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ABSTRACT
An analytical solution is presented for the steady state and purely tangential flow of a nonlinear
viscoelastic fluid obeying the constitutive FENE-P model in a concentric annulus with inner cylinder

rotation. The effect of fluid elasticity (Weissenberg number), the extensibility parameter of the model (L*)
and aspect ratio on the velocity profile and production of friction factor and Reynolds number ( f'Re) are

investigated. The results show the strong effect of viscoelastic parameters on the velocity profile. The results

also show that f"Re decreases with increasing fluid elasticity and radius ratio.
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1. INTRODUCTION

Tangential flows of non-Newtonian fluids within annuli
have wide range of engineering applications such as to
Journal bearings, commercial viscometers, swirl nozzles,
chemical and mechanical mixing equipment and electrical
motors [1].

An extensive bibliography of work on the flow of non-
Newtonian liquids through annular channels is given in the
recent paper by Escudier et al [2]. The flow of a Casson
fluid between two rotating cylinders was studied by Batra
and Das [3] and a summary of laminar flow of non-
Newtonian fluids in a rotating annulus was reported by
Batra and Eissa [4]. Flow of a fluid obeying the
Robertson-Stiff model was investigated by Eissa and
Ahmad [5] while Rao [6] reported results for the flow of a
Johnson-Segalman fluid between rotating co-axial
cylinders. Khellaf and Lauriat [7] analyzed the convective
heat transfer characteristics for the flow of a Carreau fluid
between rotating concentric vertical cylinders.

The FENE-P model is a non-linear dumbbell model for
polymeric liquids, which was derived for dilute solutions
but may be extended to semi-dilute and concentrate
solutions following the ideas of the encapsulated dumbbell
model [8]. This model is based on the kinetic theory for
finitely extensible dumbbells.
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The model exhibits shear-thinning while its
elongational viscosity remains finite for all rates of
extension. With a single relaxation time, the model
performs remarkably well over a wide range of shear rates;
its asymptotic behavior for large shear rates makes it
unnecessary to add a significant Newtonian viscosity to
maintain a stable fluid behavior.

The fully developed dynamical isothermal solution for
the FENE-P model has been derived by Oliveria [9] but
the literature is very scarce regarding its performance in
heat transfer problems.

The objective of the present investigation is to obtain
velocity profiles as well as the coefficient of friction using
an analytical method to solve the FENE-P model in purely
tangential flow between concentric rotating cylinders
where the inner cylinder is rotating while the outer
cylinder is at rest, for a wide range of Weissenberg
numbers and aspect ratios. Analytical solutions for simple
flows of viscoelastic fluids are useful, as they allow a
complete description of the flow with given explicit
expressions, and are also useful to be applied as boundary
conditions in computational simulations, with the benefit
of allowing a reduction of the size of the computational
domain,
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Figure 1: A Schematic diagram of annular geometry
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For the problem under consideration the momentum
equation (2) reduces to below:

1d
¥ dr

(r'54) =0 &)

The dimensionless form of (3) is:

14
2dr

*2 %

Q)

Following Oliveria [9], the simplified form of the
FENE-P model in terms of the extra stress is as follows:

AT+ fr=2an,D (5)

where D:—;—(VV+VVT) or Dzé;}

Then we arrive at:

A
3a+-trr ,
f=1+ ___sz,,_____ M
In these equations the constant model parameters are

the polymer viscosity 7, the relaxation time A, and the

extensibility parameter L” . The additional parameter g is
not an independent parameter; it is a short notation for
a=1/(1-3/L*) which arises in the derivation. It is
related to physical properties by a@ = 1+ 3kT / HQ; and
to the original b parameter [10] bya =(b+3)/b.

Sometimes a more simplified version of FENE-P is

utilized, in which a =
large.

The symbol v in (5) is used to denote Oldroyd’s upper
convected derivative,

1 on the assumption that L’ is

v Dt
r=——tVV-VV'z (8)
Dt
Where V' is the velocity vector, the material
D 0
derivative is — = —+ V.V, and V V7 is the transpose
Dt ot
of the velocity gradient.

3. EXACT SOLUTION FOR THE FENE-P MODEL

For steady tangential annular flow (6) reduces to:

f’[',,r =0 )]
STy =274 7 (10)
fTrQ :C”?p /V (11)

Equation (9) indicates 7,,=0, hence the trace of the
stress tensor will be equal to7,,. Using (7) for the

function f yields:

7, (12)

v . 6) By using (10) and (11), the following equation for
ATt f r=amn,y ( Tyg 15 Obtained:
, . 24
The function f should now be expressed in terms of Ty=—T,g (13)
the main dependent variable 7 [9]: arn,
60
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The dimensionless forms of boundary conditions are as

The shear rate )/ is obtained by substituting 7, from fyliows:
(13) into (11) and using (12) for the function f . .
, at r=K v, =1 @4
T, 3a 22 2
Sl 55T ] (14) . .
an, L' an’L at 7=l vV, =0 25)
where the shear rate ¥ is defined by By introducing boundary conditions from (24) and (25)
into (23) and after mathematical simplification, the
following cubic equation is obtained
=r ;{- (——-) (15) & a
nr 7, +pT, +q=0 (26)
. The . dimensionless shear stress is obtained by where the constant p and g in (26) are
integrating (4): )
_c CEND0y  yap
16 5= _3dLld-x (@7
w (l—zc ) (1K)
The real solution of (26) can be expressed as

2%

*
Trg =

#* 2

M

In (16), the constant C, can be obtained using the
dimensionless wall shear sttess, 7, on the inner cylinder: 7 o= 13\/,_ 108 +124/12p° + 8147
6
1/-108g+ 12412 p° + 814

Lo K
* -
Twi . r (17)
ombination of (14) and (15) leads to:
3a 2 - . By introducing boundary conditions from (24) or (25)
d V* [(1 + "T) -+ — We ¢ ]Tr «
; (.L) = L al (18) into (23) and using 7, from (28), the second constant C,
dr ¥ a(l -x) can be easily obtained.
For the limiting case of a Newtonian fluid (L° — o
The following normalizations have been used in (18) or a -—»1),(23) reduces to:
* V *
r=— v, KT r, 1
R (19) P ek ol 1 (29)
r 2(1 K) r
. p
Vo =—2 (20)
R, By introducing boundary conditions from (24) and (25)
into (29), the following relations can be written to obtain
* T
Z; rd (2 1 ) *
0 77 RQ./S 7, and G,
R G K (30)
Wi 27
We ;LRiQi (22) K(l‘f‘l(') (] K )
1) which is in total agreement with the previous work [8]
: An important parameter in engineering calculations is
By substitution of 7 T, from (17) into (I18) and then the product of the friction factor and the Reynolds number
integration of this equation, the dimensionless velocity (Re). The torque friction factor f'can be defined as
profile is obtained, as follows follows [11]:
* * 2 4 *2
v, o, 1 3a Wik'z,
: gm—— wi *2“‘[5'*'5'[7"‘[’_‘ 5 %4 ]+C2 (23) f!:__&“___ (31)
r al-x)r 3al ¥ p(RiQi)z /S
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And the rotational Reynolds number as [7] and [12]:
RO
e= ﬂ_’_...’.._

7,

(32)

Using these definitions we can derive the following

equation for /" Re;:
N, P 33
f'Re, =27, (33)

where in the above equation subscribe i refers to inner
cylinder

4. RESULTS AND DISCUSSION

The physical interpretation of the results is facilitated
by a few graphs showing the variation of velocity and
stresses. Velocity profiles are presented in Fig. 2 for fixed

radius ratio & = 0.5 and extensibility parameter L’ =10
and different values of the Weissenberg number (We). As
can be seen, the velocity gradient near the inner cylinder
increases as the Weissenberg number (We) increase, i.e.,
as the shear-thinning behavior of the fluid increases. In
other words, by increasing fluid elasticity, the viscosity
fiunction of fluid decreases {as will be discussed on the
next paragraphs) which results in increases in velocity
gradient. Also, the maximum velocity gradients are
concentrated near inner cylinder due to rotation of inner
cylinder.

The shear thinning behavior of FENE-P fluid can be
explained by obtaining the viscosity function of FENE-P

fluid. Although the viscosity parameter of this model (77,,)

is a constant, the viscosity function (which is defined in
(34)), is not a constant and tends to decrease with y:

n(y) = (34
v

By substitution of (14) into (34) we arrive at:

n(7) _ a_

oo %—f w%?;z T | (35)
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Figure 2: Effect of Weissenberg number (We) on the velocity
profile for X =0.5 & L’ = 10

Fig. (3) shows the flow curve of FENE-P fluid where
the viscosity function of fluid (which is scaled with model

viscosity parameter, 77,;} is given as function of

dimensionless shear rate (equal to ¥4, and so can be

viewed as a Weissenberg number). As can be seen from
this figure, by increasing the shear rate the viscosity of

fluid decreases and for large value of shear rate the

. . -\ .
viscosity decreases  as 77(}/ J~7 23

which 18 in
agreement with the previous works (e.g., [9] and [13]).

The shear-thinning behavior of the fluid also is shown
in Fig. 4. This figure indicated that the shear stresses
decrease inside the annular gap by increasing Weissenberg
number (We). This is because by increasing fluid
elasticity, the viscosity function of fluid decreases (as
shown in Fig. (3)). Therefore the magnitude of shear stress
decreases in the annular space. Also, as can be seen from
this figure, the magnitude of shear stress decreases inside
the annular gap with increasing dimensionless radius, as it
arises from Eq. (17).

The effect of extensibility parameter (L?) on the
velocity profile for fixed We = 2and x = 0.5 is shown
in Fig. 5.
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Figure 3: Shear viscosity of FENE-P fluid in steady simple
shear flow for L* = 10
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Figure 4: Variation of dimensionless shear stress (which is
normalized with dimensionless Newtonian wall shear stress)
inside the annular gap as a function of Weissenberg number
(We) for K =0.5 & L*=10

Also, the influence of the radius ratio on the velocity
profile is shown in Fig. 6. The results show that the
profiles become increasingly linear with increasing radius
ratio, X . In the narrow gap, as we know, the shear stress
is approximately constant then the velocity profile tends to
take linear form.
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Figure 5: Effect of extensibility parameter (L%) on the velocity
profile for We = 2 and kK =0.5
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Figure 6: Effect of the radius ratio on velocity profile for

We =2 and1?=10

The effect of fluid elasticity on the variation of normal
stress is also interesting in the analysis of the viscoelastic
fluid flow. To perform such analysis, we rewrite (13) in
the dimensionless form as below:

* 2W€*2

Top = T, (36)
a

¥

Fig. (7) shows the effect of Weissenberg number on the
radial profile of dimensionless normal stress (;0,9 ). As
can be seen from this figure, the normal stress ( 1*’66 ) does

not behave monotonically, in other words, ‘;99 first

increases by increasing Weissenberg number but when
Weissenberg number goes to higher values, it shows the
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opposite trend (as shown in Fig. (8), where the value of

Tye on the inner cylinder is shown against the

Weissenberg number). This is because ‘;09 is affected by

both fluid elasticity (directly proportional to We, as can be
seen from (36)) and by shear thinning behavior of fluid (as

shown in Figs. (3) and (4), where T+0 decreases by
increasing fluid elasticity). For this reason, it would be
better to plot the normal stress scaled with wall shear
stress as shown in Fig. (9). As can be seen from this
figure, the shear thinning effect is removed from the
normal stress profile and the normal stress variation is
now monotonic with Weissenberg number. A similar
result has been obtained previously by Oliveira [9] for
pipe and slit flow of FENE-P fluid (Fig. 4a in his work),
Mostafaiyan et. al. [14] for annular flow of Giesekus fluid
(Fig. 2a in their work) and also by Oliveira et. al. [15] for
channel and pipe flow of PTT fluid (Fig. 4b in their work).
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Fig. 7: The effect of Weissenberg number on radial profile of

*
dimensionless normal stress (T, ) for constant values of
K =0.5 & L*=10
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Fig. 10 shows the effect of the Weissenberg number
(We) on f'Re which is normalized with the corresponding
Newtonian value ( f'Re. v

4

y

radius ratio. The decrease in f'Re with increasing the

=4/ k(l+x)) for the various

Weissenberg number (We) is again attributable to the
shear-thinning behavior of the FENE-P fluid. As shown in
the definition of f'Re (see Eq. (23)), the product of
number (f'Re) s

friction factor and Reynolds

proportional to dimensionless wall shear stress (%m ).
Therefore the effect of fluid elasticity on f"Re is similar

to the effect of fluid elasticity on shear stress (as shown in
Fig. (4)). As can be seen from this figure, as Weissenberg
number approaches zero the f'Re values are in agreement
with those for a Newtonian fluid [7], [11] and [12].

The Taylor number 7a is an alternative to the rotational
Reynolds number and the definition adopted here is the
same as that used by Escudier et al [2] for the case of inner
cylinder rotation:

2
Ta= (2’9) RS’
Tp

Using torque friction factor, f", from (31) and Taylor
number, Ta, from (37) we arrive the following equation:

f'ﬁ‘:_zgwi _1—:;’-{-
»V K

which can be calculated in the same way as /" Re.

@37

(3%)

For the limiting case of a Newtonian fluid, with 7,
from (30) substituted into (35), we arrive at:

64
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. _ 1-x
/ @_4\/ 1+ x)? (39

which is in agreement with the previous work [11].
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Fig. 9: Dimensionless normal stress profiles for varying
Weissenberg number normalized with dimensionless wall shear

stress (”Z’ wi ) for constant values of K =0.5 & L*=10
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5. CONCLUSION

An analytical solution has been derived for the steady-
state, purely tangential flow in a concentric annulus with
inner cylinder rotation of a viscoelastic fluid obeying the
complete form of the FENE-P constitutive equation. The
results include the profiles of all relevant stresses, the
tangential velocity and the viscosity across the gap.
Expressions are also given for the viscometric viscosity
and shear and normal stress, as a function of the model

parameters, in steady shear flow. The results show that:
I.Increasing the Weissenberg number increases the
velocity gradient near the inner cylinder and so decreases
the viscometric viscosity of the fluid (i.e., the fluid
behavior is increasingly shear-thinning) '
2. /'Re decreases with increasing fluid elasticity and

radius ratio, which indicates that the required torque for
rotation of a cylinder in tangential flow of viscoelastic
fluid is much lower than its corresponding value for
Newtonian fluid.

3.The normal stress profile is found to vary in a non-
monotone way with the dimensionless parameter
characterizing viscoelasticity, the Weissenberg number.

6. NOMENCLATURE

Constants in shear stress profile (equation (16) )
Constants in velocity profile (equation (23))
Rotational friction factor, z,,/ (chZ/Z)

Function for FENE-P model

Constant [see Egs. (26), (27) and (28)]
Constant {see Eqgs. (26), (27) and (28)]
Radial coordinate

Axial coordinate

Inner cylinder radius

Outer cylinder radius

EHNTAN a0

non-dimensional radial coordinate, 7/ RO

=y
&

Rotational Reynolds number, pR,(2,6/1,

Ta Taylor number, (pQ /7, )*R,5°
vV Tangential Velocity

> Non-dimensional velocity, ¥, /(R.2.
I/g [ [l

We Weissenberg Number, AR.Q2/0

a A constant and independent parameter of the
FENE-P model

I? Extensibility parameter of the FENE-P model

Greek Letters
& Annular gap width, R- R,
Shear stress tensor

7 Polymer viscosity coefficient of the FENE-P
d model

n Shear viscosity, 7, /

K Radius ratio, R/R,

A Relaxation time in FENE-P model

Q Angular velocity of inner cylinder

p Density

7 Tangential coordinate

T Stress tensor

z ) Non-dimensional shear stress, 7,, /(17,R,Q; / 6)
Non-dimensional wall shear stress on the inner

wi  cylinder

™) %
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Superscripts
T Transpose of tensor

* Refers to dimensionless quantities

Subscripts

i Refers to inner cylinder

N Refers to Newtonian value
0 Refers to outer cylinder

w Refers to wall value
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