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ABSTRACT

A general multiresolution approach is developed and applied to upscaling of multiscale 2D heterogeneous
reservoirs. The method uses the wavelet transformations to the original detailed description of the reservoir,
with finer resolution introduced in region of potentially high flow rate (high permeability) and coarser,
homogenized property descriptions applied throughout the bulk of the model. Wavelet transformations are
currently recognized as the most efficient method of data compression. The method is applied to flow
problem (steady single-phase flow) and transport problem (miscible displacement process). In this way,
pressure is computed on the coarse-grid using upscaled properties. These pressures are then used to compute
the pressure at the small scale within each coarse block. Thus, an approximation for the pressure is obtained
without ever having to solve the full fine-grid problem, saving CPU time and memory. Finally, velocity
field, the most important key component of fluid flow process, is calculated using obtained pressure field.

The results of two problems show good agreement with full fine-grid solution.
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1. INTRODUCTION

The data describing the basic geophysical properties of
a reservoir are important input to any method for
simulating the production of hydrocarbons. These data,
usually generated by geostatistical methods, are often
given on a very fine-scale. These fine-scale models
routinely contain 10° to 10° grid blocks. These models
often cannot be used directly in a reservoir simulation
because of the time and memory required for solving the
pressure field on the fine-grid. Thus, the data have to be
upscaled to a coarser representation before they are used
in a simulator. Upscaling methods try to reduce the size of
the geological model without losing accuracy (the basic
idea of data compression). On the other hand, upscaling is
a technique that transforms a detailed geological model to
a coarse-grid simulation model so that the fluid flow
behaviors in the two systems are the same. Accurate
upscaling consists of two inseparable parts: gridding and
averaging. The former intends to capture the global
geological features of a geological model, and the latter
focuses on preserving the local geological details within a
coarse-grid block. Upscaling is necessary because
available computers are usually memory-limited and are

not fast enough to simulate the detailed geological models
derived from reservoir characterization. Even as
computers increase in memory size and speed, accurate
upscaling will always be a more cost-efficient method for
simulating large, complicated reservoirs.

Averaging, one of the key components of upscaling,
calculates the effective properties for a coarse simulation
grid that preserves fine-grid fluid flow dynamics
(including pressure and flow rate) within the coarse-grid
block. Averaging methods range from the simple averages
(arithmetic, harmonic and geometric means) to numerical
simulation methods (pressure solver). Intermediate
methods are, for example, power-law averaging and
renormalization. Simple and intermediate methods are fast
but less accurate, while numerical simulations are accurate
but time-consuming. A fast and accurate averaging method
is demanded for upscaling of very large geological
models.

The averaging problem is an old, unsolved problem of
petroleum reservoir engineering. It is well known that the
effective permeabilities for a layered, permeable medium
with no cross flow are the arithmetic mean for flows
parallel to the layering direction and the harmonic mean
for flows perpendicular to the layering direction [23].
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Cardwell and Parsons [1] proved that when fluid flow
crosses over layers in a permeable medium, the arithmetic
mean and harmonic mean give only the upper and lower
limits, respectively, for the effective permeability of a
heterogeneous permeable medium, rather than the
effective permeabilities themselves. They concluded that
the effective permeability of a heterogeneous permeable
medium lies between the arithmetic and harmonic limits.
Warren and Price {2] conducted several numerical
experiments to investigate the effective permeability of a
heterogeneous permeable medium and concluded that the
effective permeability of the randomly generated 3D
permeable medium equals the geometric mean of the
individual permeabilities. Because of the technical
limitations at that time, their conclusion actually is good
only for purely uncorrelated permeability fields, which
seldom exists in real petroleum reservoirs.

The most accurate way of calculating the effective
permeability of a large, coarse-grid block containing many
fine-grid blocks is by solving flow equations with
constant-pressure and no-flow boundary conditions [2]-
[3], [27] or with periodic boundary conditions [4],
regardless of the extensive computation required. This
approach is referred to as a pressure-solver technique by
many researchers because it involves solving the fine-grid
pressure distribution first and then calculating the effective
permeability with the pressure drop and the calculated
flux. Because of computing limitations, pressure-solver
techniques may not be practical for extremely large
geological models.

There are several averaging techniques intermediate
between the traditional simple averaging methods and
pressure-solver techniques. The most frequently used
intermediate methods are renormalization [5]-[7] and
power-law averaging [81, [9], [28]-[29]. Renormalization
includes a series of multiple step calculations using an
equivalent resistor network approach. The major
drawback of the renormalization technique is the use of
unrealistic boundary conditions, which may result in
estimation errors over 100% [34]. However, some more
current results [10] show that use of periodic boundary
conditions may improve the accuracy of the
renormalization method. Power-law averaging has been
used extensively in research work on upscaling in recent
years [5]-[7]. Power-law averaging is faster than the
pressure-solver techniques, but it is not easy to use in
practice because it requires empirical determination of the
power-law  averaging exponent through fine-grid
simulation. The exponent can vary from one coarse-grid
block to another. As a result, the use of a constant
exponent for all coarse-grid blocks may result in large
errors. The use of global upscaling [7] (focusing on global
similarity between a geological model and its upscaled
simulation model) drastically reduces the errors induced
from averaging by minimizing heterogeneity in each
coarse-grid block through a special gridding algorithm.

One drawback for current global upscaling method is that
the algorithm uses a power-law averaging method for
averaging in each coarse-grid block. If the fine-grid
permeabilities in each coarse-grid block were perfectly
uncorrelated (white noise), the power-law method would
be sufficiently accurate. Unfortunately, to make fine-grid
permeabilities in all coarse-grid blocks perfectly
uncorrelated is very difficult in practice. A comprehensive
review of these upscaling methods can be found in the
paper by Renard and de Marsily [11].

An alternative approach to upscaling is to solve
pressure equation on the coarse-scale using upscaled
properties while fine-scale information is introduced
during the saturation update by using either a pressure or
flux refinement [30], [31]. Guedes and Schiozer [32] used
a similar approach and included gravity effects and well
boundary conditions as source or sinks in one grid block.
The refining technique developed in Hermitte and
Guerillot [33] was used to obtain a continuous velocity
field within each coarse-grid block. Arbogast and Bryant
[34] developed an alternative approach in the context of a
mixed finite element formulation. The pressure field was
solved implicitly on a coarse mesh and Green functions
were used to derive the fine-scale solution from the
coarse-scale simulation. Hou et al. [141-[15] developed a
multiscale finite element method where finite element
basis functions are calculated on a coarse mesh
incorporating the fine-scale description of reservoir. These
basis functions were then used to solve the elliptic
problem on the coarse mesh for different types of
boundary condition and to reconstruct the velocity field on
the fine mesh.

A major objective of this study is to develop a fast and
accurate averaging method that improves the traditional
averaging methods for realistic reservoirs and substitute
direct simulation methods for upscaling geological
models. In this way, an automatic multiresolution
upscaling technique based on wavelet transformations is
presented in 2D heterogeneous reservoirs. A wavelet
reconstruction method is used to provide for upsampling
fine-scale property fields from information at various
levels of coarser scale. The beauty of the method is that
since the equivalent properties at different length scales
are computed recursively, the interdependent influences of
the heterogeneities on the scales are included effectively.

The outline of this paper is as follows. In section 2, we
consider the historical and mathematical background of
wavelet transform and its application to various flow
processes upscaling in heterogeneous reservoirs. To
ensure that the proposed method is accurate and practical,
single-phase and miscible displacement simulations have
been done as benchmarks to validate the method. Section
3 shows these results. Finally, discussion about the results
and conclusion points has been presented in section 4.

2. THEORY
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Wavelet transform, like the extensively used Fourier
transform, is also kind of linear integral transforms. To
understand the mechanism of the wavelet transform, one
may begin with the familiar Fourier transform. Recall that
for a given function f(z) the corresponding Fourier

transform takes the form [24]:
-~ +oc .
fwy = f_ f@e™dx 1

where w is the angular frequency.

Although the above transform gives information about
the content of a function in the frequency domain, it gives
no information about the location of these frequencies in
the spatial domain. Therefore, strictly speaking, a Fourier
transform is applicable to a ‘“homogeneous” system;
otherwise, it only extracts “blend” properties. Figure 1
shows the schematic view of Fourier transform.
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Figure 1- Fourier Transform (FT)

Spatially varying effects are quite common and are
reminiscent of many natural and man-made phenomena,
such as in seismic signals, non-stationary geophysical
processes, and in reservoir rock property distributions. To
extract information from such processes, a Fourier
transform alone is, therefore, quite inadequate. This is
because although Fourier transform gives the information
of certain frequencies, this information cannot be
effectively used, as it is not spatially localized. Ideally,
one would have space and frequency information,
simultaneously. One of the methods whish gives the space-
frequency representation of a function (or process) but still
remains within the Fourier transform. framework is the
windowed  Fourier transform. By the windowed Fourier

transform, spatial localization can be obtained by
convoluting a windowing function w(z) with the
convolutional Fourier transform, as follows:

PN +00 .

f(w,s) = f f@w@—se ™ ds 2)

where s is the location of the center of the window.
F (w, s) *describes the spectral content of f(z) around s

within the window defined by w (z) .

Despite an ability to spatially localize information, the
windowed Fourier transform suffers from several
limitations. For example, because the spatial localization
precision of the windowed Fourier transform is controlled

by a scaling factor o, which is fixed for the windowed

Fourier transform, if there are important local transient
components of differing support size, then one cannot find
a universally optimal w(z) for effectively and precisely
analyzing the process. Figure 2 shows the schematic view
of windowed Fourier transform.
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Figure 2- Windowed Fourier Transform (WFT)

The wavelet transform (Figure 3) was developed to
address such limitations of the windowed Fourier
transform and other similar transforms. It is windowed
Fourier transform with variable window’s size and is
defined as a convolution of a given function f(z) with a

kernel function ¥, , (z) as follows:

f(a,b) = f:of @ Y, (© dz G)

here a is a scale parameter, b is a translation
parameter, and the family of functions 9, , (z) are called

wavelet functions as:
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Figure 3a- Wavelet Transform (WT)
In contrast to the constant support length of the
windowing function w(z) in the windowed Fourier

transform, the support length of wavelet functions 1+, , (z)

changes proportionally with the scale parameter a, ie.
increasing o will dilate and decreasing o will contract
the wavelet function. In this way, in small scale, the
wavelet function will have small support length; therefore
wavelet transform will pick up higher frequency
components and vice-versa. On the other hand, scale is
similar to frequency and actually inverse of frequency and
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translation is similar to spatial location.

Ideally, one would prefer both the support length and
moving incremental step of the wavelet function to be
small in small scale and vice versa. This can be easily
accomplished by relating them to level of scale j or

explicitly define:

a=al (%)
and

b = kbyal (6)
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Figure 3b- Scale parameter is similar to frequency and actually

inverse of frequency. Low frequencies (high scales) give global

information of a signal, whereas high frequencies (low scales)
ield detailed information of a signal.
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Figure 3c- Translation parameter is similar to space {top scale=1,
middle scale=5, bottom scale=10).
where a, is a basic scale step size greater than 1, b, is

the initial step size at scale O, and k is an integer
representing spatial index of data sequence. For the
convenience of computation, one may assign, a, = 2 and

normalize the initial system so thatd, = 1.

A. Wavelet Functions and Coefficients

With the above convention, a family of wavelet
functions can be written as:

1 »

P, 5 (@) ="ﬁ¢(2 ’x-k) N
W (x) is ‘wavelet function’ so-called mother wavelet.

In addition to 4 (z), there is other wavelet function ¢ (x)

is called *scaling function’ or father wavelet and so:

¢, (@)= :/—15.; ¢(27z—k) (8)

The Haar wavelets are the earliest and perhaps simplest
known example of wavelet and scaling functions, which
are presented in Figure 4.
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Figure 4- Haar wavelet (left) and scaling function (right)

Replacing Equations (7) and (8) in Equation (3) yields
the ‘detail’ and ‘scale’ coefficients of transform,
respectively. According to Mallat [16] the detail and scale
coefficients in each level is related to scale coefficients of
the finer level as:

D, = thsj—l,mk ®
!

Sj,k = Zhlsj—l,H?k (10)
1

g, and h, are the filter coefficients. For Haar wavelets
9o =—g =1V2and h =h = 1/J9? while all other
coefficients is zero'. The scale coefficients at the level

j = 0 are taken to be the values of given function f (z) .

The above procedures for 1D data sequence can be
extended to a 2D data as a tensor product of two 1D
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wavelet functions. Based on this assumption, the scaling
function for the 2D case is related to corresponding 1D
scaling functions by:

Bn (By) = ¢, ¢, () (11)

Also, there are three wavelet functions, which can be
constructed using corresponding wavelet and scaling
functions as follows:

Uk (@) = ¢, @, (v) (12)
v (@)=, @¢,, () (13)
U0 (3,9) =¥y, @Y, (v) (14)

Then, one can obtain the scale and detail coefficients in
2D. First, a 1D Mallat algorithm [16] is applied in a given
direction, e.g., the x-direction. One then applies the same
1D algorithm to the calculated coefficients in y-direction.
Each application results in two coefficients and thus the
four-wavelet coefficients (one scale and three detail
coefficients) are obtained.

B. Wavelet Upscaling of Heterogeneous Reservoirs

It is well known that petroleum reservoirs are
inherently heterogeneous and that flow performance of
reservoirs is controlled by wvariability in reservoir
properties at various scales. Therefore, to accurately
describe reservoir performance, one needs to develop a
method to first adequately reconstruct the fine-scale
variability from sparsely distributed, coarser, multiscale
samples, and then properly coarsen the fine-scale
variability whenever necessary.

Suppose that the reservoir is represented by its
permeability distribution, which is broad and correlated,
and is obtained, either from extensive data (which is rare),
or by limited field data and geostatistical methods. Figure
5 shows a typical 128 x128 absolute permeability fine
map (levelj = 0) that was generated by a fractional
Brownian motion (fBm) with Hurst exponent H = 0.8 . Tt
is assumed that the distribution has the finest possible
structure, i.e., a more detailed map cannot be built because
no information about permeability at finer length scale is
available.

C. Algorithm

The procedure presented in the previous parts is used to
upscale the absolute permeability distributions. Now we
apply one-level wavelet transform to this permeability
map using above procedure and obtain detail and scale
coefficients of transform., Then we define two thresholds
T¢ and 7, , where 7, is a measure of the permeability at a

given block, and 7, measures the contrast in permeability

values between neighboring blocks. We then check the
scale coefficient at each block. If it is higher than 7, then

do nothing and move on to the next block. However, if it

is smaller than 7, we check the detail coefficients and set
to zero all of them that are smaller than 7, . Setting detail

coefficients to zero means that the neighbor of block is
removed, i.e., the two blocks join and form a larger block.

Therefore, depending on the structure of the
permeability map, a number of blocks in the original fine-
scale model are coarsened. If permeability distribution is
relatively narrow, the blocks are coarsened more or less
uniformly throughout the model, whereas with a broad and
correlated permeability distribution the coarsened blocks
are scattered in the model. This algorithm is repeated
again until no significant number of the blocks is
coarsened (removed). Typically, after 3 or 4 levels the
model can no longer be effectively coarsened, thus
yielding very fast the final coarsened model for the fixed
7¢ and 7, . The level of the detail fixes the values of the
thresholds that we would like to include in the model and
the amount of computational time that we can afford.
Preliminary investigations in 2D heterogeneous reservoirs
model [17] indicate that, even with a broad permeability
distribution and large values of 7 and 7, the overall
behavior of the fine-scale and the coarsened models are
essentially identical.

Figure 5- Fine permeability map fBm 128x128 with H=0.8

An important issue in upscaling is assignment of the
effective permeabilities of the coarsened blocks. Once the
size and shape of each coarsened block is determined, its
effective permeability can be assigned by several methods.
For example, one can assign the block permeability by
carrying out single-phase flow calculations[18].

Alternatively, the permeabilitics of the coarsened
blocks can be assigned by calculating some sort of average
permeability of the original fine-scale blocks that are
contained within the coarsened blocks. Wavelet upscaling
method carries out the coarsening process in such a way
that the distribution of block permeabilities in the
coarsened model automatically follows closely that of the
original fine-scale model. Applying the inverse wavelet
transform can do this step.

D. Flow Problem
As a flow problem, steady single-phase flow problem is
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considered here. For steady incompressible flow,
continuity equation (conservation of mass) is given by:

V.ov=20 (15)
Darcy’s velocity law for fluid flow in porous media

with neglecting gravity effects is[18]:

ve=—tk.Vp
i

(16)

where v is velocity vector, kthe fine permeability
tensor and pthe pressure. Pressure equation arises by
combining Equations (15) and (16) as follows:

e
V.i=k - Vp|=0 an

I

The specific boundary conditions are Dirichlet type
(constant pressure) in direction of flow and Neumann type
(no-flow or impermeable) in perpendicular direction of
flow. Numerical solution of Equation (17) with mentioned
boundary conditions results fine pressure field.

For coarsened model pressure equation can be changed
to: '
(18)

v-[-l-kc-vp]zo
U

where k_is the coarsened permeability tensor which is

obtained by wavelet upscaling method presented in the
previous part. The same boundary conditions as fine-scale
can be used to solve coarse pressure field. Then fine
pressure field can be computed from coarse pressure field
by different ways.

E. Transport Problem

As a transport model, particle tracking method is used
to simulate miscible displacement process. Particle
tracking methods provide an efficient numerical algorithm
for modeling large scale transport of solutes in
heterogeneous porous media [20]. By contrast, continuum
approaches involving finite difference or finite element
solution methods generally suffer from numerical
dispersion, primarily because of the large grid blocks
required to model large scale systems. Furthermore, using
particle tracking, plumes can be simulated at scales
smaller than the grid block size, and source regions (zones
in which particles are initially placed) can be smaller than
the grid spacing. Particle tracking techniques have a long
history of use in such applications (e.g., {19]-[21]).
Application of random walk particle tracking method in
solute transport (dispersion process), has been accepted by
the hydrologic community. Here, to implement a model, a
random walk particle tracking method was used to
simulate transport problem.

The fundamental mass transport equation for transport
of a nonreactive, dilute species in a saturated porous
medium (with no sources or sinks) has the form [25]:

9C V. (v0)-V.(DVC) =0

En (1%

where C denotes the solute concentration in units of
moles per liter, ¢ is time, v designates the solute average
pore-water velocity vector and D denotes the dispersion
tensor. For an isotropic medium, the dispersion has the
form[18]:
AA%

D = (a,V+D) 1+ (o, — o) —

v (20)

where «, and «, denote the longitudinal and

transverse dispersivities, respectively, D, represents the

molecular diffusion coefficient, V = {v| is the magnitude
of the velocity vector, I is the identity matrix and vv is
the dyadic product of velocity vector.

Defining the two Cartesian coordinate axes as 1and 2,
the dispersion tensor given in Equation (20) can be written
in matrix form as:

Uiy

v e

a,V +(ar, —aT'>%-+D0

2
aTV+(ozL—a7,)%+Do (o — o)

D _
Uyl

(O‘L - o) v

The general approach used in particle tracking is to
replace the partial differential equation for the solute
having concentration C, generally expressed by Equation
(19), with random walk displacements defined in
differential form by the Langevin equation [26]:

dzr = A(z,t)dt + B(z,t)dW (t) 22)

for a position vector z (¢). The matrix A represents the

deterministic background displacement determined by v
and, in addition, contains contribution of the dispersion
tensor as follows:

A, t)=v+V:D 23)

The displacement matrix Brefers to a stochastic
random walk process that incorporates molecular diffusion
and dispersion as: '

%Vz(aLV‘i’Do) “%\lz(aTV+Do)
. Y,
—\—[2—«/2(aLV+D0) —-—\i—JZ(ozTV—l—DO)

The differential dW (£) = ZVAt represents a Wiener

process describing Brownian motion in which At is time
step and Z represent a random number’.

Consequently, the implementation of the particle
tracking model requires a finite difference form of
Equation (22) at time step n , which in this model is given
by:

ot =2 + AAt+ VALY  B,Z,
j

@9

@25)
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In summary, the particle trajectory is computed by a
finite difference technique expressed in Equation (25).

The first displacement term of this equation (4At) is

deterministic, with A defined in Equation (23). This
expression captures the movement of particles in the
streamlines defined by the flow field’. The last term in
Equation (25); consider the stochastic random walk
behavior to. simulate dispersion, with the form of the
matrix B expressed in Equation (24).

So far, it has been taken for granted that the local
velocity vector is known at all locations in space. Velocity
interpolation within a cell is then determined quickly and
easily using the velocity interpolation scheme first derived
by Pollock [19]. Using that scheme, the code determines,
for a given particle at a given location within the cell, the
time required to -exit the cell and the location where it
leaves. If this time is greater than the time step At, the
particle location within the cell is computed. If the time is
less than the time step At the particle is forced to stop at
this location and then proceed in another step within the
adjoining cell. This process is repeated until the ending
time At isréached.

For this method to work properly, the time step must be
selected such that, on average, a particle takes several time
steps within each cell. In a system with large variations in
pore-water - velocity  due:to permeability and porosity
differences from cell to cell, the appropriate time step can
vary greatly throughout the domain. Here, this factor is
accounted for by dynamically determining the
characteristic time steps in an approach’ similar to that
developed by Wen and Gomez-Hernandez [21]. In a given
cell, the magnitude of the velocity in the cell is used to
scale the time step. The time required to traverse the cell
completely in each of the three coordinate directions is
computed, and the minimum is determined. This approach
ensures that several steps are taken by a particle within a
cell but minimizes computational time by tailoring the
time step to the characteristic velocity within each cell:

The problem examined here is a first contact miscible
flood in which a displacing fluid is injected into a porous
medium initially saturated with a resident fluid that is
miscible in all proportions with the displacing fluid. The
procedure of this method in-each time step is as follows:

The concentrations of each grid block are updated by
counting the number of particles in the given block.

Pressure equation is solved to obtain pressure field.

Velocity field is calculated using Darcy’s law and
pressure field:

The new particles are generated that representing the
amount of displacing fluid injected during the current tim
step. ‘

The particles are moved to new positions by two
different mechanism, convection and dispersion.

New coneentrations are calculated.

The viscosity p,, of the mixed zone is estimated from

the following empirical law [22]:

Bo oA\
o (OM +1 0)

(26)

where C' is the solvent concentration, M = p, JH, s the

mobility ratio, p, and p, are the viscosity of the solvent
and oil (the displaced fluid), respectively.

3. RESULTS AND DISCUSSION

Figure 6 shows detail and scale coefficients of
transformed fine map (Figure 5) in two different levels. In
the sub figures 6a, 6b and 6c, 0™ (fine map), 1** and 2™
decomposition levels using Equations (9) and (10) have
been shown respectively.

Figure 7 shows the coarsened (compressed) map
generated by inverse wavelet transform  with
Ts = Tp = 0.8 in two levels. In the sub figures 7a, and

7b, 1* and 2™ compression of the fine map (Figure 5 or
Figure 6a) using the mentioned procedure have been
shown respectively. In each sub figure, data compression
percentage (eliminated data) has been shown. It shows that
the wavelet transform is a powerful tool for image
compression. The straightforward procedure of image
compression using wavelet transformation is its useful
property.

Figures 8a, 8b, 8c, and 8d show the corresponding fine
and coarsened blocks configurations in different levels,
which leads us to fluid flow calculations. Recognition of
grid cell network configuration is the other good result of
wavelet transformation. Using this good feature one can
construct the coarsened grid block configurations (coarse
block size and location) to compute the flow problem.

Figure 9 shows the results of single-phase flow problem
for fine and two levels of coarse-scales. As can be seen
from these figures, the results of single-phase flow
problem with 14255 deleted data points (87%
compression) still show very good agreement with full
fine-grid simulation. The maximum RMS error for
coarsened map is 0.23, which is low. It should be
mentioned that for full fine-scale problem, we ought to
solve 16384 equations whereas, with 2™ level coarsened
model we only ought to solve 2129 equations, which
reduces the size of the problem with factor 7.7. Thus an
approximate solution is obtained without ever having to
solve the full fine-grid problem, saving CPU time and
memory.

Figure 10 shows simulation results of the miscible
displacement process for fine and 1* level of coarse-scale
at two pore volume injected (PVI). The dispersion
parameters of this simulation are as follows:

a, =1.57x107° cm2/s , ap =4.84x10"° ch/s

The specific boundary conditions are Dirichlet type
(constant pressure) in direction of flow and Neumann type
(no-flow or impermeable) in perpendicular direction of
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flow. Also, the result shows the reasonable agreement
between full fine and coarse-scale problem.

4, CONCLUSIONS

Here, we proposed a novel upscaling method based on
wavelet transformations, which is applicable to wide
variety of heterogeneous media. The method generates a
highly efficient grid structure (in terms of the number of
the blocks in the coarsened model), and is computationally
highly efficient, because it uses irregular but still Cartesian
grid can reduce drastically the number of grid blocks, and
hence the number of equations to be solved. Moreover,
since the effective properties of the coarsened blocks are
computed automatically, it is very cost efficient, whereas, ~ Figure 6a- Fine permeability map fBm 128x128 with H=0.8
in the most efficient upscaling methods currently
available, the effective properties of the coarsened blocks
are estimated by carrying out single phase flow
calculations which particularly in 3D are highly costly.

One of the most important aspects of any upscaling
methods, in addition to its accuracy, is the ease and
efficiency by which the method can be implemented. This
is particularly important, as one has to deal with a large
grid that must be successfully and efficiently upscaled.
Here, we point out two crucial points to demonstrate the
efficiency of proposed method. (1) Calculation of wavelet
coefficients is done by completely localized operations,
the ideal condition for parallel computations. It is a very
useful virtue if a very large fine-grid model represents the ~ Figure 6b- Ist level decomposition
original geological model. None of the previous upscaling ‘ '
methods are easily parallelizable, if at all. (2) With a fine-
scale mesh of n blocks, the computation time in the most
efficient upscaling methods currently available is either
order of n?[18], or is order of n’[9], whereas, as is well
known in the theory of wavelets, it is only nlogn for

calculation of the wavelet coefficients, which is the most
time consuming part of the proposed method. Thus, the
computation time of the proposed method is order of
magnitude less than that of the most efficient and accurate
previous methods.

5. SUBSCRIPTS
. . Figure 6¢- 2nd level decomposition
The filter coefficients are related to each other by:

g, =C-Yh,_,, , n=01..,L-1

where L = 2M (compactly supported wavelets of
order M have the zero first M moments). For Haar
wavelets M =1-

27 is selected from a uniform distribution for example
Gaussian.

’ The term V- DAt is required to correctly reproduce
the transport equation for cases in which there are
gradients in velocity or dispersion coefficient. It reduces
to zero for uniform flow fields and constant dispersivity.
What is retained in this case is transport along the flow
streamline governed by the flow field Figure 7a- 1st level compression (70 %coarsened )
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