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ABSTRACT

In this paper, a new method is proposed for trip distribution forecasting in multi-commodity transportation
networks. In this new approach, real trip distributions at present are modeled by approximation functions for
each commodity. In large-scale multi-commodity transportation networks, these functions could be obtained by
parts of network as training data, without losing generality of the algorithm. Of course, it will have an influence
on the approximation. Then, a fuzzy model for trip distribution forecasting calibrates these functions. This
model considers all adjustments simultaneously. In order to show the application of the new method, a

numerical example is given and solved.
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1. INTRODUCTION

Trip distribution constitutes the second stage in the
transportation planning process. Trip distribution models are
used to determine the number of trips between pairs of zones
when the number of trips generated-attracted by particular
zones is known. Thus, trip distribution forecasting identifies
roadways where the volume of traffic will exceed the
capacity of the roadway. Continual utilization of this model
will enable the county to update and identify future capital
needs. Generally, such information is essential to a variety of
operational tasks failure analysis to capacity planning and
traffic engineering.

The literature review presemts a survey of theories,
algorithms, techniques, and methods used for trip
distribution forecasting. Before the 1970s, trip distributions
were obtained via statistical surveys, such as home
interviews and roadside surveys. The emphasis on
tfransportation system management in the early 1970s
increased the need for trip distribution forecasting.

Different models have been developed since then. A survey
of these models may be divided into the following types.

In gravity-based models, regression techniques are applied
to calibrate the parameters. The models are divided into
linear (Low 1972, Holm et al. 1976, Gaudry and Lamarre

1978,) and nonlinear (Robillard 1975, Hogberg 1976)
regression models.

In entropy models, the probability of a particular trip
distribution occurring is assumed to be proportional to the
number states of the system. The pioneers of these models,
are Willumsen(1978) and Zuylen (1978, 1979).

Statistical models include the constrained generalized least
squares model (McNeil 1983) and constrained maximum-
likelihood models (Geva 1983, Spiess 1987, Walting and
Maher 1992, Walting and Grey 1991).Statistical models take
into account the stochastic nature of the data and the
problem. However, they have not been adequately tested. In
addition, the stochastic theory used itself sometimes makes
the problem more complicated for practical purposes.
Another group has been developed based on sort computing
techniques such as fuzzy logic and neural network ( Kalic et
al. 1997, Mozolin ez al. 2000). They compared their model
based on multilayer perception neural network with
maximum-likelihood doubly-constrained models. There still
exists a need for further testing these models. Then, Kalic ef
al. (2003) attempted to develop a technique for modeling
trip  distribution. The model developed represents
application of Genetic Algorithm (GA) for trip distribution
forecasting.

All  the above-mentioned models forecast the trip
distribution for single-commodity transportation networks.
But, no-body has addressed the simultaneous calibration of
trip  distribution  forecasting in  multi-commodity
transportation networks.
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In order to overcome this weakness, we will formulate the
problem as follows:

If we consider a multi-commodity transportation network,
how do we forecast trip distribution for future?
To answer this question, we reached to a new approach for
trip distribution forecasting which saves time with the
following contributions:
1) In the proposed method, trip distribution at present is
modeled by the approximation functions for each
comrmodity (these functions will be able to generalized,
adapt, and learn trip distribution based on the real trip
distribution at present).
2) In large multi-commodity transportation networks, it is
proposed that the approximation functions be obtained by
parts of networks as training dara.
3) A fuzzy model calibrates the approximation functions for
each commodity simultaneously.
4) Parameters of the multi-commodity network are defined
imprecisely. Then, possibility distributions are defined for
them.
Therefore, the basic research task in this article is to develop
the trip distribution forecasting from single-commodity to
multi-commodity. This paper is organized into three
sections. The second section contains the new formulation
followed by a new algorithm and dimension consideration of
the problems in the case of large scale. A numerical example
is given. Conclusions are presented in the third section.

2. NEW FORMULATION

Let us first define parameters of multi-commodity
networks:

Suppose that zones i and j are the trip origin and trip
destination of commodity %, respectively:

T,/A = Number of interchanged trips of commodity & between
fand .

P,k = Number of trips produced of commodity k at zone i.
Af = Number of trips attracted of commodity £ at zone .

t,/: = Travel time of commodity & between i and ;.

L/,.; = Optional adjustment factor for interchanges between

zones 1 and j for commodity £.

i =An origin zone

J =A destination zone

Since these parameters of transportation networks are
obtained by samples and statistical methods, they are
imprecise. Therefore, possibility distributions must be
defined for every parameter. Let us assume that the above
parameters have possibility distributions [8]-[13] with
trapezoid numbers (1):
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Now, the proposed method is described as follows:
STEP1: Defuzzify the parameters of network
These numbers are converted to crisp numbers by the Fuller

method [12], that is:

1
Ek=§U%+R§+lU%+RD]
k 1 k
t, = 3[[,/, +t,/; o (t,/, +t”4)J

1
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Andlet: X =[P, A% L8 1]

Then, for normalizing the elements of Xu . we have:
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Therefore, X ; becomes:

X5 (s) = [PF(s), A5 (), L (8).1] (5)] “
STEP2: Calculate the approximation function
Since TI{( is a function of P* (s), A_f (s),

(S) [ - (8), That is:
= [ (PF(5), 47 (5), Ly (8).1; (5))

FE k
where: [,, estimates 7" .

(5)
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Tk

o k .
For estimating of T,./ . Sum of squares error between [

9 S
and 7;; must be minimized:

i m

SSE =22 3T ~ 1)’ =

i=] j=l

i i

Y- A AL ELOF ©

o=l j=l

It is proven based on regularization theory that the

approximation function (7) minimizes SSE {7][12]:
~k k ko, k
Tl; = Zw}/rG(:}ig/ (S)r_)_(_[/?](s)) (7)
fr=l
where:
’ « (b (1-sfy, 02
GUC (5). K (s = P ®

And :X«{(/q(S) is one of }_(J; () that selected as the center

of function G.
Clearly, we can rewrite the (7) in matrix notation:

r=c'w"
where:

k k k Tk '
r :[Tlll’T[ll’”"T[N]]

(9)
G X)) - GG X

G* = (10)
G - G X |

wh = rEowtw i an

M: Number of the Arcs.
N: Number of selected arcs for learning approximation
function.

Now, for finding the weight vector W * | we may have these

cases:

CASE!: M > N (for large multi-commodity
transportation networks, it is proposed that the above
approximation functions be calculated by parts of multi-
commodity network as far as the training data are available):

w* :(Gk'Gk)*‘Gk',zk (12)
k’ kot k’
where: (G° GG

Then. go to step 3.

. vk
represents the pseudoinverse G .

case2: M =N(por  small  multi-commodity
transportation networks):
wh=GHrt (13)

Then, go to step 4.

STEP3: Formulate the Fuzzy mathematical model

For calibrating the above approximation function, the
following proposed model is formulated, which is one of the
main contributions of this paper:

A. Objective Functions I:

Based on conservation of flow [1], the sum of trips produced

for k-th commodity in zone / should be equal to P,k :

m

S =p a4
J=t

i=1,...,n

But the sum of trips produced of commodity & in zone i do

~

not necessarily equal to P,k. Therefore, T,/A must be
calibrated by adjustment coefficients x,k ,x/; :

Pk Lk Lk k

> Tfxixi=P (15)
J=1

B. Objective Functions 2:
Similarly, the sum of trips attracted of commodity & to zone

j should be equal to A_f :

n
STt = 4 1)
i=]

C. Objective Functions 3:

Also, the calculated trip-time frequency distribution for
commodity & should be equal to the trip-time frequency
distribution of real trip distribution [3]-[5], i.e.,

rko ko _k ko
ZT,I XX —ZT{/ =0
f {

(7

D. Constraints:
Let u, represents the upper limit of the sum of all

commodities in arc (i ,j) of the multi-commedity network.
Then, we will have:

rk k k
A

(18)

The above objective functions and the constraints could
make a fuzzy multi-objective decision making model. It
should be mentioned that in references [13],[14],[16],[8] a
fuzzy objective function has been converted to the constraint
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a linear programming. Now, we have utilized this idea to
propose the following new model:

Findx,k,xf. T .
St

k _ pk nko ok ok .
f =P - , X, x, =0
j=t1
i ~
ko k k _k ko
17 =4 i %%, =0 (19)
1={
ko ko ko _k Ok
7 -Z pXi X, =) T =0
! !
rko_k ok
" <u.
> Tfxfxf <u,
k
koo k
x ,x, 20

Obviously, the fuzzy model (19) calibrates all of the
approximation functions simultaneously.

Now, according to Zimmermann's approach [8], the optimal
solution of the above fuzzy model can be obtained by
solving the following model:

e . e Sk
Minimize[Min[u (T, ), 1, (T;)), 20)
~ k N
H, (T
where the membership functions
(T} )s 1 (Tf )s 1, (Tuk ) are defined as follows:
k
[+ = -r, < fl <o
T
; /] ; .
TRGOERIEE 0= /) =
7
0 otherwise
@n

k
1+L— — qi < flk < O
q,
k
‘*,Ui(fl/l\): 1“['“* 0<f'<gq,
4q;
0 otherwise

where ¢,,r, and Vv, are the tolerances of the objective

/

functions f," ,f_/k and /"It should be mentioned that the

amount of them are given initially.
By assuming:
. "k ik rk
Min[ g, (T30, 14, (7)1, ()] = A
This satisfies:

Asu, (05 A< (T} A< u(T))

(22)
(23)

From (21), we obtain:

k
1

4

/’k fk

A<+l a<1-2L

k
c1-4
q;

AL+

(24)

(A-Dg, < f <(1-2)q,

(A=Dr, < ff <=2,
(A-Dy, < fF<d-A)w,

(25)

In conclusion, by referring to (19), (20) and (25) the
proposed new model (P) will be obtained:

4
1+1’—— -v, < £ <0
{ S )

v, Min # (Model P)

k
MUSE -1 0< ff <, St
A V' i n
0 : (A=Dr, <A => TN <(1-A)r,
otherwise pr
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n

(A=D)g, < B* =3 TH(ID) <(1-A)q,
(A=Dy, SO THD =D TF <=2,

Zﬁf([)gl{i/'
rk oo ko ko ok
I, ()=T; x x|

xE AT 20

Therefore, the model (P) calibrates the approximation
functions (7). Fortunately, since most of the constraints in
model (P) are of quadratic form, this model can be handled
by Lingo software. 1t is worth mentioning that the quadratic

model is convex [9].

STEP4: Forecast trip distribution

Suppose that parameters of the multi-commodity network in
!

! r !
the future are P* ,A'f L t,./; . Trip distribution in the

iy o

1]
future (T//k ) is calculated by (26):

!

Xoo=[PF A% L

L2 i

!

]—)

XE () =[P* (),4% (), 1 (s,

‘ . (26)
(5 ()]——Tf =

[ (PF (), A% (s), L% (5), (s)) =
S WEG(x, ()X ()b Xt
fi

7

Then, it will be calibrated by proposed model (F):

Min A
St

(Model F)

A-lr <4 =Y T (D<=

R , kl m "k, ,
(A=Dg <P* =T (D) <(1-2)q,
=l
ZYA;;‘ (D=u,

k

’ !

TF (=T xf x

i

r '
k k

X,

'
AT (D20

A. Dimension Consideration

If we consider the multi-commodity transportation network
with n nodes, r arcs and m commodities:

1. Maximum size of the model P will be (n+r).m
constraints and n.m variables which could be
handled in the case of large scale.

2. Size of the model F will be n.m constraints and
variables.

It is worth mentioning that the main contribution of this
research is to develop two new optimization problems (P)
and (F). The optimal solution of mode! (F) can be obtained
by Lingo software.
Now, the proposed maodel is illustrated by a numerical
example.
B. Numerical Example

Consider the following two-commodity network. Trips
produced, trips attracted, the travel time and trip distribution
at present between zones for each commodity are given in
Table 1.
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Figure 1: Two-commodity transportation network

TABLE 1
PARAMETER VALUES AT PRESENT (GIVEN DATA)

T2 = (50,60,65,70) 7! =(230,240,245,250) P! =(390,400,405.410)
T\ =(50,60,65,70) T2 = (410,420,425.430) P? =(690,700,705,710)
T2 =(110,120,125130) | T} =(150,160,165.,170) P} =(490,500,505.510)
Tl =(30,40,45,50) 7.2 =(270,280,285,290) P} =(390,400,405,410)
T2 = (70 80,85,90) T\ =(290,300,305,310) P} =(490,500,505.510)
Iy = by =(5,6,6.5,7) T} = (150,160,165,170) P2 =(90,100,105,110)
Iy, = (4.5,5.5,6,6.5) 7,2 = (190,200,205,210) P! =(90,100,105,110)
by =lhs =0, =6, =l = | T\l =(290,300,305,310) P} = (190,200,205,210)
f, =(23.35.4) 72 = (230,240,245,250) A! = (690,700,705,710)
hy =0y =h, = by =L = | TL =(190,200,20,210) A2 = (490,500,505,510)
f4s = (4,5.55.6) T2 = (30,40,45,50) 4. =(790,800,805,810)
7.l =(290,300,305,310) A? =(890,900,905,910)
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If parameter values change in the future as follows (see table 2). Find trip distribution between the zones for two-commodity
network in the future (assuming Ll,./. = sz =1).

TABLE 2
PARAMETER VALUES IN THE FUTURE (GIVEN DATA)

I ’ ' ¥

I, =1, =(4.5556,6.5) P! =(140,150,155,160) P! =(590,600,605,610)

75(,' =(4,5,5.5,6) ﬁf' =(240,250,255,260) ,53' =(890,900,905,910)

Ty =Ty =0 = =13 = .Z;‘ = (890,900,905,910) N;' = (590,600,605.,610)

736' =(2.4,2.5,2.55,2.6) 21“52' = (690,700,705,710) N;' =(490,500,505,510)

T =T =T, =T =T = | A = (940950955960) | B (490,500,505,510)

G = (3445.5) Zg’ =(1090,1100,1105,1110) 122' = (140,150,155.160)
Solution:
In this example, we consider M=, then, the construction and solution of (model F) will be required. Here is the model F.
Min A (Model F)

5= A) 2600~ (B, (1)+ T, (1)< 501-2)
- 5(1-2)<900- (72 (1) + T2 (1) <501~ )
~5(1= )< 600 - (f;;(z)+ f;()'(])) <5(1-4)
~5(1-24)< 500—(:f;§/(1)+ T“;(,'(])) <5(1-2)
—5(1-A)< 500—@‘5'(1) +TA3'6'(1)) <5(1-24)
5= 2) <150 - (B2 (D + T2 (1) £5(1-2)
~5(1-4)<150 - (7“’4‘5' (D + T},l (1) <5(1- 1)
~5(1- ) <250 —(T:é’([) +f41'(/)) <5(1-4)
~5(1-2A)< 900—(7";‘;(1>Jr 7"*;5'(1) +f“;5'(1) +7“;‘5'(1)) <5(1-2)
~5(1-4)<700 - (ﬁ§'(1)+ TAfS’([) +7"2§'(1)+f§5'(1)) <51-4)
—5(1-24)<950 - (7”“;6' )+ f’;él (1) + 7”}‘6' )+ T}‘G' (1) <5(1-2)

St: ot ! ot R
=5(1=A) 1100 = (T3 (D + Ty (D+ T3 (N+Tg(D) <5(1-2)
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!

7. (1) =318.709x x!

|

7 (1) = 263.204x x|
}‘5 (1) = 281.775xl X!

’

T (1) = 300.404x! xg
7L (1) =235.419x) x!

Ty (1):256.766x; .x;
L (1) =69. O95x4 ,\:5
(1) 53. 881x4 X,

f",i () = 424.804x12'.x52I
f}ér(]) = 289.287xf'.x§'
}25'(1) = 167.Ol9x22,.x52’
'(1) 232. 302x7’ x6,

!

(1) 48.816x2 x?
fﬁ,'(z) 68080x3'x6'
72 (1) =118.736x2 %2
1(1) 80398x4,. 3

’ ! '

!
1 2
.x( Xxg . A20

vx? 5x7 9x’; 5x3 ;x}; ,Xj ,XE x-z
7 (.7 (), TJS ), Tm (DT (), Tm %) :fz,s (), TJ(, (),
f,i (T2 (T (T <1>,:f;i (.72 (D2 (1,72 (120

The optimal solution of model (F) is given in Table 3(solved by Lingo software):
TABLE 3
THE OPTIMAL SOLUTION

New Model Survey model
Forecasting present present Trip distribution
Commodity Commodity Commodity Commodity Commodity Commodity
2 I 2 | 2 I

404.3265 310.5853 420 240 420 240 TIis
490.6735 284 4147 280 160 280 160 Ti6
143.1731 277.2482 160 200 160 200 T25
359.8269 3277518 240 300 240 300 T26
44.47258 224.0430 40 200 40 200 T35
110.5274 270.9570 60 300 60 300 T36
111.0278 83.12359 120 60 120 60 T4s
133.9722 71.87641 30 40 80 40 T46
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By referring to Table 3, we could see the forecasted trip
distribution between the zones for some commodity gets
higher (i.e. T16 for commodity 2 which is 280 at present
gets 490.67 in the future). If we consider the Table 3 in more
details. we could find more similar cases. This trip
distribution forecasting identifies that the volume of traffic
will exceed the capacity of paths. Thus, the capacity
planning and traffic engineering are required.

3. CONCLUSION

In this research, the trip distribution forecasting has been
formulated in multi-commodity transportation networks by a
fuzzy multi-objective optimization model. Then, this multi-
objective model has been converted to single objective
model by Zimmermann’s approach. The special structures of
these two models are very close to quadratic programming,
where its convexity is confirmed. Therefore, there was no
difficulty applying Lingo software to solve these models. In
both models, the amounts of tolerances are given by priori-
information.
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