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ABSTRACT

The post-buckling behavior of rectangular frames in elastic domain is studied in depth. In analysis,
unsymmetrical geometry, sway possibility and support conditions are considered in order to find their
influences on load- deflection path and non-linear deformations. The static perturbation technique is used
for analysis and discussion. The first, second and third order perturbation problem, as an accuracy
measurement, for the frame are solved and the solutions are compared with previously published papers.
The results reveal that the symmetric frame with sway movement, due to non-axial force in beam, has
symmetric bifurcation point in the first order perturbation analysis. However, the post-buckling behavior of

un-symmetric frames with or without sway is bifurcated in an asymmetric manner.
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1. INTRODUCTION

The analysis of elastic post-buckling behavior of frames is
rather complicated since it necessitates a geometrically
non-linear bending. The post-critical analysis of elastic
structures invariably requires the solution of a set of non-
linear differential equations and is based solely on
equilibrium equations. Koiter [1] analyzed the post critical
behavior of asymmetric bifurcation by power series
expansion approach. Roorda [2] conducted model
experiments, which confirmed Koiter’s calculations,
particularly the reduction of a maximum load as a function
of the initial imperfection in the form of load eccentricity.
Roorda and Chilver [3] employed the perturbation method
with power series expansions for analysis of non-linear
equations. A nonlinear finite element analysis for frames is
proposed by Care et al. [4]. The post-buckling behavior of
perfect framed structures as well as the nonlinear
geometric analysis of imperfect frames can be handled by
this method. Since the nonlinear formulation is based on
the incremental finite element procedure, frame elements
have to be subdivided into a number of smaller segments
to attain the required convergence. Bazant and Cedolin [5]
adopted the stiffness matrix method and stability functions
from linear theory and enhancing by additional terms to

deal with the second order deformation in non-linear
behavior. Ekhande et al. [6] studied the stability functions
for three-dimensional beam-columns. They considered the
effect of flexure on axial stiffness and the effect of axial
force on flexural stiffness. The non-linearity of geometric
stiffness matrix in their manipulation is limited to the first
order, The present work employs the suggested static
perturbation method, Roorda and Chilver [3], based on
equilibrium ond flexibility approach and by simple
manipulations for higher order non-linear stability
solutions for utilizing the behavior of rectangular frames
with symmetric and non-symmetric geometry and applied
loading. The main assumptions of coming analysis are
based on frame continuity and straightness of stender
members. The degree of instabilities at the onset of
buckling in a frame is generally not high, and the purpose
of the paper is not to suggest that this instability is
important for practical purposes, but rather to show the
application of non- linearity is extensively dependent on
geometry of frame and the applied load configurations.

2. ANALYSIS

Consider a straight member i/ of length L, and flexural

stiffness £/, of a continuous, rigidly jointed plane frame.
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The unbuckled states of the member, which is supposed to
be axially rigid but flexible in bending, are sketched in
Figure | along with the positive directions of the rotations
(8,.6,), chord rotation (¢U ), end moments (M, ,Mﬂ )s

iy

end shears (Q ) and axial force (P i)

Q.
=iy

—————— J
Figure 1: End forces and deflections of member j/.

Now, for a portion of the beam of length ds from end /
along with the deflected member as shown in Figure 2, the
equilibrium conditions require:

¢y

Figure 2: Equilibrium of a beam portion with length of ds.

de s )
Ely — =+ P [[sin6(s)ds

+0; _‘:cos O(s)ds+M; =0

(D
By differentiation of above equation with respect to s
d%0 0 ) 0(s) =0 )
El” Mdsz + P,-j sin (s)+g,, cosf(s) = )

From equilibrium of Figure 1, the following relations can
be written

M, +M,
Q=== Q=0 K=", G)

i i

e represents shortening of the member length due to
buckling, and its value is obtained as follow

e, =L

i i

- J'“L cos 8(s)ds O)]

The boundary conditions of nonlinear differential
equation are as follow:

x,8, A are utilized in the following as

[/ ]
defined in Appendix.

By appropriate substituting of normalized relations in
(A-1a) to (A-1i), see Appendix, the dimensionlcss form of
(2) is rewritten

m. . fn

gt

0"(x)+ p;; sinB(x)-q, cosB(x) =0 (6)

with the boundary conditions:

0'(0) = —m,; o' (1) =m, (7

and equilibrium equations as follow:

my+m, ®

9y = 1%, 9y =9 Py =Pj

In this study the static perturbation technique is applied
for the solution of nonlinear differential (6). For this
respect, &, p,.q,,m, and m;are expressed in power
series form as functions of some parameter ¢ which
increases from zero along an equilibrium path leaving a
known equilibrium point, see details in Appendix..

Before deriving the perturbation equations, it is
convenient to eliminate ¢ , using the equilibrium equation

(&) (&) +m (&) 9
L) = ———
it 1= 4, (e)
where 4, is the dimensionless flexural shortening of the

member which can be expressed as a series function of &
as

6'2 [.2 gs | - (10)
/1{,(5>=Ej09 dx+—~2——J'099dA+'-~

By substituting (A-2) and (10) into (9), and equating terms
of the same power in ¢, vields

G, =, +m, (I1a)
Gy, = i, + i, (11b)
. (11c)

1.
e e o P . 2
g, =i, +#i, +3(m, +mj,.)J:)9 dx

Finally, upon substitution of (A-2) and (9) in (6) and
equating coefficients of same power of &, the following
infinite system of perturbation equations are obtained

ao M, do M .
asi,.o £l ’ ds s=1, L1, 9"+ pué =, +m, (12a)
S 5o e PR 12b
For simplicity, the dimensionless quantities, p,.p,,q,, 0"+ p,0 =i, + i, ~2p,6 (12b)
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" . . 2
0"+ p,0 = ity + i ; + 30, +m,,) 'fo 6% dx

3[p, 0+ B0+, +1i, )07 1+ p,6°

(12¢)
whose respective boundary conditions become
At x=0:
6 =~ G'=-p,; 0'=-ii, (132)
At x=1:
0 =—m,; ' =i ,; o' =-ii, (13b)

The important point to note is that this infinite system
can be solved recursively. For example, the determination
of the nth order solution requires a knowledge of the
solution of the Ist up to, and including, the (n-1)th order
problems. At each step in the analysis, the solution of a
non-homogeneous differential equation of the type

¢"(x)+ pg(x) = v(x) (14)
is subjected to the boundary conditions
PO)y==p,;  SD=p, (15)

is required. Using common methods for solution of the
differential (14), differential (12) can be solved.

A. First order solution
The solution of (12-a) is as follow, [7]:

: i . 1
8 =—(m, +m;}——==
by 4/ Py
1, CSCL| py COS o[ Py X — —p== T, sm,/p,,x

Py (16)

my,; cot.f py +

in (16), 6

, and @, are

By substituting x=0, x=1

determined, as

9// = f:/”hr_[ + gl/]iI,, (173)
0, =g,m,; + f,n (17b)
Coefficients of f, and g are given in (18)
1
—[1=/p, coty[p;] (182)

(18b)

gy = i[l —-\f;;:csc\/;;]
i

When axial force is zero (such as beams) extreme values
of f, and g, are equal to

1 1
f;/:g; gu’:—g (19)
B. Second order solution
The solution of (12b} is as follow:
~~ | .
6 =79,_._,(m" +m“)~\/;;{m,, cot.[p, +
. |
i, CSCAf Py 1608 \f Py X ——p=== 1, SN\ Py X =
i i J \/’[Z i 7
Pui2 G, v,y -in, cot i, +
i P
m, s Py ]x[xsin,/p,1x+(cot\[;” +
! Ycos,/ p, x] ! m, [sin,/p, x
< i i I i ir -
’. plr ' Piy
1/p,.j XC08 p!,x+,/p,, cos./p, x}} (20)
Substituting x=0 and x=1 in (20), éu and éﬂ are
determined, respectively
~ . . . . . . . 1
0, = fi, + g m, +2p,(Fm, +Gym ) (21a)
é‘,, = gy, + fy, + 2p, (G + Fymg) (21b)
where
E. = ————[~——~cot p, (cotyfp, +—==)—1]
if if i
7/]!/ Py NPy
G, =—"~——["""—COC p, (cot fp, +—— )]
if ) 4 i ]
pl[ H (22)
in the absence of axial force
1 7
Fy=735 G, == 23
Pt 360 23)
Finally, considering (A-2h) and (10), one can write
Ay = (i +m )F, + 2i,m,G (24)

3. STABILITY OF FRAMES

Frames generally consist of a number of beam-
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columns. As a result, to study buckling of frames, beam-
column relations are applied, however, boundary
conditions are no longer as simple as those of beam-
columns. To analyze frames, a series of extra equations
are needed. Followings are short reviewing of these
equations.

A. Equilibrium of a joint
Consider two transverse members which are joined at
the point (i) as shown in Figure (3).

v

Figure 3. Positive forces and deformations in a joint

Two equilibrium equations in x and y directions are
written as

~ ¢, Cos@ ~ Z n, p, cos(y, + q),_./ ) -
D, sin(y, +4,)=0 (25a)

—c¢, sing, —Zn,/ pysindy, +4, )~
D g, cos(y, +4,)=0 (25b)

symy +Smy, + =0 (25¢)

B. Continuity of joint rotation

Continuity of joint rotation, as shown in Figure 4, is
written as:

g, - @, = Op —0u =6, — @, (26)

NN
%

Figure 4. Rotation in a joint

C. Deformation compatibility equation in a closed loop
Consider a closed loop as shown in Figure 5 solid and

dashed lines show the undeformed and deformed shape,
respectively. Geometry of loops indicate

> A,(1=2)cos(y, +,) =0 (27a)

D 4,(=4)sin(y, +¢,) =0 (27b)

4
Figure 5. Deformed and undeformed configuration of a closed
frame.

In the following, the post-buckling behavior of a
number of frames with typical specifications including:
sway possibility, boundary conditions, frame symmetry or
asymmetry and relative stiffness of beams and columns is
investigated by means of the method described earlier.

4. A FRAME WITH SIDE-SWAY

Consider a side-sway permitted frame that is generally
asymmetric, as shown in Figure 6. The asymmetry was
induced by taking different columns length. Conventional
positive deformations are shown in the figure.

Figure 6: Frame with side-sway

By making use of compatibility equations of the closed
loop as-well as equilibrium conditions of the joints 2 and

3, foltewing equation is resulted in,

. . a . T
Py =@y =1y, + ;2“”734] (28a)

B ZI + o)k
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.. . 1. .. . ..
Py +P3q =1y +— 3, ~ 2P0,
k a’

2 bl

34934
a’ (28b)
In addition. from continuity conditions of the joints 2 and
3, two series of key equations can be readily achieved, as
follows,

Oy = @i =053 6, =, =05

(29a)

934 — 5 = 932 ; é34 — @y, = én (290)
A. First order analysis

End moment-end rotation relationships corresponding
to the first order analysis are

ézx = S0ty (30a)
. 30b
O3 = [foslityy + gslity; = ”lmzx +L"’.734 (300)
o - 3 6c
. . . . . 30
Ory = Za3lilyy + oyl = lm21 ——1—m34 (30¢)
. - T 6 3
934 = fiylityy (30d)
By substituting (30), (28) into (29)
1 o . 1 . 1
Yt [ A it =0 (318)
L/ #3 (l+a)k] i a(l+a)k] H
i .
—[=+——]ry, +
6 (I+a)k™ ~
1 .
gyt — gy =0 .
st e (31b)

in which coefficients f,,f,, are functions of load factor

k. Non-trivial solutions are possible when the determinant
of the coefficients in (31) vanishes.

o1 a ., 1 1
[./Il +§_(l+a)k] [‘f34+3;_a2(l+a)k h
1 1 1 1
[ e 1=0
6a a(l+a)k 6 (I+a)k (32)

The above equation is a characteristic equation of
critical load which its smallest root is critical load of the
frame.. The buckling load parameters (k) of the frame for
various values of « ., i.e. 0,1 and 2 are equal to 13.88,
1.82 and 1.22, respectively.

B. Second order analysis

End moment-end rotation relationships corresponding
to the second order analysis are

éz: = fialtigy + 2 pa(Fiaityy) (33a)

_/7'734)

- . 1 I 7
Oy == Filyy + = lyg + 2 Poy (——— My + ———
23 3 Mo T M P23( 2 e0a

5™
(33b)

- 1. T . . 7 . |
05, :EmZI = “3‘07’"34 + 2pz3(§56’7721 - 74“5;”734) (33¢)
by = faating + 2 p3a(Fagtingg) (33d)

Upon substitution of (33) and (28) in (29) results in:

1 [o4 .. 1 1 .
oL ity [ ity = Uk, 1
[/ 3 (l+a)k]mﬂ l6a+a(l+a’)k]m34 (k,my)

(34a)
e Py, =V (ki)
6 (+a)k 2 7 30 aP(l+a)ks o

(34b)

Coefticients of (34) are exactly similar to those of (31)
that the determinant of coefficients is zero in critical load.
if the solutions {1, ,n1,,} are to be finite, then by
Cramer’s rule, the determinant obtained by replacing any
column of coefticient by { U,V } must also be zero.

1 a
P i
Ji 3 (+a)
1 1 =0 (33)
)
6 (l+a)k
To illustrate the implementation of the static

perturbation method, the post-buckling analysis of the
frame shown in Figure 6 has been involved in Appendix
and in the following just the results are mentioned.

Numerical results of (32) and (35) for various values of
a are given in Table l,and also they are depicted in
Figure 7.

TaBLE |
CRITICAL LOADS AND INITIAL SLOPE OF POST-BUCKLING PATHS
FOR DIFFERENT VALUES OF (r

@ kcr k k/k”
| 0381
0 | 1388 | 52386, | 4
21
Lo1s2 0 0
2| 12 | 1576, | 0
. 21
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13.88 /4]]/0'38”"w

021

Figure 7. Post-buckling paths for different values of o

The results, in the case of « =0, coincide to the results
obtained by Roorda (1965). Because the buckling
directions of the frame for « =0, 2 are different, their
post-buckling slopes are on the contrary. It should be
noted that in the case of a =1, the first order axial load in
beam becomes zero, consequently, the post-buckling path
in this case is symmetric bifurcation, whereas in the other
cases, the first order axial load in the beam 2-3 is exist, so
post-buckling paths are asymmetric.

5. A FRAME WITHOUT SIDE-SWAY

A. Hinged supports

Consider a symmetric side-sway prevented frame in
which the length and flexural stiffness of beam are « ,
times those of columns, respectively. Simply supports are
considered for the frame. Initial frame and conventional
positive deformations are shown in Figure 8.

Figure 8. One story portal frame without side-sway (hinged
supports)

The procedure of analysis is similar to previous
example, except that symmetry properties can be used. In

the following, merely final results are mentioned.
Characteristic equation is obtained as, [7]:

o
S+ 2% 0 (36)

and, the equation of post-buckling path becomes

—a? \ 37
:m”?g“’i"gzx" (k= k)
166/,
TABLE 2
CRITICAL LOADS AND INITIAL SLOPE OF POST-BUCKLING CURVES
(CASElI-A)
a k., i/6,,
1 12.85 0.54
B =1 1.5 12.10 0.705
2 11.60 0.75
1 14.70 0.70
B=2 1.5 13.60 0.96
2 12.85 1.07

Numerical results of (36) and (37) for various values of
a and fare given in Tables 2 and they are also depicted

in Figure 9.

k
1285 /4]]154/%

/
0.70k o,

11.60

\

L 0,
i)

>

/Amkcr
14.70 |
/ i 0.96k .

13.60

p=2
Figure 9. Post-buckling paths for different values of e and
[ (Case 11-A)

B. Fixed supports

Now consider the previous example (case A) with fixed
supports, Figure 10, the only difference between these two
cases is that rotations of supports are equal to zero.
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Figure 10. One story portal frame without side-sway (fixed
supports)

Characteristic equation of critical load is
a
fla=ghu+—fi, =0 (38)

28

and the of post-buckling path becomes

3
k:**]“ a') ‘7#7“‘”‘
24 87 fn-gn2
3_8.
2 fo

92!

y 1
‘58712 (Giofra = Fagn) = ——(Fafi = Gia&i2)
S . S

(39

Numerical results of (38), (39) for various values of a
and A are given in Table 3, and also they are depicted in

- 264
—204 1
\\Q&M o
252 .
1 1.22%,,
T 6 21
B=2

Figure 11. Post-huckling paths for different values vf « and
[ (Case [1-B)

6. CONCLUSIONS

In this paper, the non-linear post-buckling behavior of
rectangular plane frames is analyzed using the standard
procedure of the static perturbation technique. The
solution of a highly non-linear problem is reduced to the
recursive solution of an infinite set of linear problems.
Based on parametric studies made in this study, the
following remarkable conclusions are pointed out:

1.In the stability of symmetrical portal frames with
permitted sway, due to zeroes of axial force in the beam
resulted from the first order non-linear analysis, the post
buckiing of frame becomes unstable. But, at the second
order analysis of the beam, axial force is exist and make
stable post-buckling of the frame.

2. The post-buckling behavior of non-symmetrical frames
is stable, due to tensile force in the beam.

3.In portal frames, when sway is not permitted, the
potential loading of frames beyond buckling is reduced
due to compressive force in the beam and decreasing of
total frame stiffness.

4. Reducing ratio of §,/S,, Sy and S, are beam and column
stiffness, respectively. improves the post-buckling

Figure 11.
TABLE 3
CRITICAL LOADS AND INITIAL SLOPE OF POST-BUCKLING CURVES
(Case[1-B)
a ks k16,
1 25.2 -(0.60
B=1 1.5 23.8 -1.40
2 23.0 -2.26
1 28.4 -0.07
p=2 1.5 26.4 -0.56
2 25.2 -1.22
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behavior in sway permitted frames and weakens this
capacity in non-permitted sway frames.

5.The influence of support conditions on the post
buckling stiffness of frames is revealed that in sway-
permitted frames, the simple supports reactions improve
post-buckling stiffness rather than fixed supports.

7. APPENDIX
The dimensionless quantities, p, Py sy My an, XS,

A, .4, , are defined as follows,

-

12
P =k (E)R,;-,,-; (£is external force and k, is (A-1a)
load factor)
L (A-
Py =t ('E/')u 1b)
L ,
q; = QU (El_)’/ (A-1c)
L (A-
m; = /\1,./(—[-5—7){-, 1d)
(EI/L%),
ny = ——wz—/——— (A-Te)
T EH D) e
x=s/L, (A-1D)
(EI/L)U (A-
S = ~
"B L Y g le).
- Li/’ (A'
T Ly Ih)
€y )
A, = T (A-11)

To apply the static perturbation technique for the solution
of (6), suppose that 0,py.qy,my;. and m,can be
expressed in power series form as functions of some
parameter & which increases from zero along an
equilibrium path leaving a known equilibrium point.
Starting from the un-deflected configuration, and allowing
the possibility of an unbuckled configuration at finite

values of p,;, one can set:

2

. £ ..
Py &)=y & Py = b+ (A-22)

2
oL (A-
0,(e) = 594/+“2T‘9!/ o 2b)
. & .
g;(&)=&f gt a-q,, e (A-2¢)
& (A-
my (&) = eny; + 5?’"1/ NI 2d)
&2
m(e)=gn;+ Em_,, - (A-2¢)
. - g" .
w,,(.&‘)=/c+£k,,-+»£!—k”+~- (A-21)
2 -
. L& (A-
(Pf;’("f):g(/’i/‘*'_?jf/’y‘ +e 2g)
2
/1,'/'(5):5/1//4"—2'?/-[,”‘?"' 2h)

£ is a small parameter and becomes zero at the unbuckled
configuration. It is increased along load-deflection path. In
above equations, dots indicate differentiation with respect
o ¢.

8. REFERENCES

{11 Koiter W.T., > Post-buckling analysis of a simple two-bar frame”,
Recent progress in Applied Mechanics, edited by Bretram
Brobergs et al, Folke Odqvist Volume, p.337, 1967.

[2] Roorda J., “Stability of structures with small imperfections,” J.
LEngng. Mech. Div. ASCE 91 EMD, 1965.

[3] Roorda J., and Chilver A.-H, “ Frame buckling: an illustration of
the perturbation technique,” /nt. J. Non-Linear Mecheanics, Vol. 5,
pp. 235-246, 1970.

[4] Care, R. F., Lawther, R. E., and Kabaila, A. P., “Finite element
post-buckling analysis for frames” /nt. J. for Numerical Methods
in Engng. Vol. 11, pp. 833-849, 1977.

{51 Bazant Z.P.. and Cedolin L., “Initial post critical analysis of
asymmetiic bifurcation in Frames.™ J. Srrwer. Engng, Vol 113,
Ne. 7, pp. 1501-1517, 1989.

[6] Ekhande S. G., Selvappalam M., and Madugula K. S., "Stability
functions for three-dimensional beam-columns,” J. Srruet. Engng,
Vol. 115, No. 2, pp. 467-479, 1989.

[7] Moslehi Tabar A., “Elastic post-buckling stability of rectangular
frames.” M. Sc. Thesis, Dept. of Civil Eng., Amirkabir Univ. of
Technology, Tehran, Iran (in Persian), 1999.

136

Amirkabir/ Vol. 16/No.62-CA Civil Engineering)/ Summer-Fall 2005




