Multi-Axis Attitude Maneuver of a Flexible Spacecraft
Using Adaptive Hybrid Sliding Mode Control
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ABSTRACT

A new control strategy for attitude maneuver of an elastic spacecraft is presented. Adaptive sliding mode
control scheme with a synthesized Hybrid Sliding Surface (HSS) is used to overcome the difficulties arising
from measurement of flexible dynamics coordinates. The excitation of flexible modes that frequently
happens in the conventional sliding mode is minimized by using the synthesized sliding surface. The model
of the spacecraft considered as rigid central hub and two flexible appendages. Collocated actuators and
sensors are placed on the rigid central hub. Stability proof of the overall closed-loop system is given via
Lyapunov analysis. Asymptotical tracking control of the multi-axis attitude motion and suppression of the
elastic deformations are accomplished. Numerical simulations show the effectiveness of the proposed

control scheme.
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i. INTRODUCTION

During the past few decades, control problems for
flexible space structures have received significant
attention because of the important demands for low-energy
consumption and limitation of mass. Since the control
degree of freedom is much fewer than the motion degree
of freedom when a flexible structure is commanded to
track a desired trajectory, many control strategies that
succeed in conventional rigid systems can not be directly
applied to control of flexible systems.

Flexible structures are infinite dimensional systems due
to the flexibility inherent in the structures. The equations
of motion of the infinite dimensional systems are usually
described by Partial Differential Equations (PDE) and the
limited dimensions of practical controllers often requires
discretization of original PDE model into a system of
finite dimensional Ordinary Differential Equations (ODE).
Modeling errors are always introduced when the Reduced
Order Models (ROM) are used. On the other hand, the
implementations of the most control strategies that have
been reported in the literatures are not simple since the
control laws involve knowledge of the flexible dynamics
states. Therefore, the design of robust and practical

controllers to accommodate modeling errors such as spill-
over effects due to the unmodeled dynamics and
uncertainties and difficulties arising from obtaining data
for flexible dynamics coordinates is a challenging task and
still under investigation.

In recent years, several studies related to the conirol of
flexible space systems have been done, and linear and
nonlinear control systems have been designed. An
excellent survey of research in this area has been
published by Hyland er al., which provides a good source
of references [1]. Optimal controllers for linear and
nonlinear models of flexible space structures have been
designed [2, 3]. Lyapunov stability theory has been used
to design controliers for the maneuver and vibration
control of space vehicle [4,5]. A perturbation method in
order to separate large and small motion has been used to
obtain 2 feedback controller [6]. An input shaping method
that adjusts the input command to the actuators so that the
excitation of the flexible modes being minimized has been
used [7,8].

In these studies, it is assumed that the dynamics of the
space structures are exactly known. In the presence of
uncertainty, adaptive and sliding mode control systems
have been designed [9-13]. However, conventional
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adaptive controllers, are suitable only for parameter
uncertainties. On the other hand, the derivation of the
sliding mode control systems requires knowledge of the
bounds on the uncertainties. Also, the conventional sliding
mode designed in the time domain is hardly applicable as
the inherent elastic modes of the flexible systems will be
unduly excited by the switching control input.

In this paper, an adaptive sliding mode control with a
synthesized HSS is used to overcome these drawbacks in
the attitude control of a flexible spacecraft. Also, in the
proposed controller, the measurement of the flexible
modes is not required and due to the difficulties of the
measurement of flexible dynamics coordinates, this is an
eminent property for implementation of the controller.

In the following section, attitude dynamics formulation of
the spacecraft has been derived. In sec. III, HSS and its
characteristics have been introduced. The HSS and the
Lyapunov technique have been used in sec. IV in order to
design the control and adaptation laws. Numerical
simulations in sec. V illustrate the performances of the
proposed controller. A discussion of the presented results
concludes the

paper.

Figure 1: Flexible spacecraft model.

2. DYNAMIC MODEL

The mathematical model of the slewing flexible
spacecraft can be derived by using the Assumed Mode
Method (AMM) associated with Lagrangian formulation.
As shown in Figure 1, a rigid central hub with two elastic
appendages attached is considered as the model of the
spacecraft. Two clamped loaded Euler-Bernoulli beams
are selected to model the elastic deflections of flexible
appendages in rotational motions. The spacecraft is
controlled by a torquer on the rigid hub. When the
spacecraft is maneuvered, the elastic members connecting
to the hub, experience structural deformation. As shown in
Figure 1, two flexural deflections in y and z directions
(u,(x,t) , u,(x,#)) and one rotational deflection about x-

axis (7, (x,1)), are considered for modeling the elastic

deformations of the flexible substructures. The problem of
interest here is to control the orientation of the main body
of the spacecraft as well as to suppress elastic
deformations.

The attitude dynamic model of the spacecraft can be
obtained in the following form [6, 15]:

M, M, kiw,q,.q, T
s S o
M, My|\4,] \h\@q,.4, 0]

where © = [03 o, mz] is the angular velocity of

X

the spacecraft with respect to the body frame 7,(0,x,7,2,),
q, is the modal coordinate vector and 7, is the external

torque vector acting on the central hub. Subscripts r and
denote rigid and flexible mode parts, respectively. The
elements of sub matrices M and hare given in appendix
A

For derivation of the above equations, the elastic
deformations of the appendages are considered-to be:

u, (=) (x) ‘g, ()= i v, (x) ‘a,,0) )
e @ 0=2 00 ©
Tl @) 9 0=2 () e,0 @

where x is the coordinate of any point along the

undeformed member, 'y, (x), 'y, (x) and 'y, (x) are the

jth assumed mode shape function for each elastic

displacement of the ith substructure, ‘g, ., g, and ‘q,,;

are the jth generalized coordinates for ith substructure so
T .

that g, :[lqy 1q: 1q7 qu 2(]: zqr} and m 1s the

total number of elastic modes retained in the discrete
model [4].

3. HYBRID SLIDING SURFACE (HSS)

Sliding mode control has received a good deal of
attention because of its robustness and simplicity.
Successful applications to practical systems are numerous.
However, the conventional sliding mode designed in the
time domain is hardly applicable to control of flexible
systems as the inherent resonance modes of the systems
will be unduly excited by switching control input. To
solve this problem, Xu and Cao [16] have proposed a new
sliding surface that obtained suitable transient and steady
state dynamics whereas flexible modes are being
minimally excited. In this paper, it is used and combined
with an adaptive scheme to control the flexible spacecraft
in attitude maneuver in order to overcome uncertainties,
disturbances and difficulties arising from measurement of
flexible dynamics coordinates.

The HSS is proposed as

Sy = S g5y + (1 - Qf)SerM 5

where the subscripts FSOSM and TSM indicate
Frequency Shaped Optimal Sliding Mode and Terminal
Sliding Mode, respectively. The weighing coefficient «
should be chosen properly 1to obtain requested
performance and satisfy stability conditions.

Supposing ¢, and e, to be tracking error and its

% Amiricabir/ Vol 16/No. 63-B A Mechanical Engineering)/ Winter 2006

60



time derivative, respectively, the FSOSM obtained with
augmenting the system e, = ¢, with the following second-

order high-pass filter

F(s)= [“S A ] ©6)

5+,

The comer frequencies of the filter are (1/a)w, and
@, where a>1 and w,>1 rad/s. The sliding surface could
be derived as [17]:
Spsosy =€, .8tz +eyz, =0 (7
where z, and z, are the state-space representation of
the filter andc,, ¢, and ¢, are constants and can be

obtained from an optimization procedure.
The TSM sliding surface has been proposed by Zak

[18] as:

Spsu =€, +c el = 8)
where
p=p/p,
=2m, +1 ,m, =0,12,..
Py 1 i )
P, =2m, +1 Jmy, =123,

Using equations (5), (7) and (8), the HSS can be
obtained as:

S, =e, tac,e +(1—a)cpe{’ +ac,z, +oc,z, (10)
This synthesized sliding surface has following
characteristics that make it reasonable to use for
controlling the flexible systems:

i) The equivalent switching slope is:

—(?—S—"—{—Vzotct,+cp(1—05)pe{"l (1)

Oe,

At the initial stage, when the tracking error is large, the
sliding surface is dominated by the FSOSM part, which
can avoid exciting the elastic modes of the system. It may
be obtained by setting sufficiently large o (no more than
stability bound). As the tracking error decreases, the
switching slope increases and expedites convergence.

if) In the practical implementations, the system
samples the controller’s output and plant’s output at the
limited sampling rates. The limited sampling rates cause
the actual system states to be in the neighborhood of the
sliding surface. Suppose that y is the bound of the

neighborhood. the extremal steady state error can be
derived to be:

Wp
e, {Ef_—’;)c—] (12)

For comparison, the extremal steady state error of a
conventional sliding surface S, =e,+ce; =0, can be
derived to be y/c¢. As 1/ p>1 and usually ;//(l~a)<1,
e, <y/c.Hence the HSS reduces steady state error.

iify The additional states introduced by the high-pass
filter in the FSOSM part of the surface, offer additional

degrees of freedom in the sliding mode control design.
Given the initial values e¢,(f;,) and e¢,(f,), z,(#,) and

z,(t,) can be chosen to eliminate the reaching phase, i.e.

e,(ty) +ac.e (i) +(L-a), (e (t)”
+acz (1)) + ac,z,(6,) =0
Since the sliding mode exists from the very beginning,
the system is more robust against perturbations than the
other sliding mode control scheme with reaching phase.

(13)

4. ADAPTIVE SLIDING MODE CONTROL LAW

The Euler parameters (quaternions) are chosen to
describe the attitude kinematics of the spacecraft. They
have the advantage of being well defined for the whole
range for attitude motions. Introducing g,as desired

attitude, the hybrid sliding surface may be developed as:

S, =co+acee,_+(1~a)cp gle, )+ aHz (14)

where

e, =f-p, (15)

ce = diag(ccl Ct'Z ce} ) (16)

cp = diag(cpl CpZ 0173) (17)

gle,)=lsle.) sle.) gle ) (18)
) e Cu| > &

g(erk)~{p€,,_.erk o<, (19)
Cap Cap 0 0 0 0

H=| 0 0 ¢, € O 0 20

O 0 O 0 cz3l Cz32

T
z=[211 Zpp Zy Zyp Zy Zsz] (21
¢y » ¢, and ¢, are coefficients of the sliding surface
and &, are some small positive constants, for k=1,23.
The vector z includes states of three second-order high-

pass filters F(s). The state-space representation of the
filters can be obtained as:

7= Az + Bé, (22)
where
[ o 1 0 0 0 0
-0l -2m, O 0 0 0
PR o2 0 0 23
0 0 -l -20, 0 0
0 0 0 0 0 1
0 0 0 0 -, -2,
01000 0]
B=/0 00100 (24)
0000 0 1

0y, for k=1,2,3 are the comner frequencies of the

filters that must be chosen properly to prevent the
excitation of elastic modes of the system. It can be
obtained from equations (1} and (14) that
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§, =T +wY) 25)
where

A=M,-M MM, (26)
w=[wi w2 w3 wa ws|' (27)
Y:[YN y2" v3T yv4' YST]T 28)

It is considered that the elements of matrix W be
consisting of uncertainties and the elements of ¥ be
measurable or definite. See appendix B for more details.

A variable structure control law for attitude tracking is
introduced as:

T = —sgn(8, W |¥]+o) (29)
where

Sgn(SH ): diag[sgn(SHI) sgn(SHZ ) Sgn(Sm )] (30)

o=lo, o, o]0 .o, >0 fork=123 (31

W is the estimated value of W~ and W > ‘WU] for all
values of ¢, , ¢, and other system parameters. In order to
implement the controller, estimation of Wij must be made.

In practice, a suitable estimation for W, is difficult. Over

i
estimation may result in unnecessary high gains and large
chattering  which  degrade  system  performance.
Underestimation, on the other hand is not permitted as it
may lead to instability. To alleviate the difficulties arising
from making conjectural data for flexible dynamic
coordinates, parameter variations, disturbances and other
system uncertainties, the following adaptation law is
proposed:

w=ryls,| (32)
I" is the adaptation gain and the initial value of the

W can be set very small. The small value at the initial
stage reduces the impact to the system. On the other hand,

the increasing value of W when approaching the
equilibrium, can lower steady state error.

It can be shown that the error dynamics resulting from the
above control and adaptation laws are stable in the sense
of Lyapunov. The details will be stated in the following
theorermn.

Theoreml: Let the control objective for the flexible
spacecraft be to force the rigid body modes to follow some
prespecified trajectories, while simultancously damping
out the elastic modes. Then, the control law (29) and
adaptation law (32) can achieve this objective and ensures
that §,, tends to zero as time tends to infinity.

Proof: Consider the following Lyapunov function
candidate

1

V = Eﬂ‘max (A)SIT{SH +%—y“1trace{W WT] (33)

where W =W — W is the estimation error and 4,,,,(4) is

the maximum eigenvalue of 4. Taking the time derivative
of ¥ and using equations (25), (29) and (33), yields:

V= Ay (4)STa (e + w7Y)]
+ }/"‘trace[(W -w )}/]SH‘Y T]
=~ (4)S ;47 W |F|sgn(S )
- 2’max (A)SH Aﬁl 4 Sgn(SH )
+ A, (4)Sh4a'WTY

+ trace[vi/]s,, el -w*|s, gYT]

<AS | T =[S | 0+ S] A ()™ WY

+|8, | WY IS, WY
<-$,| o (34)
Since the V(¥ is a continuous function and positive

definite and its derivative is negative definite, it follows
that V, 4

max ?

§, and W are bounded and consequently
‘Y%s B, g, and Ry yare all bounded. Then using

Barbalat’s Lemma [19], one concludes that §,, tends to

zero as time tends to infinity, which implies that the
tracking error and its time derivative converge to zero as
time tends to infinity.

The proposed control scheme has two potential
problems. First, the adaptation law (32) is a positive
integration process. In practical implementation, §, =8

can hardly be reached due to the presence of system
perturbations and limited sampling rate. These residues in
S, , though small, will keep the adaptation integration

going on and eventually lead to very high gains or even
instability. The second problem is that the control law (29)
is discontinuous crossing switching surface §, =0 due to

the sgn($y) term. This characteristic may induce the

undesirable chattering problem.

To overcome these drawbacks, we introduce the dead
zone scheme to shut the adaptation mechanism off when
the switching surface enters a sufficiently small bound and
also replace the signum function by a saturation function
in control law. The saturation boundary layer is chosen to
be consistent with the dead zone. The revised control and
adaptation schemes are given below:

T, = —sats, ) '|¥]+ o) (35)
. T T
W:{yY}sH] sfr,s,, ;ara 36)
0 SIS, <878
where
s=[s, 6 &) ,8,>0 fork=123 (37

is the size of deadzone and

@@ Amirkabir/ Vol 16/No. 63-B /{ Mecharical Engineering)/ Winter 2006 62



sat(SH,5)=a’iag[sat(SH,,§,) sat(Sy,,5,) sat(S,,;,5, )]

Sgn(SHk) !SHkl > &, _
sat(S ., 5, ) {Sﬂk /5. lsul<s, k=123 (38)
Theorem 2: The control law (35) and adaptation law
(36) make the specified dead zone to be an attractive
region and ensure that sliding surface can be reached in a
finite time.
Proof: Define D, and D, as

D, ={ 1 15, | >} 39)

D, ={ 18] <o} (40)

so that D, uD,=R". Consider the following Lyapunov
function candidate

%lmax (A)S;SH +?lz~}/_1 trace[ﬂN’TWN/] teD,

T (A)37 0+ Ly race W] e,

2
. . 1
Note that V'is a continuous function and V 256 T$>0.

Whent e D, , system states stay outside the dead zone
and |S,|>4 . In term of (34);

V<-|S,les—6Te<0 (42)

This shows V is negative definite. Any system states
lies outside the region will reach and enter it at some finite
time. The total time during which adaptation takes place is
finite. When ¢ €D, the system states lies inside the region
and sliding condition is satisfied. This concludes the
proofs.

The proposed control and adaptation laws have

following properties:
i) The measurement of the flexible modes is not

necessary. Due to difficulty of the measurement of ¢, and
g, this is an eminent property for implementation of the

controller

if) In practice, a suitable estimation for W~ is
difficult as we are not able to anticipate the variation
bounds of uncertainties. Overestimation may result in
unnecessarily high gains and large chattering which
degrade system performance. Underestimation, on the
other hand, is not permitted as it may lead to instability.
The proposed adaptation law for estimating ", solve this
problems and alleviate the difficulties arising from making
conjectural data for flexible modes, parameter variations,
disturbances and other system uncertainties.

iii) Setting " to be zero at the initial stage reduces
the impact to the system at the start of the control process.

On the other hand, the increasing of W~ when
approaching the equilibrium can lower steady-state error.

iv) Using HSS, let to obtain favorite transient and
steady state response without excitation of unwanted
structural modes.

5. SIMULATION RESULTS

In this section, results of the numerical simulations for
the closed-loop system are presented. Numerical values of
the simulation parameters are given in Table 1. The first
five flexible modes are retained in the model, thus m=5 .
The lowest natural frequency of the system is obtained
5.12 rad/s. Then «, and a are chosen to be 2 rad/s and10
respectively. This ensures a 40 db roll-off rate for any
frequency above ®, that is lower than the first natural

frequency of the system. Also, the coefficientse,,, ¢,
and c,, for #=1,2,3 are calculated to be 0.01, -21.2183

and -4.8112, respectively. Considering the sampling
period to be 1 ms, the numerical values of the ¢, and p

are chosen to be 2 and 2/3 respectively and « is setting to
be 0.9 . Hence the HSS is obtained as :

Sy =0 +0.009U,,; e, +diagl0.2 02 0.2] gle,)-

19.0964 4.3301 0 0 0 0
0 0 19.0964 4.3301 0 0
0 0 0 0 19.0964 4.3301

=0
(43)

where U, is a unitary matrix. The initial values of W

is set to be zero and the adaptation gain 7" is chosen to be
120. Selected results of numerical simulations are shown
in the Figure 2 to 11. It has been considered that the
spacecraft start with an arbitrary attitude and reach the

finial attitude g, =[O 0 O]T by tracking the following

third order reference model with v,, = 0.07 :

[s3 +3v,s* +3vis+ v:,] B,=0 44)
Smooth control of the attitude was accomplished in the
closed-loop system by adaptive estimation of the elements
of W . Figure 2 shows that the response time of the
desired rigid body rotation is of the order of 15-20 second.
Shown in Figure 3 is the resultant of flexural elastic
deflections as a function of time and spatial variable x. It
is seen that the elastic modes are converging to zero as
well. For comparison, residual vibration by using
conventional sliding mode is plotted in Figure 4. It can be
observed that the use of Hybrid Sliding Surface makes it
possible to reduce the residual vibration as well as
expedites the error convergence. Convergences of the
estimated uncertainties are shown in Figures 5 and 6. The
control action history has been plotted in Figure 7.
In order to examine the qualification and robustness of
the controller, an external disturbance torque was applied
to the hub in other simulation conditions. As shown in
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Figures 8,9,10 and 11, the disturbance torque d(t)=I Nm
was applied between 20 and 30 seconds. Figure 8 shows
that the convergence of the tracking error in the new
condition was accomplished.

As shown in Figure 9 and 10 the gains have been
estimated to a new state by adaptive scheme to reduce the
tracking error. Figure 11 shows the variations of the

control signals to accommodate disturbance effects.
TABLE 1 NUMERICAL VALUE OF THE SIMULATION

Max.Flextural
deflection [m]

7, -
N
% Lveg ; 20 5

Figure 3: Three dimensional plot for vibration suppression

Max Flextural
deflcctionfml

using Hybrid Sliding Mode.

PARAMETERS
Parameter Notation Value
Appendage -
length L > m

El, 15E3 Kgm®
Appendages El, SE3  Kgm®

tiffi
SHimess GJ, 15E3 Kgm’
Mass density of P 2340 Kgm'3
appendages
Damping
coefficient a 0.02
200 0O 0

Spacecraft 0 om’?
moment of J 0 1504 0 g
inertia L 0 6 150 1j

Figure 4: Three dimensional plot for vibration
using conventional sliding mode.

suppression

Extensive simulations showed that the control system
accomplishes large angle rotational maneuvers and
vibrations suppression. There are several design
parameters which can be properly selected to accomplish
rotational maneuver with reasonable control input
magnitude and elastic deformation of the beam.

Note that in the proposed control system, sensors and
actuators are collocated and mounted on the rigid central
body and The measurement of flexible modes is not
necessary. So, cost and effort for implementing the control
law is low.

Adaptation
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Figure 2: Attitude error.

Figure 6: Adaptive estimation of “W2 , HW 3” and

[
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Figure 8: Attitude error with disturbance.
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Figure 9: Adaptive estimation of ”WIN and “W 4" with

disturbance.
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Figure 10: Adaptive estimation of |#2|, |[#3| and
5| with disturbance.

Control torques {Nmnj
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Figure 11: Control actions history with disturbance.

6. CONCLUSION

A robust adaptive control scheme has been developed
for multi-axis attitude maneuver of a flexible spacecraft
with prescribed configuration. It is based on the adaptive
variable structure control scheme with a synthesized
hybrid sliding surface. The proposed sliding surface
makes it possible to minimize excitation of flexible modes
that frequently happen in the conventional sliding mode
control, whereas expedites the error convergence near the
equilibriom.  Using Lyapunov design method, an
adaptation law is designed for estimation of the upper
bounds of the uncertainties. The adaptation law causes a
relativily small gain in the initial stage to reduce the
impact to the system and a higher gain at the final stage to
lower steady state error. It has been shown that the
proposed control and adaptation laws alleviate the
difficulties arising from obtaining data for flexible
dynamics coordinates, parameter variations and other
system uncertainties.

7. APPENDICES
Appendix A: The elements of matrices M and h

Moy My My,

M, =M., M, M (AD
M,y M, M,y

Mgy =T

27, R . . . . , AW
(g, ‘q,+'¢] ‘N, 'q. +p(‘a‘5+’af)} (A2)

(2 ’.ayi]\’;F iqy +2'a, NI g +'L iJ,)

M~

+

[iN_Z:\T ‘qV + 'a\’ l‘a}) + 'a\’ lN}T’. iq}’ +p ia.v‘ ’Lz/z]

2
MrrlZ = WZ
i=l
(A3)
2
Mrr13 :”Z[ lNzi iqz + iaxiaz + iaxiNzT iqz +,0 iaz le/Z} (A4)
i=]
2
Mrer :_"Z[ iNyr'x iqy + iaxiay + iaxiN; qu +p ia_v ILZ/Z] (AS)
i=t
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L
N, g, +plal+2 0, Nlig +p §2d§} (A6)

Y

2

i T

MrrZZ = Jy_v +Z[ g,
i=l

2
i i i i ingl i
M, = Z[ g, +'aa+'a,'N; 'g.+'a,'N, q_v] (A7)
2
M, = Z\:'N,‘ q,+ a ‘a, + a ‘Nl g +pla. L2/2}
(A8)
2 PP . . . . . .o n . N
M, =—Z[’q§ N, ‘gt a0, +'a/N] ‘g +'a, N, ‘qy] (A9)

i=}

M'1‘33 = 1:: +Z{1q’{; le_v lq_v +p laf) +2 la‘v’]vf ’qy +p J.gzdé{} (AEO)
i=1 0

M,;/u M, Mrjf'lii—}
M of = M 21 M 22 M 23 (Al1)
M:f}i Mrf'BZ Ml;/'33
t VT
N,, 0 N, 0
“wrjfll “W{{ 0) zN }*ﬂ[iaz Zaz]{ 0 ZNT} (AIZ)

T lsz 0
M/1'12 =4y 0 ) zN

}+{1ay Za}’]l:”\o{: 2;:/71‘ (A13)

M, =|'NT *N] (Al4)
113 ¥ ¥
M:;/‘Zl =0 (Al5)
A - 1asT 8 1
Mrfl?. = -}iiNZ.\' 2N1v1+ {lax zaa\'( [:;Z 2N7 (A16)
Mﬁ.23 =0 {ALT)
, INT g |
My = “NT N, ]+[‘ax %ﬂ{ g-V 2T (A18)
M =0 (A19)
My =0 (A20}
M4 Mﬁ»xz M4
My =Mz, Mpp M 3 (azl)
M 4a Mﬁ-}z Mfm
1 H
N, ¢ { N, 0 ] r
M [ o ‘g, + ! Ya. *a AZ2
£11 P ZNZJ 4. IL P 2Nyj[ - ] { )
My, =0 (AZ3)
1 1
N, N [/ T
Mgys=t, "+ 7 'a, ‘a A24
fi3 {WJ { 0 ZN)}{ o ol (B2
1 1 1
N 0 Nz 0 1
M 2 { 0 2sz‘1y 1l 0 ZN:J[G‘ ] (A25)
i 1
Nzx N: 0 1 2 T
Mfr22— [zNzx‘i+[ ) 2N::‘{ x ar] (Azé)
Mﬁ23 [/ (AZT7)
rlN /] 1 T
Mg, ={ ) J[‘Jt 2, (A28)
M s =0 (A29)
My =0 (A30)

Mgy My, Mpgg
My =\Myy Mgy Mpyi (A31)
My, Mgy, M /]‘33J
M g, {]1\;’“" 2 ]3 } (A32)
»
My =0 (A33)
My =0 (A34)
My =0 (A35)
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( ) 2) [1 N, o] N o [1 , }T ‘W(y(¢) are the shape function vectors for elastic

B =~lwr + @] d + Y a, “a, . . . C

7 v iL 6 °*N qu o 2Ny ’ g deformations of the ith flexible substructure, ‘a,,'a, and
are the coordinates of ith flexible substructure

iN w—I FIN v ¢ 1 2 T a
+a o i, " i+ A [ax ax} o L _y
YR N | 6 °N, attachment point in x, y and z directions, respectively and
\ J, is torsional moment of inertia.

(A46) Appendix b: The elements of matrix ¥
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