Ultrafilters on infinite discrete semigroups and multiplicative means

M. Akbari Tootkaboni[†] and A. Riazi[‡]

ABSTRACT

In this paper by combining the concepts of ultrafilters and multiplicative means in a nice way we find a good tool for dealing with the Stone - \tilde{C} ech compactification of infinite discrete semigroups.

KEYWORDS

Semigroup Compactification, Multiplicative Mean, Ultrafilter, Stone - \check{C} ech Compactification.

1. INTRODUCTION

Throughout this paper (S, .) will denote an infinite discrete semigroup. Let B(S) be the C^* -algebra of all bounded complex-valued functions on S with supremum norm. Let $\Delta(S)$ denote the spectrum of B(S). Then $\Delta(S)$ is a semigroup with multiplication defined by $\mu\nu(f) = \mu(T_{\nu}f)$, where

 $T_{\nu}(f)(s) = \nu(L_{\varepsilon}f)$ for $s \in S, \mu, \nu \in \Delta(S)$ and $f \in B(S)$. Furthermore, $\Delta(S)$ with the Gelfand topology (i.e. the relative weak*- topology inherited by $B(S)^*$) is a compact right topological semigroup such that the evaluation mapping $\varepsilon: S \to \Delta(S)$ is a continuous homomorphism with dense image and $\varepsilon(S) \subseteq \Lambda(\Delta(S)) = \{ \mu \in \Delta(S) :$

 $t \to \mu t : \Delta(S) \to \Delta(S)$ is continuous. \}. We can $f: S \to \mathbb{C}$ uniquely $\hat{f}: \Delta(S) \to \mathbb{C}$ defined by $\hat{f}(\mu) = \mu(f)$ for every $\mu \in US$. On the other hand, $(\Delta(S), \varepsilon)$ is semigroup compactification of S. For more details the readers may see [1].

Let P(S) be the set of all subsets of Sthen $A \subseteq P(S)$ is called a filter if

- (i) Ø ∉ A,
- (ii) if $A, B \in \mathcal{A}$ then $A \cap B \in \mathcal{A}$,
- (iii) if $A \in \mathcal{A}$ and $A \subset B$ then $B \in \mathcal{A}$.

If \mathcal{A} is a filter and there is not any filter \mathcal{B} such that $A \subseteq B$, then A will be called an ultrafilter.

For a discrete semigroup S, assume that $\beta S = \{p : p \text{ is an ultrafilter on } S\}$. For $A \subset S$ we let $\overline{A} = \{ p \in \beta S : A \in p \}.$

The collection $\{\overline{A}: A \subseteq S\}$ forms a basis for a Hausdorff topology on βS . With this topology βS is the Stone- \tilde{C} ech compactification of S (set 2.1,[3] for an extensive study of stone- \bar{C} ech compactification from this point of view).

For $x \in S$, define $\hat{x} = \{A \subseteq S : x \in A\}$, and $e: S \to \beta S$ is defined by $e(x) = \hat{x}$ is continuous and embedding map. The operation "." On S extends uniquely to a multiplication + (see definition 1.1) on βS under which the pair $(\beta S, e)$ is a semigroup compactification of S.

Definition 1.1. (i) Let \mathcal{A} be a filter on S. Then

M. Akbari Tootkaboni is with the Department of Mathematics, Faculty of Sience, of Shahed University, Tehran, Iran (e-mail: akbari@shahed.ac.ir)

[‡] A. Riazi is with the Faculty of Mathematics and Computer Sience, Amirkabir University of Technology, Tehran, Iran (e-mail: @aut.ac.ir).

 $\overline{A} = \{ p \in \beta S : A \subseteq p \}.$

(ii) Let \mathcal{A}, \mathcal{B} be filters S. Then $A + B = \{A \subseteq S : \Omega_B(A) \in A \}$ for $A \subset S, \Omega_{\mathcal{B}}(A) = \{x \in S : \lambda_{x}^{-1}(A) \in \mathcal{B}\}.$

Note that \overline{A} is a closed subset of βS and that all closed subsets of βS are of this from. (see [3],[4]).

Lemma 1.2. Let \mathcal{A}, \mathcal{B} be filters on S. Then

(i)
$$\overline{A} = \bigcap_{A \in A} \overline{A}$$
 and $A = \bigcap_{p \in \overline{A}} p$

(ii)
$$\Omega_A(A) = \bigcap_{p \in A} \Omega_p(A)$$
 for every $A \subseteq S$

(iii)
$$\mathcal{A} \subseteq \mathcal{B} \Leftrightarrow \overline{\mathcal{B}} \subseteq \overline{\mathcal{A}}$$
Proof: see [4]. \square

2. INTERACTION BETWEEN ULTRAFILTERS AND MULTIPLICATIVE MEANS

In this section we show the relation between ultrafilters and multiplicative means. In this section we $Z(f) = \{x \in S : f(x) =$ 0) for each $f \in B(S)$.

Lemma 2.1. (i) $\mathcal{U} = \{A \subseteq S : \mu \in \mathcal{E}(A)\}$ is an ultrafilter for each $\mu \in \Delta(S)$,

(ii) Let $p \in \beta S$ be an ultrafilter, then there exists some $\mu \in \Delta(S)$ such that $\bigcap_{A \in n} \mathcal{E}(A) = \{\mu\}$,

(iii) Let $\mu \in \Delta(S)$, then there exists an ultrafilter $p \in \beta S$ such that $\bigcap_{A \in \mathcal{P}} \overline{\varepsilon(A)} = \{\mu\}$.

Proof: (i) since $\overline{\varepsilon(A)} \cap \overline{\varepsilon(B)} = \overline{\varepsilon(A \cap B)}$ for each $A \subseteq S$ and $B \subseteq S$ so \mathcal{U} is a filter. Then $\{\varepsilon(A): A \in \mathcal{U}\}$ has the finite intersection property and so there exists an ultrafilter p_{μ} on S such that $\bigcap_{A \in p_{\mu}} \overline{\varepsilon(A)} = \{\mu\} \quad and \quad \mathcal{U} \subseteq p_{\mu}.$ Also

$$\bigcap_{A \in p_{\mu}} \overline{\varepsilon(A)} \subseteq \bigcap_{A \in \mathcal{U}} \overline{\varepsilon(A)}$$
$$= \{ \mu \}$$

implies that $\,p_{\mu} \subseteq \mathcal{U}\,.\,$ So $\,\mathcal{U}\,$ is an ultrafilter.

(ii) Since p is an ultrafilter, so $\{\varepsilon(A): A \in p\}$ has the intersection property in $\Delta(S)$, and so $\{\mu\} \subseteq \bigcap_{A \in p} \overline{\mathcal{E}(A)}$ for some $\mu \in \Delta(S)$, and we can that $p \subseteq \{A \subseteq S : \mu \in \overline{\mathcal{E}(A)}\}\$. Hence $\bigcap_{A\in n} \mathcal{E}(A) = \{\mu\}.$

(iii) It follows from (i).

Let $A \subseteq S$, we define $\chi_A = 0$ if $x \in A$ otherwise $\chi_A = 1$. Suppose that A is an ultrafilter on S, then there exists $\mu \in \Delta(S)$ such that $\bigcap_{A \in A} \overline{\varepsilon(A)} = \{\mu\}$, therefore \mathcal{A}^{μ} used to show an ultrafilter corresponding to $\mu \in \Delta(S)$ such that $\bigcap_{A \in A} \overline{\varepsilon(A)} = \{\mu\}$. It is obvious that

$$A^{\mu} = \{ A \subseteq S : \mu \in \overline{\varepsilon(A)} \}$$
$$= \{ A \subseteq S : \mu(\chi_A) = 0 \},$$

since $\mu(\chi_A) = 0$ if and only if $\widehat{\chi}_A(\mu) = 0$ if and only if $\mu \in \mathcal{E}(A)$. Hence

$$\beta S = \{ \mathcal{A}^{\mu} : \mu \in \Delta(S) \}.$$

Lemma 2.2. (i) $A^{\mu} + A^{\nu} = A^{\mu\nu}$ for each $\mu, \nu \in \Delta(S)$,

(ii) Let ${\mathcal A}$ be a filter and ${\mathcal A}^{
u}$ be an ultrafilter, then $A + A^{\mu} = \bigcap_{A^{\nu} \in \overline{A}} A^{\nu\mu}$,

(iii) Let \mathcal{A} be a filter and \mathcal{A}^{μ} be an ultrafilter then we have $A^{\mu} + A \subseteq$

$$\bigcap_{A^{\nu} \in \overline{A}} \mathcal{A}^{\mu\nu}$$
,

(iv) Let \mathcal{A}, \mathcal{B} be filters, then $\mathcal{A} + \mathcal{B} \subseteq$

$$\bigcap_{A^{\nu}\in\widetilde{B}} A^{\mu_{\varepsilon}} \overline{A}^{\mu\nu}.$$

Proof: (i) For a nonempty subset A of S, we have

$$\Omega_{A^{\nu}}(A) = \{ x \in S : \lambda_x^{-1}(A) \in \mathcal{A}^{\nu} \}$$
$$= Z(T_{\nu}(\chi_A)).$$

 $T_{\nu}\chi_{A}(t) = \nu(L_{\iota}\chi_{A}) = \widehat{(L_{\iota}\chi_{A})}(\nu)$ $L_t \chi_A(x) = \chi_A(tx)$ for every $x, t \in S$ and for every $\nu \in \Delta(S)$, we conclude that $T_{\nu} \chi_{A}(t) = \widehat{(L_{\iota} \chi_{A})}(\nu)$ is a characteristic functin. Hence

$$\mathcal{A}^{\mu\nu} = \{A : \mu\nu \in \varepsilon(A)\}$$

$$= \{A : \mu(T_{\nu}(\chi_A)) = 0\}$$

$$= \{A : Z(T_{\nu}(\chi_A)) \in \mathcal{A}^{\mu}\}$$

$$= \{A : \Omega_{\mathcal{A}^{\nu}}(A) \in \mathcal{A}^{\mu}\}$$

$$= \mathcal{A}^{\mu} + \mathcal{A}^{\nu}.$$
(ii)

$$\begin{split} \mathcal{A} + \mathcal{A}^{\mu} &= \{A : \Omega_{\mathcal{A}^{\mu}}(A) \in \mathcal{A}\} \\ &= \{A : Z(T_{\mu}(\chi_{A})) \in \mathcal{A}\} \\ &= \{A : Z(T_{\mu}(\chi_{A})) \in \mathcal{A}^{\nu}, \forall \mathcal{A}^{\nu} \in \overline{\mathcal{A}}\} \\ &= \{A : A \in \mathcal{A}^{\mu} + \mathcal{A}^{\nu}, \forall \mathcal{A}^{\nu} \in \overline{\mathcal{A}}\} \\ &= \bigcap_{\mathcal{A}^{\nu} \in \overline{\mathcal{A}}} \mathcal{A}^{\nu\mu}. \end{split}$$

(iii) Since

$$\begin{split} \Omega_{\mathcal{A}}(A) &= \{x \in S : Z(L_{x}\chi_{A}) \in \mathcal{A}\} \\ &= \{x \in S : T_{\nu}(\chi_{A})(x) = 0, \forall \mathcal{A}^{\nu} \in \overline{\mathcal{A}}\} \\ &= \bigcap_{\mathcal{A}^{\nu} \in \overline{\mathcal{A}}} Z(T_{\nu}(f)), \end{split}$$

therefore

$$\begin{split} \mathcal{A}^{\mu} + \mathcal{A} &= \{A : \bigcap_{A^{\nu} \in \overline{\mathcal{A}}} Z(T_{\nu}(\chi_{A})) \in \mathcal{A}^{\mu} \} \\ &\subseteq \{A : Z(T_{\nu}(\chi_{A})) \in \mathcal{A}^{\mu}, \forall \mathcal{A}^{\nu} \in \overline{\mathcal{A}} \} \\ &= \bigcap_{A^{\nu} \in \overline{\mathcal{A}}} \mathcal{A}^{\mu\nu} \end{split}$$

and we have $\mathcal{A}^{\mu} + \mathcal{A} \subseteq \bigcap_{A^{\nu} \in \overline{A}} \mathcal{A}^{\mu\nu}$.

(iv) We have

$$\mathcal{A} + \mathcal{B} = \{A : \Omega_{\mathcal{B}}(A) \in \mathcal{A}\}$$

$$= \{A : \bigcap_{\mathcal{A}'' \in \overline{\mathcal{B}}} Z(T_{\mu}\chi_{A}) \in \mathcal{A}\}$$

$$\subseteq \{A : Z(T_{\mu}\chi_{A}) \in \mathcal{A}, \forall \mathcal{A}'' \in \overline{\mathcal{B}}\}$$

$$= \bigcap_{\mathcal{A}'' \in \overline{\mathcal{A}}, \mathcal{A}' \in \overline{\mathcal{B}}} \mathcal{A}^{\mu\nu}.\square$$

Now define the function $\phi: \Delta(S) \to \beta S$

by $\phi(\mu)=\mathcal{A}^{\mu}$. ϕ is one-to-one and onto, by Lemma 2.1. Since for every $A\subseteq S$,

$$\phi^{-1}(\overline{A}) = \{ \mu \in \Delta(S) : \mathcal{A}^{\mu} \in \overline{A} \}$$
$$= \{ \mu \in \Delta(S) : \mu \in \overline{\varepsilon(A)} \}$$
$$= \overline{\varepsilon(A)},$$

so ϕ is continuous. By Lemma 2.2, it is obvious that ϕ is homomorphism.

Now by combining the concepts of ultrafilters and multiplicative means we prove some well-known results in a simpler way, Lemma 2.3, Lemma 2.4, Lemma 2.5, Lemma 2.7, Corollary 2.8 and Theorem 2.10 has proved in [4] and we will prove those by this methods.

Lemma 2.3. Suppose $\mathcal A$ be a filter on S such that $\mathcal A \subseteq \mathcal A + \mathcal A$, then $\overline{\mathcal A}$ is a subsemi-

group of βS .

Proof: By Lemma 23.4, we have

$$\begin{split} \mathcal{A} &\subseteq \mathcal{A} + \mathcal{A} \subseteq \bigcap_{\mathcal{A}^{\nu}, \mathcal{A}^{\mu} \in \overline{\mathcal{A}}} \mathcal{A}^{\mu\nu} \text{. Therefore} \\ \mathcal{A} &\subseteq \mathcal{A}^{\mu} + \mathcal{A}^{\nu} \qquad \text{for} \quad \text{each} \qquad \mathcal{A}^{\mu}, \mathcal{A}^{\nu} \in \overline{\mathcal{A}} \text{.} \\ \text{Hence} \quad \mathcal{A}^{\mu} + \mathcal{A}^{\nu} &\in \overline{\mathcal{A}} \quad \text{for every} \end{split}$$

$$\mathcal{A}^{\mu}, \mathcal{A}^{\nu} \in \overline{\mathcal{A}}.$$

Lemma 2.4. Let \mathcal{A} be a filter on S and $p \in \beta S$, then $\overline{\mathcal{A} + p} = \overline{\mathcal{A}} + p$.

Proof: Suppose that $p=\mathcal{A}^{\mu}$ for some $\mu\in\Delta(S)$. By Lemma 3.2, we have $\mathcal{A}+\mathcal{A}^{\mu}=\bigcap_{\mathcal{A}^{\nu}\in\bar{\mathcal{A}}}\mathcal{A}^{\nu\mu}$. Therefore by lemma 1.2.

$$\overline{A + A^{\mu}} = \overline{\bigcap_{A^{\nu} \in \overline{A}} A^{\nu\mu}}$$

$$= \{A^{\nu\mu} : A^{\nu} \in \overline{A}\}$$

$$= \{A^{\nu} + A^{\mu} : A^{\nu} \in \overline{A}\}$$

$$= \overline{A} + A^{\mu}. \square$$

Let $\mathcal A$ be a filter on S, then $\overline{\mathcal A}$ is a left ideal if and only if there exists $\mathcal A^\mu\in\beta S$ such that $\mathcal A=\{S\}+\mathcal A^\mu$. Also $\overline{\mathcal A}$ will be a minimal left ideal if and only if μ be a minimal idempotent in $\Delta(S)$.

Lemma 2.5. Let \mathcal{A} be a filter on S, then $\overline{\mathcal{A}}$ is a left ideal of βS if and only if $\Omega_{\mathcal{A}}(A) = S$, for every $A \in \mathcal{A}$.

Proof: Let $\overline{\mathcal{A}}$ be a left ideal then there exists \mathcal{A}^{μ} such that $\mathcal{A} = \{S\} + \mathcal{A}^{\mu}$. So $Z(T_{\mu}(\chi_{A})) = S$ for each $A \in \mathcal{A}$, by Definition 1.1. Since

$$\varepsilon(x)\varepsilon(y)\mu(\chi_A) = \varepsilon(y)(T_u\chi_A)(x) = 0$$

for each $x,y\in S$ and $A\in\mathcal{A}$, therefore $\varepsilon(x)\nu\mu(\chi_A)=0$ for every $x\in S, \nu\in\Delta(S)$ and $A\in\mathcal{A}$. Hence $Z(T_{\nu\mu}(\chi_A))=S$ for each $A\in\mathcal{A}$ and $\nu\in\Delta(S)$ and

$$\begin{split} \Omega_{\mathcal{A}}(A) &= \bigcap_{\mu \in \bar{\mathcal{A}}} Z(T_{\mu} \chi_{A}) \\ &= \bigcap_{\nu \in \beta S} Z(T_{\nu \mu} \chi_{A}) = S. \end{split}$$

Conversely, let $\Omega_{\mathcal{A}}(A) = S,$ for every $A \in \mathcal{A}$.Therefore

$$\Omega_{\mathcal{A}}(A) = \bigcap_{\mu \in \overline{\mathcal{A}}} Z(T_{\mu} \chi_{A}) = S$$

implies that $\varepsilon(x)\mu(\chi_A) = T_\mu \chi_A(x) = 0$ for each $x \in S$ and $\mu \in \overline{A}$. Therefore $\varepsilon(x)\mu \in \overline{A}$ for every

 $x \in S$ and $\mu \in \overline{A}$, and so $\nu \mu \in \overline{A}$ for each $\nu \in \beta S$ and $\mu \in \overline{A}$. Now by Lemma 1.2, implies that $\beta S + \overline{A} \subset \overline{A}$ and so \overline{A} is a left ideal. \square

Lemma 2.6. Let \mathcal{A} be a filter on S, then $\overline{\mathcal{A}}$ is a left ideal of βS if and only if $Z(T_u(\chi_A)) = S$ for every $A \in \mathcal{A}$, where $\mu \in \Delta(S)$ and $\overline{\mathcal{A}} = \beta S + \mathcal{A}^{\mu}$ and also $\mathcal{A} = \{ A \subseteq S : Z(T_{\mu}(\chi_A)) = S \}.$

Proof: Obvious.

Lemma 2.7. Let \mathcal{A} be a filter on S, then $\overline{\mathcal{A}}$ is a right ideal of βS if and only if $A \subseteq A + q$ for every

Proof: Let \overline{A} be a right ideal, $Z(f) \in A$ implies $Z(f) \in \mathcal{A}^{\mu} + \mathcal{A}^{\nu} = \mathcal{A}^{\mu\nu} \in \overline{\mathcal{A}}$

for every $A^{\nu} \in \beta S$ and every $A^{\mu} \in \overline{A}$. On the other hand, for every $A^{\mu} \in \overline{A}$, $Z(T, f) \in A^{\mu}$ and $Z(T,f)\in \overline{\mathcal{A}}$ 1.2 $Z(f) \in \mathcal{A} + \mathcal{A}^{\mu}$. Conversely, if $q = A^{\vee} \in \beta S, A \subseteq A + q = A + A^{\vee}$ $\mathcal{A} \subseteq \bigcap_{\mathcal{A}^{\mu} = \bar{\mathcal{A}}} \mathcal{A}^{\mu\nu} \subseteq \mathcal{A}^{\mu\nu} = \mathcal{A}^{\mu} + \mathcal{A}^{\nu}.$ \overline{A} is a right ideal of βS . \square

Suppose that $\mathcal{A}^{\mu} \in \beta S$ and $\mathcal{A} = \mathcal{A}^{\mu} + \{S\}$, then we have for every $\mathcal{A}^{\nu} \in \beta S$,

$$\mathcal{A} + \mathcal{A}^{\nu} = (\mathcal{A}^{\mu} + \{S\}) + \mathcal{A}^{\nu}$$
$$= \mathcal{A}^{\mu} + (\{S\} + \mathcal{A}^{\nu})$$
$$= \mathcal{A}^{\mu} + \bigcap_{A^{\eta} \in \mathcal{B}^{S}} \mathcal{A}^{\eta \nu}.$$

Since $\{S\} \subseteq \bigcap_{\mathcal{A}^{\eta} \in \beta S} \mathcal{A}^{\eta \nu}$, hence

 $\mathcal{A}^{\mu}+\{S\}\subseteq\mathcal{A}^{\mu}+\bigcap_{A^{\eta}\in\partial S}\mathcal{A}^{\eta\nu}$, and so by Lemma 2.9 $\mathcal{A}^{\mu} + \{S\}$ is a right ideal.

Corollary 2.8. Let S be a commutative semigroup. Then for any filter A on S, \overline{A} is an ideal of βS if and only if $A \subseteq A + q$, for any $q \in \beta S$.

Proof: Let $\overline{\mathcal{A}}$ be an ideal of βS , it is obvious that $A \subset A + q$.

Conversely, if S is a commutative semigroup then for every $x \in S$ and for every $\mu \in \Delta(S)$ we have $\varepsilon(x)\mu = \mu\varepsilon(x)$. If $\mathcal{A}^{\mu} \in \overline{\mathcal{A}}$ then for every $x \in S$,

$$\mathcal{A} \subseteq \mathcal{A} + \mathcal{A}^{\varepsilon(x)}$$

$$= \bigcap_{\mathcal{A}^{\mu} \in \bar{\mathcal{A}}} \mathcal{A}^{\varepsilon(x)\mu}$$

$$\subseteq \mathcal{A}^{\varepsilon(x)\mu}$$

$$= \mathcal{A}^{\mu\varepsilon(x)}.$$

Hence for every $A^{\nu} \in \beta S$, $A^{\nu\mu} \in \overline{A}$, and so \mathcal{A} is a left ideal and the proof is completed. \square

Let $e \in \Delta(S)$ be a minimal idempotent and $A \subseteq S$. If $T_{\nu_c}(\chi_A)(s) = 0$ for every $s \in S$ and for some $v \in \Delta(S)$, then $\varepsilon(s)ve(\chi_A) = 0$ for every $s \in S$. Since $\varepsilon(S) = \Delta(S)$ we will have $\mu e(\chi_A) = 0$ for each $\mu \in \Delta(S)$, and we have $A \in \mathcal{A}^{\mu e}$ for every $\mu \in \Delta(S)$. Therefore we have:

Theorem 2.9. Let $e \in \Delta(S)$ be a minimal idempotent, then

(i) $A_{\nu} = \{A : Z(T_{\nu e} \chi_A) = S\}$ is a filter on S, for every $\nu \in \Delta(S)$.

(ii)
$$\mathcal{A}_{\nu} = \bigcap_{A^{\mu} \in \mathcal{B}S} \mathcal{A}^{\mu e}$$

(iii) $\overline{\mathcal{A}_{\wp}}$ is a minimal left ideal βS .

Proof: (i) Since

$$Z(T_{ve}(\overline{ff} + g\overline{g})) = Z(T_{ve}(\overline{ff}) + T_{ve}(g\overline{g}))$$

$$= Z(T_{ve}(f))(\overline{T_{ve}f})$$

$$\cap Z(T_{ve}(g)\overline{T_{ve}(g)}),$$

 $\emptyset \notin \mathcal{A}$ and since

$$Z(T_{ve}(f)) \subseteq Z(T_{ve}(f)T_{ve}(g)),$$

so A is a filter.

(ii) If $A \in \mathcal{A}_{\nu}$ then we have $Z(T_{\nu e}\chi_A) = S$. Therefore $\varepsilon(x)\nu e(\chi_A)=0$ for every $x\in S$. So $\mu e(\chi_A) = 0$ for every $\mu \in \Delta(S)$,

and we have $A \in \bigcap_{A^{\mu} \in \mathcal{B}_{S}} \mathcal{A}^{\mu e}$.

If $A \in \bigcap_{A^{\mu} \in \mathcal{BS}} \mathcal{A}^{\mu e}$, then $A \in \bigcap_{x \in \mathcal{S}} \mathcal{A}^{\varepsilon(x)\nu e}$ and we have $\varepsilon(x)ve(\chi_A)=0$ for every $x \in S$ and so $Z(T_{\nu e}\chi_A) = S$. Hence the proof is completed.

(iii) Obvious.

Definition 2.10. Let X be a non-empty set. We define

 $[X]^{\triangleleft w} = \{F \subseteq X : \text{non empty and finite}\}.$

Theorem 2.11. Let \mathcal{A} be a filter on S such that

 $\overline{\mathcal{A}}$ is a left ideal of βS . Then the following statements are equivalent.

- (i) \overline{A} is a minimal left ideal of βS .
- (ii) For every $A \in \mathcal{A}^c$ there exists $F \in [S]^{< w}$ such that $\bigcup_{r \in F} (\lambda_r^{-1}(A^c)) \in \mathcal{A}$.

Proof: (i) \rightarrow (ii): Suppose that \overline{A} is a minimal left ideal of βS and assume further that exists $A \in \mathcal{A}^c$ for each $F \in [S]^{< w}$ such that $\bigcup_{r\in F} (\lambda_r^{-1}(A^c)) \notin \mathcal{A}$. Then $\{B \cap (\bigcap (\lambda_{-}^{-1}(A))) : B \in \mathcal{A}, F \in [S]^{< w}\} = \mathcal{H}$ has property. intersection $\mu e \in \bigcap_{D \in \mathcal{H}} \mathcal{E}(D)$ for some $e, \mu \in \Delta(S)$ and e is a minimal idempotent. Then $\lambda_r^{-1}(A) \in \mathcal{A}^{\mu e}$ for every $x \in S$, Hence we have $Z(T_{ue}(\chi_A)) = S$ and so by Lemma 3.9, $A \in \mathcal{A}$ and this contradicts the fact that $A \notin A$.

(ii) \rightarrow (i): Since \overline{A} is a left ideal in βS , so $\overline{A} = \beta S + A^{\mu}$ for some $\mu \in \beta S$. If \overline{A} is not a minimal left ideal of βS , then there exists a minimal idempotent $e \in \beta S$ such that $\overline{B} = \beta S + A^e \subseteq \overline{A}$. Hence there exists $A \in \mathcal{B}$ such that $Z(T_e \chi_A) = S$ and $Z(T_{\mu}\chi_{\scriptscriptstyle A}) \neq S$, so $A \not\in \mathcal{A}$. Then there exists an $F \in [S]^{< w}$ such that $\bigcup_{x \in F} (\lambda_x^{-1}(A^c)) \in A$. Since $\mathcal{A} \subseteq \mathcal{B}$, we have $(\bigcap_{x \in F} (\lambda_x^{-1}(A)))^c \in \mathcal{B}$, but if $A \in \mathcal{B}$ then $\lambda_r^{-1}(A) \in \mathcal{B}$ for every $x \in S$, so $(\bigcap_{x\in F}(\lambda_x^{-1}(A)))^c\in\mathcal{B}$, and this is a contradiction.

3. TRANSLATION INVARIANT ULTRAFILTERS

In this section we define almost translation invariant filters and ultrafilters. An ultrafilter p on S is called almost translation invariant if $A \in p$ implies that $\{x \in S : \lambda_r^{-1}(A) \in p\} \in p$. Since p is an ultrafilter, it is clear that p is almost translation invariant if and only if p + p = p, that is p is an idempotent. We will prove the following theorem in a simpler manner than Theorem 2.1 in [4].

Theorem 3.1. Let S be an infinite semigroup. If for any finite subset F of S there exists $x \in F^c$ such that $\lambda_{r}^{-1}(F)$ is a finite subset of S. Then there exists a nonfixed almost translation invariant ultrafilter on S.

Proof: Let $\mathcal{A} = \{A \subseteq S : A^c \text{ is finite}\}$. We define $\tilde{A} = \{x \in A : \lambda_x^{-1}(A^c) \text{ is finite}\}$. Since for every $A, B \in \mathcal{A}$, we have $\widehat{A \cap B} = \widetilde{A} \cap \widetilde{B}$, therefore $\{\tilde{A}: A \in \mathcal{A}\}$ has finite intersection property. Now suppose that \mathcal{B} is a filter generated by $\{\tilde{A}: A \in \mathcal{A}\}$. It is obvious that $\mathcal{A} \subseteq \mathcal{B}$. If $x \in \tilde{\mathcal{A}}$ and $A \in \mathcal{A}$ then $\lambda^{-1}(A) \in \mathcal{A}$ and

$$\lambda_x^{-1}(\tilde{A}) = \{t : xt \in \tilde{A}\}$$

$$= \{t : \lambda_{xt}^{-1}(A^c) \text{ is finite and } xt \in A\}$$

$$= \widetilde{\lambda_{xt}^{-1}(A)}.$$

Therefore

$$\widetilde{A} = \{x : \lambda_x^{-1}(\widetilde{A}) = \widehat{\lambda_x^{-1}(A)} \in \mathcal{B}\}$$

$$\subseteq \{x : \lambda_x^{-1}(\widetilde{A}) \in \mathcal{B}\}$$

so that for every $A \in \mathcal{A}$, $\widetilde{A} \in \mathcal{B} + \mathcal{B}$, and we will have $\mathcal{B} \subseteq \mathcal{B} + \mathcal{B}$. Now by Lemma 3.2 of [4], $\overline{\mathcal{B}}$ is a closed subsemigroup of βS , hence $\overline{\beta}$ has an idempotent, by [1. chapter 1. Theorem 3.11]. It is obvious that every $p \in \overline{\mathcal{B}}$ is a non-fixed ultrafilter.

4. REFERENCES

- J.F. Berglund, H.D. Junghenn, and P. Milnes, Analysis on semigroups. Function spaces Compactifications representations,
- L. Gilman and M. Jerison, Ring of continuous functions, Van Nostrand, Princeton, N.J., 1960.
- [3] N.Hindman and D.Strauss, Algebra in the Stone \check{C} ech compactification Theory and Application, Springer series in Computational Mathematics 15, Walter de Gruyter, Berlin, New
- [4] T. Papazyan, Filter and semigroup properties, semigroup Forum 41, (1990), 329-338.