asymptotically stable fixed point.

B. Multi-Input, One Self-Feedback Neuron

Fig. 3 illustrates a self-feedback neuron with multiple
inputs. The mathematical description is as follows:

sw)=WPf@G>JD+EEW%uAM
i=1

x(k)= flstk)) -

Let g= _lD_ and p= "'lb‘zwill u; (k) - According to (29), at
W] W] i

(29)

the fixed point we have:

fE)=a5-b (30)
which has the same form as (10), though the definition of
b is different. This distinction leads to generally different
behaviors in multi-input and single-input neurons. By
considering Table 1 and applying some mathematical
constraints, e.g., by considering identical values forw,-l ,

we can determine the stability of fixed points. In this way,

we can consider Su(k) as the new input to the single-
i

input self-feedback neuron analyzed in the previous
section.

u, (k)

Figure 3: Multi-input, single self-feedback neuron network,
Next, we consider #» input nodes with m self-feedback

neurons. The situation is illustrated in Fig. 5, which can
be described by the following difference equations:

C. Multi-Input, Multi Self-Feedback Neuron

Fig. 4 illustrates a self-feedback neuron with multiple
inputs. The mathematical description is as follows:

s, () =wP fls; (k -1))+iw,§ u; (k)

i=] @31
x;(0) = fls;(®) ;

j=12..,m
Now letting a; = l/wj? and

1 .
b, =szy{ uf(k)=a,~zw,§ u, (k) at the fixed point
j H 1

we will then obtain:
fG)=a;5;-b; (32)

Since equations given in (32) are uncoupled, the system
can be considered as a combination of m independent
difference equations, each of which has » inputs with one
self-feedback neuron, as investigated in the previous
section. Because each subsystem has at most three
equilibrium points (containing two asymptotically stable
equilibria), it is easy to show that the system has at most
3™ equilibria out of which at most 2™ are asymptotically
stable.

Xy (k)
Figure 4: Multi-input, multi-self-feedback neuron network.

Noting that, according to Table 1, we can choose the
weight parameters to have just one asymptotically stable
equilibrium point, it is better to evaluate the total number
of equilibria using the product of the numbers of solutions
for each equation (32). By defining

D; ={number of solutions of the equation f(5;)=a;s; —b;}

q; ={number of asymptotically stable solutions of the equation
f(Ej)zajEj "bj}
we have

P=ﬁpj 33)

=

o=I1e, o0
Jj=l

where P is the total number of equilibria and @ is the total
number of asymptotically stable equilibria of the system.
4. SIMULATIONS AND RESULTS

In this section, the results of some simulations will be
presented to demonstrate the validity of the
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aforementioried deductions.

A. Single Self-Feedback Neuron

In this experiment, we investigate the stability of fixed
points in a self-feedback neuron. Referring to Table 1,

W_ID can be set to any arbitrary value in (4,0), such as 0.
Using (18) we obtain b, =-0.681 and b, =—0.319 . We

assign three values for b, corresponding to three situations
mentioned in Table 1. Then, we choose an arbitrary value
for the input «, e.g., u=1. In this way, we can calculate the

corresponding values for w,’ using (10), for the above
three cases.

Now, we want to adjust w{ in order to have two fixed

points. As demonstrated in Fig.5, for the case of two fixed
points, we have one semi-stable and one asymptotically

stable point. When b =5, (w =-6.81) the fixed point
that is greater than 0.5 is semi-stable, and the other one is
asymptotically stable (Fig.5). When b = b, (w{ =-3.19),

the fixed point that is smaller than 0.5 is semi-stable, while
the other one is asymptotically stable. The semi-stability is
equivalent to tangency of Hne to the curve. ‘

In order to have three fixed points, we choose a value
for b between b, and b,. In this experiment, we choose

b= +b)/2=-05 (w,’ = -5}, the result of which is
sketched in Fig. 6. As shown in the figure, the two lateral

points are asymptotically stable while the other point is -

unstable.

For one fixed point case, we should choose b>b, or

b<b,eg b=-0271 (W =-2. 71) It is apparent from
Fig. 7 that the fixed point is asymptotically stable.
. . 1.4 - 2

12 ' -
1
08

08

f(shar)

04

o2

o

1 . X, i N i i, i I
o2 -3 2 -1 [i] 1 2 3 4
sbar

Figure 5: Stability of two fixed points, b = b, (w{_ =-6.81).
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Figure 6; Stability of three fixed points, b =—0.5 (wll =-35).
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14} Pl

12k -
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Figure 7: Stability of one fixed point b = -—0.271(wl] =-2.71)

B. Two Self-Feedback Neuron

We have simulated a two-neuron network as illustrated
in Fige. 5, for n=2 and m=2. The situation can be
formulated as:

TABLE2
* ' NUMBER OF EQUILIBRIUM POINTS AND THEIR STABILITY IN TWO
DIMENSIONAL SPACE
(WD >4 . Unstable
J b, b, Stable Points .
Points
Status
1 b, b,y 1 3
2 blg >b7_2 1 1
3 bz (b21,b22) 2 4
4 by by 1 i
5 >b12 >b22 1 0
6 >by; (ba1,b22) 2 1
7 (by1,b12) bz 2 4
8 (bi1,bi2) >by; 2 1
9 (bi,bp) | (ba,ba) 4 5

In Fig.5, for n=2 and m=2. The situation can be
formulated as:

/[f(sl(k))} wl wh [u,(k)]+ wp J[f(s,(k 1))}
F(s2)] {wh wh lw®] [0 WP | f(sk-1)

[xl (k)]__ﬁ_{f(a(k))}
B ®] |7 (s:00)]

Parameters w{ can be determined as

and w?

~indicated in Table 1. In all of the examples shown in
'Fig.8, we have chosen w =10 and w? =7. The
“elements of the input weight matrix will be chosen based

on wP and wP, the number of equilibria and their

~ 7 stability. We have summarized the different situations in

Table 2, which indeed is an extension of Table 1. For the
simulations presented in Fig. 8, the parameter values are
given in the caption of the figure.

Suppose that one asymptotically stable equilibrium
point is desired. According to Table 2, we have four

- . choices. The major difference between the choices is the

number of unstable equilibrium points. For example, at the

. first row of the table, there are one stable and three

"stable equlhbrlum points; while at the fifth row there is
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only one equilibrium point which is asymptotically stable.
The simulation results for these two examples are shown
in Fig. 8(a) and 8(b), respectively. In fact, Fig. 8(a)
illustrates the situation in which there are one
asymptotically stable and one semi-stable (unstable) fixed
point in  each  dimension. In  this  case,
p=2,p,=2,q,=1,q,=1. Thus, using (33) and
(34) we will have: P=p,.p, =4 and Q=q,.4, =1 .1In
Fig. 8(b), there is one stable point in each dimension. In
this case, p, =1, p,=1,¢,=1, g, =1. Furthermore,
using (33) and (34) we have: P=p .p,=1
@=q1-92=1.

Finally, we can choose the elements of the input weight

matrix so that there are three fixed points
(p, = p, =3) in each dimension. Since in this case we

and

have g, =¢q, =2, we expect four asymptotically stable

equilibrium points (Q=g,.g, =4 ). This situation is

sketched in Fig. 8c.
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Figure 7: System trajectory in two dimensional space. Network
parameter values are as follows:

wD =10,wP =7, by, =—0.681, by, =~0.319, by =~0.603,b5, =-0.396

5. CONCLUSION

Storage of analog pattern vectors with real-valued
components using feedback neural networks is of great
interest. Theoretically, it was shown how the nature and
the number of equilibrium points are affected by weight
matrices. In particular, an easy and effective way for
selecting the elements of the weight matrices was derived
in order to get the number of asymptotically stable
equilibrium points under control. Several simulations
presented in the paper verified these claims.
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