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ABSTRACT

Sediment transport as a complicated and important phenomenon has attracted a lot of researchers during
the last century; however there are some formulae to evaluate sediment loads in aquatic systems. Most of
them still face two major problems: firstly, lack of accuracy and secondly, involvement of many parameters
which makes them more challenging.

Artificial Neural Networks are known as model-free universal function approximators well suited to deal
with real life engineering problems including time series predictions and parameter estimation. In this paper,
sediment loads are predicted using two different types of multilayer feedforward neural networks, namely
Multi-Layer perceptron (MLP) and Radial Basis Function (RBF). The input variables for both structures are
considered to be flow discharge, mean flow depth and width, mean bed material’s diameter and water
surface slope and the output is sediment discharge. Some different cases have been studied. The results are
promising. It has been also observed that mean square prediction errors for the developed MLP is equal to
0.0063 while the devised RBF networks produces much larger mean square errors, namely 0.01260. This
indicates that the MLP- load-predictor outperforms the RBF-predictor.
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‘ formula and the use of any formula beyond its
1. INTRODUCTION applicability range usually shows dramatic results.

An alternative way to estimate suspended sediment
loads is to apply power law, flow discharge and sediment
concentration, which is based on stochastic analyses of the
measured data at the particular section of the river [1].
Although power law has the privilege of being
straightforward, it does not show proper results for
transient states and cannot be applied to new streams or
those without enough measured data. It is worth
mentioning that those formulas which use more parameters
cannot guarantee good acceptable results. With attention
to the increasing usage of Computational Intelligence (CI)
in different areas of science, the CI based methods beside
their simplicity and generalizing ability have been used
widely in hydraulic, e.g. non-iterative friction factor in
pipes [2], flow forecasting [3], optimization of hydraulic

Erosion and sediment transports have been an
undetectable part of the aquatic cycle and affected the
exploitation of the surface water known as an important
water source for miscellaneous uses. Therefore, sediment
transport problems have been studied by researchers for a
long time. A lot of formulas are available for sediment
transport estimation. However, most of the existing
sediment transport formulae that indeed estimate sediment
transport rate have a restricted range of applicability.
Many of them are also based on empirical or semi-
empirical methods. Each of these formulas is derived due
to different characteristics of fluid, different parameters of
flow or variety of bed materials. The flow, fluid and bed
material characteristics in which a formula has been
derived define the range of applicability that particular
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river flow modeling [4] and classification of river basin
[51.

Furthermore, some researches have used artificial
neural networks (ANNs) to predict sediment transport. For
mstance, Avarideh et. al. employed ANNs to predict
sediment in Kor river by the means of river discharge as
input data [6], Jain developed an integrated sediment
curve using ANNs [7]. Namin et. al. used some fluid and
sediment characteristics to predict first bed reference
concentration and dimensionless bed load transport
parameters and they eventually used these parameters to
develop a two dimensional model to predict sediment
concentration [8].

This paper extends the method presented earlier by the
authors in [9] which used type of modular networks to
predict sediment load. Here, two different types of ANNSs,
namely MLP and RBF, are developed to estimate
sediment transport. Different sets of laboratory and field
data are used to test the neure based sediment loads
predictors, The rest of the paper is organized as follows.
Section 2 states the sediment and suspended load
problems. In section 3, the neural networks used in the
paper are presented. The source of loads date and ifs
characteristics are given in section 4. Section 5 is devoted
to present some case studies and discuss the results of
simulations. Finally, section 6 concludes the paper.

3. SEDIMENT AND SUSPENDED LOAD

Sediment is fragmental material, primarily formed by
physical and chemical disintegration of rocks of the
earth’s crust. Such particles range in size from large
boulders to cotloidal size fragments and vary in shape
from rounded to angular. They also vary in specific
gravity and mineral composition [1]. In accordance to
ISO-standards (ISO4363) the bed material load is
classified into material moving as bed load where the
sediment is in almost continuous contact with the bed, or
suspended load in which the sediment maintained in
suspension by turbulence for considerable periods of time
without contact with the bed [10].

Besides fluid and bed material characteristics, transport
capacity of the flow, which is related to some flow
parameters, e.g. flow discharge, mean depth and width of
the flow and finally the slope of the water surface, is
effective on suspended sediment transport.

3. ARTIFICIAL NEURAL NETWORKS

ANNs mimic biological information processing
mechanisms constructed by electronic processing elements
(PEs) connected in a particular fashion. The behavior of
the trained ANN depends on the weights, which are also
referred to as strength of the connections among PEs [11].
ANNs are counted as model free intelligent dynamic
systems which are mainly based on experimental data.
While processing the input data, ANNs disclose the

hidden rules behind the data and transfer them into the
network structure. In other words, ANNs learn general
rales by the means of Numerical computation on the input
data and for this respect they are called intelligent [12].

ANNSs have been applied to the variety of automation
problems including adaptive control, optimization,
medical diagnosis, decision making as well as information
and signal processing including speech processing [11].
Below, two very popular types of feedforward neural
networks, Multilayer percerptron (MLP) and radial basis
function (RBF) used in the paper are briefly introduced.
3-1 Multilayer Perceptrons

MLP structure is a standard combination of inputs,
outputs and linear and/or non-linear nnits. Fig. 1 depicts a
general block diagram representation of the MLP. All
processing units’ outputs in each layer are connected to
every processing unit in next layer. The input layer indeed
represents the input vector which must be properly defined
for each specific problem. The processing units in hidden
layers known as non-linear neurons usually take sigmoid,
hyperbolic or any other nosm linear differentiable type
functions as their activation function. Linear neurons are
commonly exploited in the output layer to cover the
practical range of the underlying problem which is being
modeled and most probably to have a better learning
speed.

Approximate gradient-deseccent method which is the
basis of back propagation (BP)-algorithm is one of the
simplest methods though it is not a very effective one.
Further numerical optimization theory wag applied to
speed up significantly the convergence of the BP-
algorithm. This theory helps us have a rich and robust set
of methods that one can apply to multilayer feedforward
neural networks to enhance learning rates especially for
off-line training the network.

1t is worth mentioning that the gradient steepest-descent
method considers only the first-order derivative of an
performance index or indeed an error function. This helps
take into account pattern-by-pattern training if we have no
a bunch training data in advance. It is also helpful to take
into account higher order derivatives. To see this better,
one may use Taylor’s series expansion on the error

function, J ( Q) around the current point §°, we have
J(8)=7(8")+(80)" (Vo7 (), *

0.5(A8)" H(8),_ (88)+...

|o=6"

where (VQJ (Q))w:o" is the gradient of the error

function with respect to € evaluated at @° and H is

called a Hessain matrix and is the second derivative

A o2 A 0°J
[
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We should note that the parameter vector & contains all
the network weights and biases and A =@ —6°.

To find the minimum of J ( _9_) , we set its gradient to zero:

VI (8)=V,J (") + H(8),., (46)+..=0

Ignore the third and higher-order terms to obtain
0 -1
6= ~H"(0),y VJ(Q)IQ=Q"

If we use k to indicate the kth step of training, we can
write
O(k+1)=6(k)=H"(6(k))V/(4(k))

This is called Newton’s method of parameter
adjustment. This method employs the second derivatives
in addition to the gradient to calculate the next step
direction and step size systematically. Its rate of
convergence is of order 2 when it is close to the solution
of a convex function [12]. However, in order to converge,
it requires a good initial estimate of the parameters (the
solution) and furthermore for non-convex functions it may
converge to a local minimum or a saddle point while at
each iteration it needs huge computations to find the
Hessain matrix and its inverse leading to an expensive
method in terms of both storage and computation
requirements. Therefore, some revised method have been
developed. These include the conjugate-gradient method
and quasi-Newton technique.

The Levenberg-Marquardt Backpropagation (LMBP)
is a type of the quasi-Newton method with the following
parameter updating rule:

8(k-+1)=0(k)-

[V (k) VI (6(k))+ (k) 1] v (0(k)

The LMBP is summarized below.
1- Present all inputs to the network and find the

corresponding outputs of the network and the etrors
_e_j =t / —g_j (the error for the jth input pattern, ¢
and g arc respectively the target and the actual
output). Determine the sum of squared errors over all

inputs, J(Q) = i (_e_j)T e

=

2- Compute the Jacobian matrix V.J ( [ ( k )) and
Af(k)=
(V"7 (0(k)) v (k) + (k) 1]
v/ ((k))

3-Re-compute the sum of squared errors using
g ( k) +Ad (k ) . If this is smaller than that compter

in step 1, then divide x(k)by some factor

o >1(e.g., p=10) and go back to step 1; this
makes the algorithm approach Gauss-Newton, which
provides faster convergence. If the new sum of
squared errors is not reduced, then multiply ££(k) by
p and go to step 2. This makes the algorithm work

like the standard BP in which
1
Glk+1)=0(k)————VJ[O0(k

eventually the error function should decrease since a
small step in the direction of steepest descent is being
taken.
The LMBP appears to be the fastest method for training
moderate-sized feedforward networks (up to several
hundred weights) [13-14].

Higoen laysr Oututs
Figure 1: A block diagram representation of a simple
feedforward network (MLP)

3-2. Radial Basis Functien

A viable alternative to highly nonlinear-in-the-
parameters neural networks is the radial basis function
[13,15]. It was first introduced in the solution of real
multivariable interpolation problems. Like MLP neural
networks, RBF networks are suited to applications such as
pattern  discrimination and  classification, pattern
recognition, interpolation, prediction and forecasting, and
process modeling.

As it can be observed in Fig. 2, RBF networks consist
of two layers. The neurons in the first layer do not employ
the weighted sum of the external inputs and the sigmoid
activation function typically used in MLP. The outputs of
the first layer neurons, each of which represents a basis
function, are instead computed by the distance between
the network input and the center of the basis function. The
neuron output decays rapidly to zero as the input moves
away from a given center. The second layer of the RBF
network is linear and produces a weighted sum of the
outputs of the first layer. Because the neurons in this
network only respond to inputs that are close to their
centers, these neurons will have localized receptive fields
in contrast to the MLP networks where the sigmoid
function creates a global response. The RBF networks
train faster that MLP networks, however require many
neurons for higher dimensional input spaces.
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Figure 2: Schematic of Radial Basis Function Network
Unlike the MLP, the hidden neurons in the RBF
neywork contain the Radial Basis Function, a statistical
transformation based on a Gaussian distribution from
which the neural network's name is derived. Each hidden

neuron takes as its input all the external inputs, p;s. The

hidden neuron has the parameters "centre" and "width" of
the basis function. The centre of the basis function is a

vector of numbers ¢, of the same size as the inputs to the

neuron and there is normally a different centre for each
neuron in the RBF. The first computation performed by
the neuron is to compute the "radial distance”, d, between

the input vector p, and the centre of the basis function,

typically using Euclidean distance:

n

Z(p,.——ciY

i=1

d =

The output a is then computed by applying the basis
function B to this distance divided by the width w:

o)

The basis function is a curve (typically a Gaussian
function as depicted in figure 3) which has a peak at zero
distance and which falls to smaller values as the distance
from the centre increases. As a result, the neuron gives an
output of one when the input is centered, however it
reduces as the input becomes more distant from the centre.
There are three sets of variables that affect each nodes
input to the solution, the position, the width and the output
layer weight.

S\

sae s

ne e

\
) /\/

Figure 3. An RBF with one output

Training occurs by adjusting the variables mentioned
above to improve the modeling accuracy of the network.
The training can be accomplished in a number of ways,
from self-organizing techniques similar to SOM's through
to supervised techniques as used in feedforward networks
which will be briefly formulated below.

The RBF network is designed to perform input-output
mapping trained by empirical examples

(Eq,zq),q =1,2,...,0 . It is based on the concept of the

locally tuned and overlapping receptive field structure
studied in the cerebral cortex, the visual cortex as shown
in figures 2 and 3.The hidden nodes have normal Gaussin
activation function

where Rj ( p) is the receptive field in the input space

related to the hidden neuron j. R ; ( p) defined below is a
region centered on € (mean as an n-dimensional vector)

with a size proportional to O, (variance) of the jth
Gaussian fanction.

o2

e

ey

Rj (E)’_‘e 29

The output of the RBF network is indeed a weighted
sum of the hidden neuron outputs as given by

a, (2) = f,(i W, +bi)

where f is the output activation function and b, is the
bias value. In general, £ is a linear function meaning that
the output nodes are linear and b, =0.

The main goal of the RBF network is to cover the input
space with overlapping receptive fields; it means that for
an input vector lying somewhere in the input space, the
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receptive fields with centers close to it will be
considerably more activated. This in turn leads to have
these fields contribute more in the output of the RBF
network. In the extreme case if the input lies in the center
of the field for a hidden neuron j, and we ignore the
overlaps between the fields, then only the hidden neuron j
will be activated (called as the winner neuron) and the
corresponding weight vector

T
w", = [WU ,sz ’”"WSzj]

is selected as the output.

This network is mainly trained by an unsupervised
learning in the input layer and supervised learning in the
output layer. The weights in the output layer are simply
updated

Aw, =a(t,=a,(p))n,

This will minimize the performance index (cost
function) defined below if it is averaged over the Q
training pairs of data.

[ st ?
J(wyip)=05Y z;uzm.,,f;(g’)]
g=l i=l J=1

The learning can have another part known as
unsupervised part in which the cenizrs and widths
. i . .
(£<,G~)>5]:1,2,...,S are determir  through

w putative

unsupervised learning rules arc such as o
learning rules, vector quantization method ot
the following rule:

Ac,=a(p-c,)

;‘iDly by

where ¢, is the center of the receptive field which is

closest to the input vector and the other centers are kept

fixed [16].

Once the field centers have been determined, their
widths may be determined through minimization of the
following performance function with respect to the width:

()OSZZRc, = ,5'2

where [ is the overlap parameter. Doing so makes

sure that the field neurons form a smooth and contiguous
interpolation over those regions of the input space they are
representing. Practically, the widths are usually found by
an unsystematic manner (ad hoc technique) such as the
mean distance to the f- or first- nearest- neighbors

heuristic may be used as:

where ¢ is the closest vector to ¢ .

The RBF network can be trained by the BP-based
learning algorithms too. The goal here will be to minimize

globally the error function J (W) given earlier in this

section. In this way, the parameters of output layer are still
adjusted like before and will also be given below and the
output error is then backpropagated to the hidden neurons
(receptive fields neurons) to adjust their centers and
widths. Based on the chain rule and the BP- rule the RBF
learning mechanism can be summarized as:

Aw, =a(t,~a(p))n,,

3 Oa; ( p
Ac; = VZI(E- ~q (p))mac( )
= =J

Ao, = 772(4 ~a, (p))égf—(—gl,

acrj
oa, (p) . da,(p)
Oc . oo,

where the sensitivities an
=J b

can be

determined using the chain rule on the equations of n;

and @,. This gives a systematic approach to adjust the

centers and widths dynamically. Unfortunately, the RBF
network with this learning rule does not learn fast enough.

Another leaning rule for the RBF network is based on
the orthogonal least squares learning algorithm [15]. This
method selects the centers one by one in a rational manner
till an adequate network being constructed and provides
the network node-growing capability in which a hidden
neuron (receptive node) can be added if necessary to
account for a new pattern lies far away from the existing
fields.

The RBF method has traditionally been used for strict
interpolation in multidimensional space [17-18]. RBF
networks are in the Kernel clustering group [12] and
require more neurons than standard feedforward networks,
but often they can be designed in a fraction of the time to
train standard feedforward networks. They work best
when many training vectors are available [13]. It has been
shown that the RBF networks can approximate an
arbitrary function with just one hidden layer and a
Gaussian sum density estimator can approximate any
probability density function to any desired degree of
accuracy [19-20].

4, SOURCE OF DATA

Valuable information is available from a compendium
of solid transport data for mobile boundary channel
containing forty-nine sets of data with 5892 records. Fach
includes different hydraulic and sediment parameters
selected from the work of different authors [21]. Some of
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these data are measured in field and the rest are laboratory

2AP-P_.
results. Therefore, they represent a wide range of P = __(..__mm)__l (1)
hydraulic conditions of flow. A summary of the data is n P max -P min

presented in Table 1. It is evident that each set of data has
its own specifications, appropriately selected by the
researcher; therefore, there is not a complete similarity
between the selected parameters in each of these data sets.
Table 2 summarizes data specifications used in the paper.
In this study, 5 parameters are used as input data: namely,
water discharge, depth, width, slope and sediment mean
size. The output is sediment concentration.

5. MLP STRUCTURE

In this section, one or two hidden layers MLP networks
are used to predict sediment discharge with Marquardt-
Levenberg learning algorithm. Network parameters are set
as shown in Table 3. All records are classified randomly in
three categories, namely: training, validation and test data
sets, with ratios of 70, 20 and 10 percent, respectively. As
a tesult, 4044 of these records were used for training,
1145 for validation of ANNs to prevent over training, and
the rest were used for testing the network. Matlab software
is employed for the purpose of simulation to create and
train the networks based on the whole related parameters
as shown in Table 3. Due to the wide range of varieties for
each variable, see Table 1, input and output variables were
normalized between -1 and +1 according to the following
equation:

In which p, is the normalized value of parameter P,
Poacand Pooare maximum and minimum values of

parameter P, respectively.

To achieve the number of hidden layers and number of
neurons in each layer, different networks with different
neurons in one or two hidden layers are created. A
network that consists of one hidden layer with 16 nodes
[22] produces the best result. Its result is shown in Table 4
and error percentage for the test data set is illustrated in
Figure3. The error percentage is defined as follow:

T -7,
Error(%) = ——'Tw

r

@

In the above Tp is the predicted value and Tr is the real
value of the predicted variable.

As it is shown in Table 4, the mean square errors
(MSE) of the training and verification data set are 6.3E-3
and 8.1E-3, respectively. For the test data set, the
simulation results are promising while the MSE of
predicted values is 7.2E-3 and the correlation coefficient
(R2) of ANNGs prediction errors is 77.2%.

TABLEL, SUMMARY OF THE DATA

Data Type Parameter Unit Max Min Mean STD
Input Discharge m’/s 660 0.0008778 9935.2 62833
Input Width m 188.94 0.1524 99.755 398.68
Input Depth m 2.4414 0.0070104 2.1117 6.3761
Input Slope - 4 0.01083 0.46488 0.73697
Input Dsy m 0.015 1.30E-5 6.7252 15.948
Output ii‘:fi;‘::a tion | PHIC) | 19866 | 001 570.86 | 2740.5

(*)Material by weight of water-sediment expressed in part per 100,000.

Table2. Number of Each Parameter in All Data Set
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) ) . Water ‘]
Gradatio | Specific | Concentratio Bed
Noeo. Discharge | Width | Depth | Slope | Dsp . Temperatur
Gravity n form
[
6338 X X X X X X X
4106 X X X X X X X X
4874 X X X X X X
6290 X X X X X X X
1853 X X X X X X
924 x X x X X x X X
3655 X X X X X X X
- x:

measured parameters

TABLE3. MLP NETWORKS PARAMETERS

performance Function mse
Activation Function in Hidden Layers tansig
Activation Function in Output Layer purelin
Max Epochs 2000
Goal le4
time 5000
mu B 1
mu - inc 1.5
mu - dec 0.8
mu - max 1e50

As it is depicted in Fig. 3, the majority of the error
percentages are less than 5% whereas few local large
errors can be observed.

S0 uté Efror of the MLP Network Predictions

Flgure3 :‘ \
on Test Data Set
Structure MLP RBF

MSE Normalized Train 0.00629792 0.0126
MSE Normalized Test 0.0072 0.0148

MSE Test 2.60E+06 | 5.33E+06
STD Normalized Errors 0.0849 0.1212

STD Errors 1.61E+03 2.30E+03

TABLE4. MLP AND RBF NETWORKS RESULTS

6- RBF NETWORKS

Due to the Better results of RBF networks in some
cases [12], in this section we used RBF network to
predict sediment loads. We also used the same source
of data for this part of study. According to the structure
of RBF networks all available data was randomly
classified in training and testing data set with the ratio
of 90%, 5189 records, and 10%, 603 records,
respectively. The “Newrbe” function in Matlab
software is employed to train the networks used in this
part. Input and output variables are also normalized
analogous to MLP networks with “premmmyx”’ function
of Matlab. In order to create the RBF network, the
newrbe function is used. This led to the same number
of neurons in its hidden layer as input vectors. This
function can produce a network with zero error on
training vectors.

The function newrbe takes matrices of input vectors
P and target vectors T, and a spread constant SPREAD,
which is defined by user, for the radial basis layer. So
we have a layer of Radbas neurons in which each
neuron acts as a detector for a different input vector
[14]. To achieve the best network, different spreads
was used and at last SPREAD = 0.03 gave the best
result [22].

Figure 4: Absolute Error of the RBF Network Predictions on
Test Data Set

The results of the RBF network are shown in Table

4 and the corresponding error percentage for the

normalized test data is depicted in Fig. 4. This figure

obviously shows that the error percentage level for the

169

Amirkabir/ Vol.16/No.63-C/ Civil Engineering)/ Winter2006 @@




RBF network is higher than the MLP network and it is
consistent with Table 4. This approves the claim that
although the RBF networks in general cannot uite
achieve the accuracy of the MLP with BP-based
training algorithm, it can be trained faster than the BP-
based MLP.

7. CONCLUSIONS

By comparing the results of two networks shown in
Table 4, it is concluded that the MLP network has less
standard deviations for both normalized and raw data
sets besides that raw and normalized mean squared
errors of the RBF network is approximately twice the
raw and normalized squared errors of the MLP
network. These consequences give rise to the fact that
sediment loads predicted by the MLP network is more
reliable than those of predicted by the RBF network. It
should be also mentioned that both methods badly
suffer from a few numbers of relatively enormous
errors. Evaluating different approaches to remedy this
problem, e.g. use of Bad Data Detection algorithm, and
other use of different approaches to improve network
performance, e.g. data classification, change of input
parameters and use of modular networks, are suggested
for future work.
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