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ABSTRACT

The performance of various estimators, such as maximum a posteriori (MAP) is strongly dependent on
correctness of the proposed model for noise-free data distribution. Therefore, the selection of a proper model
for distribution of wavelet coefficients is very important in the wavelet-based image denoising. This paper
presents new image denoising algorithms based on the modeling of wavelet coefficients in each subband
with a mixture of Laplace probability density functions (pdfs). We also use Laplacian mixture pdf that uses
local variances for the mixture model. The mixture model is able to capture the heavy-tailed nature of
wavelet coefficients and the local variances can model the empirically observed correlation between the
variances. Therefore, by using these relatively new models, we are able to model the statistical properties of
wavelet coefficients. Within this framework, we describe a novel method for image denoising based on
designing a MAP estimator, which relies on the mixture distributions. The simulation results show that our
proposed technique achieves better performance than several published methods both visually and in terms

of peak signal-to-noise ratio (PSNR).
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1. INTRODUCTION

Usually, noise reduction is an essential part of many
image processing systems. The main sources of noise are
arising from the imaging devices and from the channels
during transmission [1]. In the recent years, there has been
a fair amount of research on wavelet-based image
denoising [1]-[8]. The motivation of denoising in the
wavelet domain is that while the wavelet transform is good
at energy compaction, the small coefficients are more
likely caused by noise and large coefficients are caused by
important signal features[4 ]. The small coefficients can be
thresholded without affecting the significant features of
the image [2]. Thresholding is a simple non-linear
technique, which usually operates on one wavelet
coefficient at a time [2). In its most basic form, each
coefficient is thresholded by comparing against threshold:
if the coefficient is smaller than the threshold, set to zero;
otherwise it is kept or modified. Replacing the small noisy
coefficients by zero and applying the inverse wavelet
- transform on the result may lead to reconstruction with the
essential signal characteristics and with less noise [2].

Many of wavelet-based denoising algorithms were
developed based on soft thresholding proposed by Donoho
[1]. Early methods, such as VisuShrink [2] use a universal

threshold, while more recent ones, such as SureShrink [3]
and BayesShrink [4] are subband adaptive algorithms and
have better performance.

The problem of wavelet based image denoising can be
expressed as estimation of clean coefficients from noisy
data with Bayesian estimation techniques. If the MAP
estimator is used for this problem, the solution requires a
priori knowledge about the distribution of wavelet
coefficients. Based on the distribution type, the
corresponding estimator (shrinkage function) is obtained.

Various pdfs such as Gaussian, Laplace and
generalized Gaussian were proposed for modeling noise-
free wavelet coefficients [8]-[9). For example, the
classical soft threshold shrinkage function can be obtained
by a Laplacian pdf [5]. Bayesian methods for image
denoising using other distributions such as mixture models
have also been proposed [10]-[15]. Because energy
compactness property of the wavelet makes it reasonable
to assume that essentially only a few large coefficients
contain information about underlying image, the marginal
distribution of wavelet coefficients is highly kurtoutic, and
can be described using suitable long-tailed distributions
[8]. In fact the empirical distribution is highly peaked at
zero and when the distance from zero increases, it drops
off more slowly than the Gaussian distribution. It has been
shown that mixture pdfs are suitable models for capturing
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this property [10]-[15]. In [11] the wavelet-based hidden
Markov model (HMM) is proposed for statistical signal
processing and a mixture of Gaussian distributions is used
for modeling this heavy-tailed property of wavelet
coefficients. This distribution has a closed form pdf and its
parameters  easily  obtained using  Expectation
Maximization (EM) algorithm. Portilla et al. employ
another class of mixture models that is called Gaussian
scale mixtures (GSM) to model the variance dependency
of wavelet coefficients [12]. This distribution also uses a
type of EM algorithm to find the parameters. In [13],
based on the GSM, the multivariate Laplace distribution is
produced using an exponential prior for the scale factor.
This pdf, can model the statistics of the discrete Fourier
transform  coefficients (discrete Fourier transform
. coefficients similar to wavelet coefficients have sparse
distribution) and its parameters can easily obtained,
because this pdf has a closed form. In [14], a multivariate
Bernoulli-Gaussian model is proposed as prior model of
noise-free wavelet coefficients in each subband that can
capture jointly the inter-scale and intra-scale dependencies
in the different spectral channels. Heavy-tailed
distributions are also often used in various machine
learning areas, €. g., independent component analysis
(ICA). In [15], a hierarchical model based on ICA and
Laplacian mixture pdf is employed for capturing the non-
linear dependencies of images.

In this paper, we use a mixture of Laplace random
variables to model the wavelet coefficients in each
subband. Because Laplace pdf has a large peak at zero and
its tails fall significantly slower than a Gaussian pdf of the
same variance, a mixture of Laplace pdfs can improve
modeling of wavelet coefficients distribution.

The primary properties of the wavelet transform are
locality, multiresolution, and compression. The first
property states that the probability structure may be
defined locally, which means the intra-scale dependency
of wavlet coefficients in each subband [12},[14]-[15], and
the last property states that the wavelet transforms of real-
world signals tend to be sparse [4]. In this paper, we also
use a mixture of Laplace pdf with local variances to model
these locality and heavy-tailed properties of wavelet
coefficients.

The rest of this paper is organized as follows. After a
brief review on the basic idea of Bayesian denoising in
Section 2, we describe how the soft thresholding can be
obtained using the Laplace pdf. In Section 2.2, the
theoretical base of mixture models is introduced. To apply
mixture model, we need to implement EM algorithm to
determine model parameters. A new version of EM
_ algorithm that finds apart parameters for each pixel is
described in this section, In Section 2.3, we obtain the
shrinkage function derived from our Laplacian mixture
model namely, LapMixShrink. We also describe local
version of this shrinkage function in this section. In
Section 3, we use LapMixShrink and our new model with

local variances for wavelet-based denoising of several
images corrupted with additive Gaussian noise in various
noise levels. The simulation results in comparison with the
VisuShrink, SureShrink, BayesShrink and hidden Markov
tree (HMT) [11], show that our algorithm achieves better
performance visually and in terms of PSNR. Finally, the
concluding remarks are given in Section 4.

2. BAYESIAN DENOISING

In this section, the denoising of an image corrupted by
white Gaussian noise will be considered. We observe a
noisy wavelet coefficient, y(k)=w(k)+ n(k), where n is
independent, white, zero-mean Gaussian noise and we
wish to estimate the noise-free coefficient, w(k), as

accurately as possible according to some criteria.
The MAP estimator will be used below to estimate
w(k) from the noisy observation, y(k) [4]. This

estimator is defined as

W(k) = argmax puy )|y (k) | (k) ()
w(k)
After some manipulations, (1) can be written as
W(k) = argmax[ p,, (y(k) — w(k)) Py (W(K))] @)

wi(k)
We have assumed the noise is zero-mean Gaussian with
variance o,

Du(n(R)) = (U0, \27)).exp(~n(k)? 1(202))
By replacing (3) in (2) yields

) = agma(-(0) - w()* o)+ /N 3)

where f(w(k)) = log(py)(w(k))) -
Therefore, we can obtain the MAP estimate of w(k) by
setting the derivative to zero with respect to Ww(k). That

gives the following equation to solve for Ww(k) .

(k)= W(k)) o p + £(W(I) =0 @)

A. Denoising Based on Local Laplace pdf
We now need a model p,,x)(w(k)) for the distribution

of wavelet coefficients. Mihcak [6] proposed a Gaussian
pdf with local variance to model wavelet coefficients. We
use Laplace pdf instead Gaussian pdf as

Pyw(iy(W(k)) = Laplace(w(k),o (k))
= exp(~V2w(i)|/ o () (o (k)V2)
In this
S k) = —log(o(k)2) ~2|w(k)|/ (k) thus
y(k) = w(k) + (V202 | o(k)).sign(W(k)) that is often

written in the following way

(k) = sign(y(k)-(y (k)| ~V202 1 (k)

©)

case

(6)
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Here (a), is defined as step function with amplitude a .
Let us define the SoftL operator as

SoftL (g (k), 7 (k) = sign(g (g (k)| -z (k) (7)
The shrinkage function (7) can be written as
Wik = SoftL(y(k),N 207 / o(k)) ®)

To apply the SofiL rule we need to know o, and
o(k). For each data point y(k), an estimate of o(k) is
formed based on a local neighborhood N(k). We use a
square window N(k) centered at y(k). Then, we obtain
an empirical estimate for o(k) as

>V IM=o}
JeN(k)
where M is the number of coefficients in N(k). When the

noise variance is unknown, we can estimate it using a
robust median estimator from the finest scale wavelet
coefficients [3]

~2 _
o ®= )

.2 median('yil)
G = et
0.6745
If Vk,o(k)=0, SoftL function can became as soft
thresholding rule [1]. Figure 1 illustrates the histogram of
HH subband of 512x512 Lena image in third scale and the
best Laplace pdf and local Laplace pdf fitted to this
histogram and Figure 2 shows a comparison between SofiL
and soft thresholding function.

, ¥i € subband HH in finest scale (10)

B. Mixture Models with Local Variances

A mixture model for a random variable has a pdf that is
the sum of two simpler pdfs. In the following sections, we
will use a mixture of two Laplace pdfs with local variances
to model the distribution of wavelet coefficients of images
~ as the following

Py (W(k)) = apy (w(k)) + (1 — a) p (w(k))
= aexp(—/2|w(k)|/ o (k) oy (k)2 +
(1~ a)exp(—2|w(k)/ o3 (k) (o3 (k12)
It will be necessary to estimate the parameters o(k),

o,(k) and a from data. For a mixture model, an iterative

numerical algorithm is required to estimate the parameters.
The most frequently used algorithm to determine the
parameters of a mixture model is the Expectation
Maximization (EM) algorithm. In this paper, we use an
EM algorithm with local parameters for each pixel of the
subbands. The E-step calculates the responsibility factors,

) ap (W)
M) < o o0) + (1= @) 73 (o) (12)

(- a)p, (w(k))
apy (wW(k)) + (1= a) po (w(k))

(11)

ry (k) - (13)

0.05}+
0.04r
0.03

0.02}
0.01} -

R
Colst |
o

—800 -100 0 100 200

Figure 1: Histogram of HH subband of 512x512 Lena image in
third scale and the best Laplace pdf (dotted line) and local
Laplace pdf (solid line) fitted to this histogram.

200
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Figure 2: A comparison between SoftL (solid line) and soft
thresholding function (dashed line).

o

The M-step updates the a,o(k)
and o5(k) . The mixture parameter a is computed by

parameters

| &
a¢ an () (14)
where N is the number of coefficients in subband. The
variances oq(k), o, (k) are computed by
o1 (k) =20 D H (DA D n (), =12
JeN(®) JeN(k)
where M is the number of coefficients in square window
N(k) centered at w(k). For many mixture models, a
closed form for computing o k), i=12 does not appear.

In these cases, the following formula produced from a
used to

15)

mixture of Gaussian pdf can be

approximate o {k) :

P k) 2@ D, =12 g4
JeN(k) JeN(k)

If Vk,01(k) = 01,02 (k) = 03, (11) changes to

P(W) = aLaplace(w,o1) + (1 — a) Laplace(w,3)

exp(-—ﬁlwi) exp(_:/?_{w]) a7
= a._.____.o-_l__ + (1 — a)........._._.o._l_._..._
(o3} \/5 0'2\/2
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Figure 3: Top image: Histograms of the wavelet coefficients and
the best fitted Laplacian mixture model in second scale of Lena
image. Bottom image: Histograms of the wavelet coefficients
and the best fitted Laplacian pdfin second scale of Lena image .
In this case, it will be necessary to estimate the three
parameters o;, o, and a from data. While o; and o;
represent the standard deviation of the individual
components, they are not very easily related to the
standard deviation of the random variable w; for example

VAR[W] # a*o? +(1-a*)o3
Nor are other simple relations available. The estimation

of the three parameters is more difficult than it is for a
single component model. For this mixture model, we use
EM algorithm to estimate these parameters. A simple
description of this EM algorithm can be found in
Appendix.

Note that the random variable w in (16) is not the
result of adding two random variables. If that were the
case, then p(w) would be a convolution of p,(w) and
pa(w). Instead, w can be generated using a two step
procedure. First, generate a binary random variable v
according to

rv=D=a,

The value of v will be either 1 or 2. For v=1, p; is
used to generate w and for v=2, p, is used to generate
w . Because this procedure produces a random variable
w with the pdf in (16), w can be considered as being
generated by either p; or by p, (even if that is not how w
is physically produced).

Because Laplace pdf has a large peak at zero and tails
that fall significantly slower than a Gaussian pdf of the
same variance, a mixture of Laplace pdfs can improve
modeling of wavelet coefficients distribution.

Figure 3 shows the best Laplacian pdf and Laplacian
mixture pdf fitted to the histogram for second scale of
512x512 Lena image. For better comparison, we can see
this figure in logarithmic domain in Figure 4. We see that
the mixture of two Laplace pdfs follows the histogram
much more closely than both Gaussian mixture model and
a single Laplace pdf.

piv=2)=1~a

C. Denoising Based on a Mixture of Laplace pdfs with
Local Variances

This section describes a non-linear shrinkage function
for wavelet-based denoising that is derived by assuming
that the noise-free wavelet coefficients follow a mixture
model with local variances. Specifically, we assume that
the noise-free wavelet coefficients are modeled as (11).
We can obtain an estimate of W by the following rule

Wk) = pa (YW (k) + pr_a (Y)W (k) (18)
where p,(y(k)) is the probability that w(k) was
generated by p, and where similarly p;_,(y(k)) is the
probability that w(k) was generated by p, . For i={,2 the
expression w;(k) is an estimate of w(k) based on the
assumption that w(k) was generated by p;.If p; and p,
are Laplace pdfs with variances oy(k) and op(k)
respectively, then the SoftLfunction can be used to get

Wi (k) and Wy (k). We would have
W) = pa (WNSAAL(Y (), (W202)/ oy (k)

19
+ P1a (WE)SARL(YE),(N202 )/ oy (K))
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Figure 4: Histograms of the wavelet coefficients and the best
fitted pdf in second scale of Lena image in the log domain. From
top to bottom: Gaussian pdf, Laplace pdf, Gaussian mixture pdf
and Laplacian mixture pdf. -

But, we still need to determme pa(¥(k)) and

Pi_o(¥(k)) . For these values, we can use the formulas
based on Bayes theorem [4] as the following

agi(y(k))

k) = :
Pa0 ) = ) + (- 8 G (20)
- 2)g, (k)
() =
Prea b 0) = )+ (L - D22 ) @

where g; ( y(k)) is the pdf of y(k) under the assumption
that w(k) was generated by p,
S6 we have

0. T T T T
0.3
G4
[ od
1 i — L 1 s e ) L

F;gure 5_ :pdf ;)f the ;um o;“a Laplace and a Gaussian pdf
ag (Y(k)SofL(y(k), V202 / o1 (k)
agi (k) + (1~ a)g, (¥(k))
+ U= D2 GRDSALYR)207 1oy (K))
agi (k) + (1 - a)g (y(k)

Because y(k) is the sum of w(k) and independent
Gaussian noise, the pdf of y(k) is the convolution of the

(k) =
(22)

pdf of w(k) and the Gaussian pdf,

Py (k) = (apy (y(k) + (1~ a) p, (y(kN) * p,, (v (k)
=ag (k) + (1 -a)g, (y(k)
where
&1(y(k)) = Laplce (y(k), o1 (k))* Gaussian (y(k), o)
and
82(y(k)) = Laplce (y(k), 05 (k)) * Gaussian (y(k),0,,)
g1(¥(k)) and g,(y(k)) are not one of the standard

pdfs that are commonly known. Figure 5 shows pdf of the
sum of a Laplace and a Gaussian random variable. A
formula for pdf of y(k) that is sum of a Laplace random
variable with standard deviation o; and a zero-mean Ga-

ussian random variable with variance o,, is given by [4]
&g (y(k)) = LapGauss(y(k), O; (k)a Ty )
(k)
2

Gn

=exp(—=—-)[erfex(o, /oy (k) - y(k)I(V25,))  (23)

+erfex(o, /oy (k) + y(k) (N 20, )1/(2v 20, (k)

2 2 2
where erfex(x) = exp(x“)(1 - -—L e di).
Jr o
So, y(k)will be a mixture of two LapGauss pdf with the
following pdf
Pyiey(¥(k)) = aLapGauss(y(k),a(k),0,)

24)
+(U- a)LapGauss(y(k), o5 (k),0,)
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Figure 6: Histogram of the noise-free and noisy Lena image and
the best fitted mixture model.
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Figure 7: The threshold functions LapMixShrink for Lena image
in each subband.

Figure 6 shows the histogram of noisy 512x512 Lena
image corrupted with additive Gaussian noise with ¢,=10
and the best mixture of two LapGauss pdfs fitted to it.

After canceling some common terms and rearranging

(20) we get p,(¥(k)) =1/(1+ R) where

100

) 2 2
SofL(y(k), fgc")HRSOffL(y(k),%) 25)
) = 1 1+R :

Like the soft threshold function, this shrinkage function
that when Vk,01(k)=o0p,0,(k)=0, we call it
LapMixShrink reduces (or shrinks) the value of y to
estimate w. This nonlinear function does not shrink large
values of y as much as the soft threshold function does.
For several different values of the model parameters, some
of the shrinkage functions are given in the Figure 7.

3. EXPRIMENTAL RESULTS

This section presents image denoising examples in
wavelet [5] domain to show the efficiency of our new
model and compare it with other methods in literature.

Figure 8 shows the denoised images obtained using
Laplace pdf (soft thresholding), a mixture of 2 Laplace
pdfs (2LapMixShrink), a mixture of 3 Laplace pdfs
(3LapMixShrink) and a mixture of 2 Laplace pdfs with
local variances (local LapMixShrink). The 512x512 Boat
image is used for this purpose and zero mean white
Gaussian with o, =35 is added to the original image.

We also tested our algorithm using different additive
Gaussian noise levels o, =10,20,30 to three 512x512

grayscale images, namely, Lena, Barbara and Boat and
compared with VisuShrink, SureShrink, BayesShrink and
HMT. We implement our algorithm for known noise
variance and unknown noise variance using (10).
Performance analysis is done using the PSNR measure.
The results can be seen in Table.l. Each PSNR value in
the table is averaged over ten runs. In this table, the
highest PSNR value is bolded. As seen from the results,
our algorithm mostly outperforms the others.

4. CONCLUSION AND FUTURE WORKS

In this paper, we use LapMixShrink function based on a
mixture of Laplace pdfs for modeling of wavelet
coefficients in each subband. We also use local version of
this algorithm. Experiments show that our model has
better visual results than other methods such as soft
thresholding. In order to show effectiveness of new
estimator, we compared LapMixShrink method with
effective techniques in the literature and we see that our
denoising algorithm mostly outperforms the others.

Because complex wavelet transform [16] is a
directional transform, it can reduce visual artifacts of

) denoised images. Thus if we use this algorithm in complex

la (o On B 0, B
o ® o0 e, ) o,
a Oy ) On (k)
@ e ® oy T e Vo,

As p(0)+pr-a(»)=1 We get p_,(y)=R/(1+R) and
S0 we can write (22) as

wavelet domain, the quality of denoised image will be

)] improved. Instead of this shrinkage function, other

nonlinear shrinkage functions can be used. For example,
instead of using Laplace pdf we can use generalized
Gaussian distribution or instead of using the MAP
estimator we can use the minimum mean squared error
(MMSE) estimator. Also, instead of processing each
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wavelet coefficient individually, better denoising results
can be achieved by processing groups of wavelet
coefficients together [5, 7]. Therefore, if we can use a
model for wavelet coefficients that not only is a mixture
but is also bivariate the performance of denoising
algorithm will be improved. Because the state-of-the-art
algorithms generally use local adaptive methods, using
local adaptive methods in combination with mixture and
bivariate models may further improve the denoising
results.

5. APPENDIX: EM ALGORITHM

The Expectation-Maximization algorithm is an iterative
numerical algorithm that can be used to estimate the
parameters of a mixture model. Each iteration consists of
an E-step and an M-step. We give here only a simple
description of the EM algorithm. The mixture model i is
p(x)=apy(x)+bpy(x)
where a+b=1.The data is x, for n=1.2,.N. From the
data we want to estimate the 3 parameters a, oy and 0.
The EM algorithm works by introducing an auxiliary
variable that represents for each data point how likely that
data point was produced by one or the other of the two
components p;(x) and p,(x). This auxiliary variable is
denoted by n(n) and r(n). r(n) represents how
responsible p;(x) is for generating data point x, ; while
7 (1) represents how responsxble Pa(x) is for generating
data point x,,.

The EM algorithm starts by 1n1t1ahzmg a,b,o and
o, ; and then proceeds with an sequence of E-M steps
until the parameters satisfy some convergence condition.
The initial values for a and b should satisfy a+b=1.

- The E-step calculates the responsibility factors,
apl(xn) , "2 (n) “— bp2(xn)
ap](xn)+bp2(xn) ap](xn)+bp2(xn)

Note that the responsibility factors are between Oand 1
and that n(n)+r(n) =1,

The M-step updates the parameters a,b,07 and o, . In
this step we maximize Q function that is defined as

n(n) <

N
0= n(m)In(a.p;(x,))+ 7 (m) In(b.ps (x,))
n=l
Based on Lagrange multiplier, the mixture parameters
a and b are computed by

a<« “‘Z”l(”) b« ——-Zr2(n)
) n—]

It is easy to venfy that a+b =1 is guaranteed. One
way to o, and o, update is to modify the basic formula for
the sample variance. Instead of estimating the variance as
the mean of the squares of the data values using the usual

formula, & (——(1/ N )Z ,, , we can estimate 0'12

based on the maximization of Q as a weighted sum of the
data values, where the weight for x, is the responsibility of
pi(x) for the data point x,. Because Q depend on p;(x,)
and py(x,), we do not have a unique formula and for each
kind of pdf we would have a different formula. For
example the Laplacian pdf gives the following formulas

N N
Zr 2 (”)‘xnl

Z"I(n)!xnl
o7 (_\/5____________n=;v ) (,"\/—2—“_"’“—”:%
1y (n)

D nm
n=1 n=l

For many mixture models such as a mixture of
LapGauss pdfs, a closed form for computing o and o
does not appear. In these cases, following formulas
produced from a mixture of Gaussian pdfs can be used to
approximate oy and o5 .
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TABLE 1

AVERAGE PSNR VALUES OF DENOISED IMAGES OVER TEN RUNS FOR DIFFERENT TEST IMAGES AND NOISE
LEVELS

NOISE NOISY VISU- SURE- BAYES- HMT 2LAPMIX | 3LAPMIX LOCAL LOCAL
VARIANCE SHRINK | SHRINK | SHRINK (based -SHRINK -SHRINK | LAPMIX- | LAPMIX-
on SHRINK | SHRINK
LENA Gaussian for -
mixture unknown
model) noise
variance
=10 28.18 28.76 33.28 3332 33.84 33.60 33.63 34.13 34.18
6,=20 22.14 26.46 30.22 30.17 30.39 30.41 30.42 30.85 30.88
6,=30 18.62 25.14 28.38 28.48 28.35 28.67 28.75 2896 | 2899
BOAT
o,=10 28.16 26.49 31.19 31.80 32.28 31.94 31.99 32.11 32.34
0,.=20 22.15 24.43 28.14 28.48 28.54 28.59 28.63 28.88 28.95
=30 18.62 23.33 26.52 26.60 26.83 26.74 26.84 27.01 27.01
BARBARA
6,=10 28.16 24.81 30.21 30.86 31.36 31.40 31.43 31.85 32.21
0,=20 22.14 22.81 25.91 27.13 27.80 27.25 27.30 27.99 28.12
6,=30 18.62 22.00 24.33 25.16 | 25.11 25.14 25.18 25.92 25.99

Figure 8: Denoised images. From top left, clockwise: soft thresholding, 2LapMixShrink, local Lap MixShrink and 3Lap MixShrink.
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