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ABSTRACT

In this paper by combining the concepts of ultrafilters and multiplicative means in a nice way we find a

good tool for dealing with the Stone - Cech compactification of infinite discrete semigroups.
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1. INTRODUCTION
Throughout this paper (.5,.) will denote an infinite
discrete semigroup. Let B(S) be the C" -algebra of all

bounded complex-valued functions on §  with
supremum norm. Let A(S) denote the spectrum of

B(S8). Then A(S)is a semigroup with multiplication
defined by uv(f) = u(T f), where
T.()s)=v(L.f) for se§,u,veA(S) and
f € B(S). Furthermore, A(S) with the Gelfand
topology (i.e. the relative weak * - topology inherited
by B(S)") is a compact right topological semigroup
such that the evaluation mapping £:8 —> A(S) is a
continuous homomorphism with dense image and
e(S) = AMA(S)) ={u e A(S):
t—> ut: A(S)—> A(S) is continuous.}. We can
extend f:8§—->C uniquely to
FiA(S) —> Cdefined by  f(u)=pu(f)for
every £ € US . On the other hand, (A(S),€)is

semigroup compactification of . For more details the
readers may see [1].

Let P(S) be the set of all subsets of §
then A < P(S) is called a filter if
(i) DeA,

(ii)if A4,Be A then A[VBe A,
(iii)if Ae A and A< B then Be A.

If A is a filter and there is not any filter 3 such
that A < B then A will be called an ultrafilter.

For a discrete semigroup S, assume that
BS ={p: pis an ultrafilter on S}. For A< S we
let A={pepS:4ep}.

The collection {4:AC S} forms a basis for a
Hausdorff topology on fS. With this topology [ is

the Stone- C ech compactification of S ,(sef2 1,[3] for

an extensive study of stone- é ech
compactification from this point of view).

Forxe S, define x={4AdcS:xeAd}, and
e:8 — [S is defined by e(x) =X is continuous and
embedding map. The operation “” On S extends
uniquely to a multiplication + (see definition 1.1) on
LS under which the pair (f#S,e) is a semigroup

compactification of .S'.
Definition 1.1. (i) Let A be a filter on S'. Then
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A={pepS:Acp}.
(i) Let A,B be filters on S . Then
A+B={Ac<S:Q (A e A} where for
Ac 8,Q (A)={xeS: A (4)eB}.
Note that A is a closed subset of LSS and that all
closed subsets of S are of this from. ('see [3],[4]).
Lemma 1.2. Let A, B be filters on S . Then
@ Z:ﬂAeAZ and A=ﬂpdp
() Q (4= ﬂ,)eAQp(A) forevery A S
Gy AcBeoBcA
Proof: see [4].00
2. INTERACTION BETWEEN ULTRAFILTERS AND
MULTIPLICATIVE MEANS

In this section we show the relation between
ultrafilters and multiplicative means. In this section we

define Z(f)={xeS: f(x)= O}for each
feB(S).

Lemma 2.1. () U={4dcS:u Em} is an
ultrafilter for each 1 € A(S),

(ii) Let p € S be an ultrafilter , then there exists
some £ € A(S) such that ﬂAep;(j{S ={u},

(iii) Let g€ A(S), then there exists an ultrafilter
p € S such that ﬂAEp;(.;ﬁ ={u}.

Proof: (i) since £(A)Ne(B)=¢e(AB) for
each AcS and BC S so U is a filter. Then

{e(A): AeU} has the finite intersection property
and so there exists an ultrafilter p, on S such that
ﬂAep“ g(A):{/'l} Clnd Mgp;l'
Also

ﬂAEpﬂ E(A) - ﬂAEUS(A)

= {u}

implies that p, < U . So U is an ultrafilter.
(i) Since p is an ultrafilter , so {&(4): 4 € p}
has the intersection property in A(S), and so

{1y <y, 6(A) for some pe A(S), and we can

pc{AdcS: uee(A)} Hence

see that

e, () = {1}
(iii) It follows from (i). [J

Let A S ,we define y, =0 if x € A otherwise
%4 =1. Suppose that A is an ultrafilter on S, then
there exists i € A(S) such that [, , &(4)={u},

therefore A* used to show an ultrafilter corresponding
to eA(S) such that (), e(A)={u}. 1t is
obvious that

A“={AcS: pee(d))
={AdcS:u(x,)=0},

since ¢(¥,) =0 if and only if Z(u) =0 if and

only if 1 € £(A).Hence
BS={A"  peA(S)}.
@ AY+A"=A" for each

Lemma 2.2.

u,v € A(S),
(i) Let A be a filter and A" be an ultrafilter, then
A+ A =N, A",
(iii) Let LA be a filter and A* be an ultrafilter then
we have A" + A ¢
NpeaA™
(iv) Let A, B be filters, then A+Bc
Ny esaraa?”
Proof: (i) For a nonempty subset A of S, we have
— .q -l v
Q. (A)={xeS:A7 (HeA"}
= Z(T,(x.1) -
Since TxO)=v(Lyx)=Lx)V) and
Ly (x)=x,(tx)for every x,t €S and for every
v € A(S), we conclude that 7,y ,(t) = (ZT)(\A W) is
a characteristic functin. Hence
A* = {A: uv ee(4)}
= {4 (T, (x)) =0}
= {4: Z(T,(x) e A"}
= {4:Q,, (D e A"}
= A"+ A
(i)
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A+ A" = {(4:Q (He A
= {A:Z(T (x, N e A}
= A Z(@T, () e A, VA" e A}
= {A:Ade A"+ A" VA e A}
- N4
Aed
(iii) Since
Q (A)={xeS:Z(L y,)e A}
={xeS:T (1,)(x)=0,VA" e A}
= N 2@,
A'ed
therefore

A+ A={A: [ AT, (x,) e A"}
Aed
c{4: Z(T(z,) e A“ VA" € A}
- A~
A'ed
and we have A“ + A gﬂA,.EjAW.
(iv) We have
A+B ={4:Q,(4) e A}
={d: N Z(T,x)e A}
AreB

c{d:Z(T x,)e A VA" € B}
= [ A"D
A’ e A A B
Now define the function ¢ : A(S) — S

by@g(u)=A". ¢ is one-to-one and onto, by
Lemma 2.1. Since forevery A C S,
¢ (A)={ueAS): A" € 4}
= {(Hel(S): pes(d)
=&(4),
so ¢ is continuous. By Lemma 2.2, it is obvious that

¢@ is homomorphism.

Now by combining the concepts of ultrafilters and
multiplicative means we prove some well-known results
in a simpler way, Lemma 2.3, Lemma 2.4, Lemma 2.5,
Lemma 2.7, Corollary 2.8 and Theorem 2.10 has proved
in [4] and we will prove those by this methods.

Lemma 2.3. Suppose A be a filter on S such
that A < A+ A , then A is a subsemi-

group of AS.

Proof: By Lemma 23.4, we have

AcA+Ac, .

Ac A“+ A7 for each
Hence A“+A" e A

X.A” Y. Therefore
A4 A e A.

for every

A" A e A O

Lemma 2.4. Let A beafilteron S and p e 3§,

then A+ p=A+p.
Proof: Suppose that p=A4A" for some
pneA(S). By

A+ A4 = ﬂA,,Ej.AV” . Therefore by lemma 1.2.
A A =, A7

={A": A" e A}

={A"+ A" A" e A}

=A+A". O

Let A be a filter on S, then .Z is a left ideal if and

only if there exists A“efS such that
A={S}+A*. Also A will be a minimal left ideal if
and only if ;u be a minimal idempotent in A(S).

Lemma 2.5. Let A be a filter on S, then Ais a
left ideal of SSif and only if © ,(A) =S for every
Ae A.

Proof: Let A be a left ideal then there exists A
such that A={S}+A*. so Z(T,(x,) =8 for
each A € A, by Definition 1.1. Since

e(xX)eWu(x ) =W T, x,)(x)=0

for each x,yeS§ and A€ A, therefore
exXvu(x,) =0 for every xeS,veA(S) and
Ae A . Hence Z(T,(y,)) =S foreach A€ A and

i

v e A(S) and s0
Q) =N,:2T,x,)

peA

= ﬂveﬁS Z(]j/yZA) = S

Lemma 3.2, we have

Conversely,  let ,(4)=3S, for  every

A € A Therefore
Q,(4)= N 20, 2)=S
implies that £(x)u(x,)=T,x,(x)=0 for each
xeSand ueA. Therefore £(x) s € Afor every
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x €S and ,ue./_l, and so v € A for each v € S
and U E A. Now by Lemma 1.2, implies that
BS+Ac A andso Aisaleftideal. ]

Lemma 2.6. Let A be a filter on S, then./T is a left
ideal of MBS if and only if Z(T,(x,))=
Ae A where t€A(S)and A= BS + A" and also
A={Ac S Z(T,(2,) =5).

Proof ;: Obvious. [

Lemma 2.7. Let A be a filter on S, then A is a right
ideal of ASif and only if AC A+gqfor every

qgeps.
Proof: Let A be a right ideal, Z(f) € A implies
Z(Hle A" + A = A" e A
for every A" € #S and every A" € A . On the
other hand, for every A* e A, Z(T,f)e A" and
Z(I,f)eA and so

S for every

by Lemma 1.2

Z(fye A+ A*. Conversely, if for every
g=A" e fS, AgA+q=A+AV then
A o ﬂA,, e A* = A" + AY. Therefore

A isarightideal of AS. [
Suépose that A“ € S and A= A" +{S}, then
we have for every A" € S5,
A+ A=A +{S}H+ A"
= A +({S}+Av)
= A"+
Since {S} <= e ﬁ'S T hence

A* +{S}_C_A"+HA,,EﬂS.A"V, and so by Lemma

.A"eﬂ9

2.9 A" +{S}is a right ideal.

Corollary 2.8. Let S be a commutative semigroup.
Then for any filter A on S ,A is an ideal of ASif
and only if A < A+q,forany g € BS.

Proof : Let A be an ideal of 3S, it is obvious that
AcA+gq.

Conversely, if § is a commutative semigroup then

for every x €S and for every 1€ A(S) we have
e(x)pu=pe(x)1f A" e A then for every x € S,

Ac A+ A
e(x)u
ﬂA"eA A
- As(x)#
— AIJE(I)

.AV”G.Z, and so

./—{ is a left ideal and the proof is completed . []
Let e € A(S) be a minimal idempotent and 4 < S .

Hence for every A" € S,

If T .(x,)(s)=0 for every se€Sand for some
v e A(S), then &(s)ve(y,)=0 for every s€§.
Since ;(—5;52 A(S)we will have we(y,)=0for
each peA(S), and we have Ae A“° for

every 1 € A(S) . Therefore we have:

Theorem 2.9. Let eeA(S)be a minimal
idempotent, then

i A ={4:Z(T,x,)=S}is a filter on §, for
every v € A(S).
(i) A, = ﬂA“eﬂS'Aﬂ
(iii) —A—V— is a minimal left ideal 43S .
Proof : (i) Since
Z(T,(ff +88) =Z(T,.(ff)+T,.(g8)
=Z(T,.(NT,.[)
NZ(T,.(2)T,.(2)),

¢ A and since

Z{T, U Necz@, (.2

so A is a filter.
(i) If A€ A, then we have Z(T, x,)=S.

Therefore &(x)ve(y,)=0 for every x€S§. So
ue(y ) =0 forevery € A(S),
and we have 4 () Are

A eps
If Adel ,thende()_ A and

we have g(x)ve(y,)=0 for every x€§ and so

xe§

A¥ ,BS

Z(T, x,) =S . Hence the proof is completed.

(iii) Obvious. [
Definition 2.10. Let X be a non-empty set. We
define
[XT” ={F <X :nonempty and finite} .
Theorem 2.11. Let A be a filter on S such that
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A is a left ideal of S . Then the following statements
are equivalent.
(i) A is a minimal left ideal of 35S .

(ii) For every A € A€ there exists F €[S]™ such
that U__. (A (4)) e A.

Proof : (i) —>(ii) : Suppose that.4 is a minimal
left ideal of LS and assume further that exists

AeAfor  each  Fe[ST"  such that
User (ﬂ',;l(Ac ))& A Then

(BN (A)):Be A, Fe[ST"}=H  has
property. Therefore

e € py €(D) for some e,pe A(S)and eis a

finite intersection

minimal idempotent. Then A '(A4)e A" for every
x €S, Hence we have Z(T,,(x,))=S and so by
Lemma 3.9, A€ A and this contradicts the fact that
Ag A. '

(ii)=>(i): Since A is a left ideal in pS, so
.Z=,3S+.A” for some g€ fBS.1f A is not a
minimal left ideal of S, then there exists a minimal
idempotent e € AS such that B =S+ A°c A.
Hence there exists A € Bsuchthat Z(T,,) =S and
ZT x)#S , s0 A¢ A. Then there exists an
F e[ST" such that U__.(1.'(4°)) e A. Since
AcB, we have (,.(A7(4)° €B but if
AeBthen A7'(A)eB for every x€S, so
(N, (L'(A)) € B, and this is a contradiction.
0

3. TRANSLATION INVARIANT ULTRAFILTERS

In this section we define almost translation invariant
filters and ultrafilters. An ultrafilter pon S'is called
almost translation invariant if A€ p implies that
{xeS:1.'(4) € p}e p.Since pis an ultrafilter, it
is clear that p is almost translation invariant if and only
if p+p=p, that is pis an idempotent. We will
prove the following theorem in a simpler manner than

Theorem 2.1 in [4]. ,
Theorem 3.1. Let S' be an infinite semigroup. If for

any finite subset 7" of § there exists x € F' such that
A7 (F) is a finite subset of S . Then there exists a non-

fixed almost translation invariant ultrafilter on S .

Proof : Let A ={4CS:4°s finite}. We
define A= {xe A:A]'(A%)is finite}. Since for
every A,Be A, we have m = z&ﬂg, therefore
{Ad:de A} has finite intersection property. Now
suppose that /3 is a filter generated by {2 tAe A} 1t
is obvious that AcB.If xe A and Ae A then
AA)e A and

AN (A) = {t: xt € A}
={t: 1. (4°) is finite and xt € 4}

= 1(4)
Therefore
A= A)=2"A) e B
c{x:A'(4d) e B}
so that for every A€ A, ZEB-FB, and we
will have B < B+ B . Now by Lemma 3.2 of [4], B

is a closed subsemigroup of [, hence B has an
idempotent, by [1. chapter 1. Theorem 3.11] . - It is
obvious that every p € B isanon fixed ultrafilter.
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