Almost Product Structures Ontangent Manifold of a
Space Form

E. Peyghan1, A. Razavi2, A. Heydari3

ABSTRACT

A set of locally product structures on tangent manifold TM of a space form M is pointed out. This is found in a study of a type of Sasaki metric whose second term is a special deformation of the first one. Introducing an adequate almost product structure we find at first a large class of locally almost product structures on TM for a (pseudo)-Riemannian manifold M. When M is a space form, a subset of it is made of locally product structures.

KEYWORDS

Almost product structure, Constant curvature, Nijenhuis tensor, Sasaki metric.

1. INTRODUCTION

Let \((M, g) \) be a (pseudo)-Riemannian manifold and \(\nabla \) its Levi-Civita connection. In a local chart \((U, (x'))\) we set \(g_{ij} = g(\partial_i, \partial_j) \), where \(\partial_i := \frac{\partial}{\partial x^i} \) and we denote the Christoffel symbols by \(\Gamma^i_{jk}(x) \). Let \((x', y') \equiv (x, y) \) be the local coordinates on the manifold TM projected on \(M \) by \(\tau \). The indices \(i, j, k, \ldots \) will run from 1 to \(n = \text{dim} M \).

The functions \(N^i_j(x, y) \equiv \Gamma^i_{jk}(x) y^k \) are the local coefficients of a nonlinear connection, that is the local vector fields \(\partial_i = \partial_i - N^i_j(x, y) \partial_j \), where \(\partial_i := \frac{\partial}{\partial y^i} \) span a distribution on TM called horizontal, which is supplementary to the vertical distribution \(u \rightarrow V_u TM = \ker \tau_u, u \in TM \). Let us denote by \(u \rightarrow H_u TM \) the horizontal distribution and let \((\partial_i, \partial_j) \) be the basis adapted to the decomposition

\[
T_u TM = H_u TM \oplus V_u TM, \quad u \in TM.
\]

The dual basis are \((dx^i, \delta y^j)\) with \(\delta y^j = dy^j + N^i_j(x, y) dx^i \).

The Sasaki metric on TM is as follows:

\[
G_S = g_g(x) dx^i \otimes dx^i + g_g(x) \delta y^i \otimes \delta y^j.
\]

(1.1)

If in the second term of \(G_S \) one replaces \(g_g(x) \) with the components \(h_g(x, y) \) of a generalized Lagrange metric (see Ch.X in [4]) one gets a type of Sasaki metric

\[
G(x, y) = g_g(x) dx^i \otimes dx^i + h_g(x, y) \delta y^i \otimes \delta y^j.
\]

(1.2)

In particular, \(h_g(x, y) \) could be a deformation of \(g_g(x) \), a case studied by M. Anastasici and H. Shimada in [1].

In this paper, we study the metrical structure (1.2) in the case when \(h_g(x, y) \) is the following special deformation of \(g_g(x) \)

\[
h_g(x, y) = a(L^2) g_g(x) + b(L^2) y_i y_j,
\]

(1.3)

where \(L^2 = g_g(x) y^i y^j \), \(y_i = g_g(x) y^i \) and

1 E. Peyghan is a Ph.D student of the Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran (e-mail: e.peyghan@aut.ac.ir).

2 A. Razavi is with the Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran (e-mail: arazavi@aut.ac.ir).

3 A. Heydari is a Ph.D student of the Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran (e-mail: a.heydari@aut.ac.ir).
\[a, b = \text{Im}(L^2) \subseteq \mathbb{R}, \rightarrow \mathbb{R}, \text{ with } a > 0, b \geq 0. \]

For \(b = 0 \) and \(a = \frac{c^2}{L^2} \) for any constant \(c \), the metrical structure (1.2), (1.3) was studied by R. Miron in [3] as a homogeneous lift of \(g_\phi(x) \) to \(TM \).

In the following section, we introduce an almost product structure which paired with \(G \) given by (1.2), (1.3) which provides a large set of almost product structures on \(TM \).

Finally, we find in section 3 that, when \((M, g) \) is of constant curvature, some of them are locally product structures.

Let \(P \) be an endomorphism of the tangent bundle \(TM \) satisfying \(P^2 = I \), where \(I = \text{identity} \). Then \(P \) defines an almost product structure on \(M \). If \(g \) is metric on \(M \) such that \(g(PX, PY) = g(X, Y) \) for arbitrary vector fields \(X \) and \(Y \) on \(M \), then the triple \((M, g, P) \) will introduce the natural almost product structure. If \(P \) is an almost product structure and the Nijenhuis tensor field \(N_P \) of \(P \) vanishes then \(P \) is called a product structure on \(M \).

2. SOME ALMOST PRODUCT STRUCTURES ON \(TM \)

Let \(\tilde{P}_s \) be the almost product structure on \(TM \) given in the adapted basis \((\tilde{e}_i, \tilde{e}_j)\) by

\[P_s(\tilde{e}_i) = \tilde{e}_j, \quad P_s(\tilde{e}_j) = \tilde{e}_i, \]

\[(\tilde{e}_i, \tilde{e}_j) \]

It is well known that the pair \((G_s, P_s)\) is an almost product structure on \(TM \), that is

\[G_s(P_sX, P_sY) = G_s(X, Y). \]

We look for a new almost product structure which paired with \(G \) to provide a product structure. We modify \(P_s \) to a linear map \(P \) given in the basis \((\tilde{e}_i, \tilde{e}_j)\) as follows:

\[P(\tilde{e}_i) = (\alpha \tilde{e}_i + \beta y^k \tilde{e}_k), \]

\[P(\tilde{e}_j) = (\gamma \tilde{e}_j + \delta y^k \tilde{e}_k), \]

where \(\alpha, \beta, \gamma, \delta \) are functions on \(TM \) to be determined. The condition \(P^2 = I \) leads to

\[\alpha \gamma = 1, \alpha \beta + \gamma \delta + \beta \delta L^2 = 0. \]

Then the condition \(G(P(X), P(Y)) = G(X, Y) \) gives

\[a \alpha^2 + 2\alpha \beta \delta + \beta^2 L^2 = b, \]

\[(2a \alpha \beta + \beta^2 L^2)(a + b L^2) + b \alpha^2 = 0. \]

The solution of the system of equation (2.3), (2.4) is

\[\alpha = -\frac{1}{\sqrt{\delta}}, \beta = \frac{\sqrt{a + \sqrt{a + b L^2}}}{L^2}, \gamma = -\sqrt{a}, \]

\[\delta = \frac{\sqrt{a + \sqrt{a + b L^2}}}{L^2}. \]

(2.5)

We notice that for \(b = 0 \), besides the solution provided by (2.5), that is

\[\alpha = -\frac{1}{\sqrt{a}}, \gamma = -\sqrt{a}, \beta = \frac{2}{L^2 \sqrt{a}}, \delta = \frac{2 \sqrt{a}}{L^2} \]

(2.6)

There exists also the solution

\[\alpha = -\frac{1}{\sqrt{a}}, \gamma = -\sqrt{a}, \beta = 0, \delta = 0 \]

(2.7)

Let us make the substitution

\[a = \frac{a^2}{L^2}, \quad a = \frac{b^2 - a^2}{L^4} \]

Then (2.5) and (2.6) are unified to

\[\alpha = -\frac{L}{a}, \beta = \frac{a + b}{ab L}, \gamma = -\frac{a}{L}, \delta = \frac{a + b}{L^3}, \]

(2.8)

and (2.7) modifies to

\[\alpha = -\frac{L}{a}, \gamma = -\frac{a}{L}, \beta = \delta = 0. \]

(2.9)

The metric \(G \) takes the form

\[G_{ab}(x, y) = g_{ij}(x) dx^i \otimes dx^j \]

\[+ \frac{a^2}{L^2} g_{ij}(x) + \frac{b^2 - a^2}{L^2} y^i y^j \delta y^i \otimes \delta y^j \]

(2.10)

\[b \geq a > 0. \]

Let \(P_{a,b} \) be the almost product structures given by (2.2), (2.8) and \(P_a \) those given by (2.2), (2.9). Then the pairs \((G_{a,b}, P_{a,b})\) and \((G_{a,a}, P_a)\) are almost product structures on \(TM \).

For \[a^2 = \frac{L^2}{1 + L^2}, \quad b = L^2 \], the metric \(G_{a,b}(x, y) \) is the Cheeger- Gromoll metric, [5], [6]

\[G_{CG}(x, y) = g_{ij}(x) dx^i \otimes dx^j \]

\[+ \frac{1}{1 + L^2} (g_{ij}(x) + y_i y_j) \delta y^i \otimes \delta y^j \]

(2.11)

If \[a^2 = \phi' L^2, \quad b = L^2 (\phi' + 2 \phi'' L^2) \] for \[\phi: \mathbb{R}, \rightarrow \mathbb{R}, \text{ with } \phi'(t) \neq 0, t \in \text{Im}(L^2) \], one obtains the Antonelli – Hirimiucu metrical structure. [2]
\[G_{ij}(x,y) = g_{i,j}(x)dx^i \otimes dx^j \]
\[+ (\phi^i g_{i,j}(x) + 2\phi^i y_j y) dy^i \otimes dy^j \]

(2.12)

3. PRODUCT STRUCTURES ON TM

We know that a Riemannian manifold \((M, g) \) has a constant curvature \(k \) if

\[\forall i, j, l, s \quad K_{ijs} = k (g_{is} g_{j} - g_{ij} g_{st}) \]

where \(K_{ijs} \) is the curvature tensor of \(\nabla \). By a contraction with \(g_{ik} \) the Eq. (3.3) reduces to

\[K_{jst}(x) y^s = \frac{2aL^2 - a}{a^3} (g_{pr} g_{s} - g_{ps} g_{qr}) y^r. \]

(3.4)

The Eq. (3.4) reminds us of the condition that \((M, g) \) is of constant curvature (space form). It suggests that we look for functions such that, \[\frac{2aL^2 - a}{a^3} = k, \] where \(k \) is a constant. For \(t = L^2 \), solving the Bernoulli equation \[a' = \frac{1}{2t} a + \frac{k}{2t} a^3 \] one gets \(a(L^2) = \sqrt{\frac{L^2}{c - kl^2}} \) for \(c - kl^2 > 0 \), where \(c \) is a constant of integration. So Eq. (3.4) becomes

\[K_{jst}(x) y^s = k (g_{pr} g_{s} - g_{ps} g_{qr}) y^r, \]

(3.5)

which means that \((M, g) \) is of constant curvature \(k \). Then we have proved.

Theorem 3.2. If the (pseudo)-Riemannian manifold \((M, g) \) is of constant curvature \(k \in \mathbb{R} \), for \(a(L^2) = \sqrt{\frac{L^2}{c + kl^2}} \)

with \(c \) a constant such that \(c + kl^2 > 0 \), the structures \((G_{\alpha,\beta}, P_{\alpha}) \) are locally product structures on TM.

The explicit form of these structures are as follows:

\[G_{\alpha,\beta}(x,y) = g_{i,j}(x) dx^i \otimes dx^j \]
\[+ \left(\frac{1}{c + kl^2} (g_{ij}(x)) \delta y^i \otimes \delta y^j \right) \]

(3.6)

\[P_{\alpha}(\delta_i, \delta_j) = \sqrt{c + kl^2} \delta_i, \quad P_{\alpha}(\delta_i, \delta_j) = \frac{1}{\sqrt{c + kl^2}} \delta_i \]

(3.7)

Corollary 3.3. For \(a(L^2) = c_0 \sqrt{L^2} \), with \(c_0 \) a strict positive constant, the pairs \((G_{\alpha,\beta}, P_{\alpha}) \) are product structures on TM if and only if \((M, g) \) is flat.

Proof. Since \(a(t) = c_0 \sqrt{t} \) we have
\[a(t) = \frac{c_0}{2\sqrt{t}} \Rightarrow a'(t^2) = c_0 \]

Therefore, Eq. (3.3) gives \(K_j^k = 0 \), equivalently \(K_{jux}(x) = 0 \). By Theorem 3.2, the structures \((G_{a,x}, P_a)\) are product structures on TM if and only if \((M, g)\) is flat.

Looking at (3.6) and (3.7), we see that the structures \((G_{a,x}, P_a)\) from Corollary 3.3 are very close to \((G_s, P_s)\) which is obtained for \(c=1 \). Thus the Corollary 3.3 covers a well-known result: \((G_s, P_s)\) is a product structure if and only if \((M, g)\) is flat.

4. REFERENCES

