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ABSTRACT

In this paper, we consider a typical supply chain where a single supplier produces multiple compcnents on
a flexible job shop (FJS) and delivers them directly to an assembly facility (AF). It is assumed that demand
rates for these components are deterministic and constant over a finite planning horizon. The objective is to
find a common cycle lot production and delivery schedule that minimizes the average of holding, setup, and
transportation costs per time unit for the supply chain. This problem consists of a combinatorial part
(machine assignment and sequencing sub-problems), and a continuous part (common cycle duration and
scheduling sub-problems). To account for these two elements, a new mixed integer nonlinear program
(MINLP) is developed which simultaneously determines machine allocation, sequencing, lot sizing and
scheduling decisions. In order to reduce computational complexity. instead of solving this MINLP directly,
we propose an efficient enumeration method to determine the optimal solution of the model. The
performance of the proposed method is evaluated by some numerical experiments. Another applicable case
(Lot streaming) is also studied and required modifications in the model formulation and the solution
procedure are described. Moreover, a numerical example is presented to illustrate applicability of the
proposed mathematical models and the solution methods.
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The supplier’s production facility is a flexible job shop.
1. INTRODUCTION AND PROBLEM DEFINITION A flexible job shop is one of the most usual production
systems in manufacturing discrete parts that can be
considered as an extension of two classical systems,
namely the job shop and the parallel shop. It involves
several work centers (production stages) where each stage
regard is efficient and effective management of material has one or mlore identical pax:aliel xﬁachn'nes.. vhach
flow through a supply chain that is critical o its success component requires a sequence of operations in different
[11]. stages based on its unique process route. Moreove.r,’ each
component must be processed by at most one machine at
each stage, but some components may skip some stages.
The customer (AF) uses the components ai a fairly
constant rate. This may be due to higher-level production
smoothing, or various characteristics of the demand or
manufacturing processes, For example, in the automobile

Increasing global competition has imposed tremendous
pressure on all members of supply chains. Companies are
responding to this pressure by optimizing their activities to
better serve their customers. One of the main issues in this

In this paper, we consider a simple supply chain where
a captive supplier produces multiple components on a
flexible job shop (FIS), accumulates these components
and delivers them directly to an assembly facility (AF).
Such situations are common in the automobile industry,
and may occur in other industries as well [3]-[4].
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industry, the customer is a final assembly facility that uses
a fixed-pace assembly line. To facilitate both workload
smoothing in the assembly line and making possibility of
just-in-time (JIT) delivery of components from supplier to
AF, the assembly line is scheduled so as to smooth the
usage rate of each component [3].

Our concerned problem is the lot and delivery
scheduling in such supply chain where all parameters
(such as demand rates) are deterministic and constant over
a given finite planning horizon. This problem involves a
combinatorial part (assignment of components 1o
machines at each work center and their sequencing on
each machine at the supplier), and a continuous part
(duration of production and delivery cycle or lot sizing
and production starting time for each component at each
stage). In other words, machine allocation and sequencing
sub-problems are the combinatorial part of the problem
and lot sizing and scheduling sub-problems are the
continuous part of the problem. The objective is
minimizing the average of transportation, sewp and
inventory holding costs per time unit without backlogging
across the supply chain. To solve the problem, we assume
a common cycle for producing all components and their
delivery. Thus, during each cycle, one batch of each
component is produced and one delivery at the end of the
cycle for accumulated components is scheduled.
Moreover, it is required that the planning horizon to be an
integer multiple of the common cycle length. So, a new
mixed zero-one nonlinear program is developed which its
optimal solution determines simultaneously the optimal
assignment of components to machines at each stage, the
optimal component sequence for each machine, the
optimal lot sizes and the optimal beginning times for each
production run.

The problem considered here, is an extension of
economic lot and delivery scheduling problem (ELDSP) to
flexible job shop systems in finite horizon case. ELDSP is
a NP-hard problem; therefore it is obvious that our more
general problem is definitely NP-hard.

The original ELDSP (the single item case) was
introduced by Hahm and Yano [2]. Then, they extended
their previous work to multiple components case so that
they considered a simple supply chain where a supplier
produces multiple components on a single machine or
production line, accumulates the components, and finally
delivers them to an AF [3]-[4]. They provided an excellent
review of models related to the ELDSP and developed two
efficient heuristic algorithms for solving it. In the first
algorithm [3], they used the common cycle for all
components and assumed that the time between deliveries
is equal to the duration of the common production cycle.
In the second one that is a generalization of the former [4],
they assumed that multiple deliveries within a global
production cycle are allowed (the nested schedule case).

Other researchers introduced several extensions tw
original ELDSP. Khouja [5] considered the ELDSP for a

supplier that uses a volume flexible production system
where component quality depends on both lot sizes and
unit production times and developed an algorithm for
solving it. Vergara et al. [10] extended ELDSP to
multiple-supplier, multi-component simple supply chain
and proposed an evolutionary algorithm (EA) to obtain an
optimal, or near optimal, synchronized delivery cycle time
and suppliers’ component sequences.

In all above works, it is assumed that the production
system of supplier (or each supplier) is a single production
line or machine. Moreover, it is assumed that the planning
horizon is infinite. There are several reasons for infinite
horizon assumption. First, constructing a mathematical
model for infinite case is easier. Further, this assumption
makes feasible solution space larger and consequently may
lead to better solutions. However, this assumption
considerably reduces the usefulness of the proposed
contributions, because in practice, planning horizons are
always finite and rarely longer than 12 months. Further, in
most cases, the schedules obtained by infinite horizon
assumption could not be repeated an integer number of
times during the finite planning horizon chosen in
practice. Thus practitioners usually adjust such schedules
to meet this condition, which may lead to a non-negligible
increase in total cost [7].

Literature review in finite horizon case reveals that
there are only four contributions from Ouenniche et al.
[6]1-[7] and Torabi et al. [8]-[9]. In [6]-[7], the production
scheduling problem in job shops is studied under constant
demand rates over a finite planning horizon either using
the common cycle approach [6] or the multiple cycle
approach [7], to obtain a cyclic schedule. The authors
developed an optimal solution method in common cycle
case and an efficient heuristic method to obtain a near
optimal solution in multiple cycle case. It is noted that
these two works are extensions for ELSP problem where
demands (deliveries) are continuous and optimization
issue is focused on a supplier with a job shop production
system, but not on the supply network. Torabi et al.
extended the common cycle economic lot scheduling
problem (ELSP) to flexible job shops in finite horizon
case and developed an optimal enumeration method to
obtain optimal solution of this problem [8]. Moreover.
they considered the common cycle economic lot and
delivery scheduling problem (ELDSP) in flexible flow
lines in finite horizon case and developed an efficient
hybrid genetic algorithm to obtain optimal or near-optimal
solutions for this problem [9].

However, to the best of our knowledge, no
contributions are reported to economic lot and delivery
scheduling problem in such supply chains where the
supplier’s production system is a flexible job shop. Thus,
in this paper. a new mathematical model and efficient
solution method is developed for this problem.

The outline of this paper is as follows. In section 2,
problem formuiation as well as necessary conditions to
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have a feasible solution are presented. In section 3, an
enumeration method to obtain optimal solution is
developed. Another applicable case of original problem
(Lot streaming) as well as required modifications in the
model formulation and the solution method are studied in
section 4. In order to validation of the proposed solution
method. numerical experiments are done and the
corresponding results are presented in section 5. A
numerical example is presented in scction 6 that its
solution is determined at the two studied cases. Finally,
section 7 is devoted to conclusions and some
recommendations for future studies.

2. PROBLEM FORMULATION

The following assumptions are considered in the
problem formulation:

e There is a captive supplier that produces several
components for a single customer (AF) and makes
direct deliveries to that customer;

e Supplier’s production system is a flexible job shop
which consists of several work centers, where each
stage has one or more parallel machines that are
identical in all parameters such as production rates and
setup times (costs);

e Each component has a predetermined unique process
route (based on its route sheet) that must be adhered to
it fully; that is, no alternate routings are allowed:

¢ Each component must be processed at most by one
machine at each stage; that is, no sharing is allowed for
components among the machines at each stage. This
assumption is optimal policy when there are parallel
identical machines at each stage and also has practical
advantages. since it does not require duplication of
tooling and follows the group technology idea [1];

e The lots of each component are of equal sizes at
different stages;

¢ Machines of different stages are continuously available
and each machine can only process one component at a
time;

¢ The system is deterministic, i.e.. all parameters such as
demand and production rates, transportation cost, and
setup times (costs) are deterministic and constant over a
finite planning horizon;

e The common cycle approach is used as production
policy, i.e., there is a single delivery from the supplier
o AF per cycle, during which one batch of each
component is produced;

e Backlogging is not allowed;

¢ The supplier incurs sequence independent setup times
and costs;

s Setup times and costs for the AF are negligible, which
is reflective of many assembly environments:

e Delivery lead time is negligible and it is assumed zero:

e Production sequence for each machine ar each stage is
unique and is determined by mathematical model;

e Both the supplier and the assembler incur linear
inventory holding cost on final components;

s The supplier incurs linear inventory holding costs on
semi-finished components:

e Preemption is not allowed; that is, at a given stage, once
the processing of a lot starts, it must be completed
without interruption;

e Lot streaming is not allowed; that is, sub-batches of
each component are not transferred to the next stage
until the entire lot is processed at the current stage:

e There are unlimited buffers between successive stages.
hence in process inventories are allowed, i.e.,
components may wait for their next operations;

e Total capacity of different stages are sufficient to meet
the demands; thus there exists at least one feasible lot
and delivery schedule;

e Integer number of cycles (F) are repeated until the
planning horizon is covered;

» Zero switch rule is used. This means that production of
each component at each cycle begins when its inventory
level reaches zero.

Moreover, the notations used for the problem modeling
are defined as follows:

Parameters;

n number of components

m number of work centers (stages)

i, u component indices

J stage index

m; number of required operations (or stages) for
component /

M, number of parallel machines at stage j

n number of components to be processed at stage j

My k-th machine at stage j

p()  setof components to be processed at stage j

ufi.) route of component i (indicated by an ordered sub-
set of stages)

wu(ir)  r-th stage on the route of component

d; demand rate of end component i

Piairy Production rate of component { at r-t/ stage of its
route

lLiuar Processing time for a lot of component i at r-th
stage of its route (4 = i . T/ Piging)

Siany  Sequence-independent setup time of component i

al -1/ stage of its route
8¢ total setup costs of component i over all stages

hiyar  holding cost per unit of component i per time unit
between r-th and (r +1)-th stages of its route

h, holding cost per unit of final component | per time
unit (both at the supplier and at the AF)

A transportation cost per delivery

H planning horizon length

M a large real number

Decision variables:
a; production sequence vector at stage j,
O production sequence vector at machine A7,
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Sy the set of components which are assigned to
machine My,

my; - the number of components which are assigned to
machine My,

T common production and delivery cycle length (time
interval between setups and deliveries)

0O, production lot size of component / at different
stages (Q; = d;. T)

F number of production cycles over the planning
horizon

b .ry process beginning time of component j at r-th stage
of its route (after setups)
1 if product iis assigned to 1" position in
o, (JIM,=1)

ili i

i

0 otherwise

1 if product iis assigned 1o 1" position in
o (jiM,>1)

otherwise

Since after processing cach component at each stage,
there would be a value added for the component, thus,
values of 4, parameters will be non-decreasing, that is:
Piwirey < B Pigirey Shiggies s =1 om, r=2..m-I.
Moreover, variables z,, are sequencing sub-problem

variables at stages with only one machine and

variables X, are both sequencing and machine assignment

sub-problem variables at stages with more than one
machine.

The problem can be formulated as a mixed zero-one
nonlinear program (problem P). As mentioned earlier, to
formulate this problem, we assume a common cycle for all
products (T) and choose a cycle time such that the finite
horizon H is an integer multiple of 7. this assumption
allows constructing production schedules that are easy to
implement and generally preferred in real-life situations.
Hereafter, we first describe the mathematical model of
Problem P and then in section 3, we propose a procedure
for its solution.

The objective of Problem P is to minimize the average
of transportation, setup, work-in-process and end
component inventory holding costs per time unit for the
supply chain. Two terms in the objective function are
evident: the average setup cost per time unit

is Zi SC,/T, and the average delivery cost per time unit

is A/T. The inventory holding costs are somewhat more
complicated. Inventory holding costs are incurred at both
the supplier and the assembler. Figure 1 shows the
inventory level of final component 7 in one cycle at the
assembly facility. Therefore, the average inventory of
component / per unit time at the assembly facility
is: TL{ @7 )gj? - %_T_ﬂ and then the average holding

cost per unit time at the assembly facility would be:

S d.hT /2

inventory

d,.T

Figure | Inventory level at the assembler in one cycle.

Two types of inventory are considered for the supplier:
work-in-process inventory and finished component
inventory. Figure 2(a) and Figure 2(b) show the evolution
of work-in-process inventory of component i between two
successive stages u(ir-1) and u(i,r), and the inventory
level of final component /, respectively.

From Figure 2(a), it is obvious that the average work-
in-process inventory of component i between two
successive stages u(ir-/) and pfi,r) per unit time is:

1T AT 47
Laer-1) = "3‘{‘—';***'“——* + l/,'/'[/’f.,,(,,,-) By = e |
S5 Poalie-y) Piylir-1} )
a7 dT
+ . =d,
< Pialir)
! d,r dr 1
b, ) R
foalir) ioplir=1} 8
L ’ 2P, 0.0} 2P 1)
Inventory
level
d.T
; : —p Time
bl.y(r.,r-vl) bl,;/(u'&l)+aIzT/[)1,1Al_r—l) b’»u(l-l‘] br,;t(tr) +d,T/r p:‘;/(:_r)

Figure 2(a) WIP inventory between stages p(i,r-1) and p(i.r).

Inventory
level

d.T

Time

b Brtiwy T AT ] P T

s aliom,)

Figure 2(b) Finished component inventory.

Therefore, the total work-in-process inventory holding
cost for all components per unit time at the supplier is:

TC = Z”:
=1
d,T

b, .y — — b, oy
[ i i) 2/3:4,4(/,'4) i (a=1)

"

27 h:,u(l.r‘l) .d,‘

d,T W
2 pl,;l(l,l"‘i) J

Also, from Figure 2(b), we can see that the average
inventory of final component / per unit time is:
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Thus, the total inventory holding cost for all final
components per unit time at the supplier is:

i ,1 "
e = Z hr 'dl 1- __.(_i.__.._ T - z hl 'd/ ‘bl.u(t m,)"
1=1

soulem ) i

/T ( ar )l
Ly d,TLT = b iy ™ ‘“'—“j
Piwtm) PoGm)

Therefore, the total cost per unit time (i.e. objective
function of Problem P) would be:
B N L T
7¢ =247*~r .L/7I.TL1*M—*

+
i jl(l,m,)J

.

d} [ 1 RIS
= X Mgy e T = ) B
2 Z #l l)t\ Piglor) IL./I(:J‘—-K)JJ ,21 B D)

woom,

oy Z By o1 (o) - 8, ,1(“4))

selor=2

Given the objective function and logical relationships
between variables of Problem P (that some of them are
extractable from inventory evolution curves), a new mixed
nonlinear model is developed to obtain optimal solution of
the problem that is presented in Figure 3.

Problem P has several constraints. Constraints (2) state
that no component can be processed before it is completed
at previous stage. Constraints (3) show that at each stage
with one machine (M;=1), no component can be processed
before the completion of its predecessor in the related
production sequence (g;). Constraints (4) are similar to
Constraints (3), but they apply to stages with more than
one machine (M;>1). Constraints (5) and (6) state that
each component has a unique position in the sequence of
stages with only one machine. Also, Constraints (7) to (9)
are applied to stages with parallel machines. Constraints
(7) state that each component has a unique position in the
sequence of one of the machines at these stages and
Constraints (8) show that on ecach position of each
machine at these stages, there is at most one component,
because at each machine such as Af,, it may be assigned
less than n; components to this machine. Constraints (9)
stipulate that, one component can be positioned at one
position of machine My; if another component is to be
positioned at previous position of this machine.
Constraints (10) imply that at each stage with only one
machine, processing the first component in the related
sequence cannot start before setting up the corresponding
machine. Also, Constraints (11) show that if component i
is the first component in the sequence related to one of the
machines in stage j (Mj>1), its processing can not start
before setting up the corresponding machine. Constraints
(12) assure that the obtained schedule is cyclic and state
that the processing completion time of each component at
final stage is less than or equal to cvcle time. Constraint
(13} imply that the common cycle is such that the planning
horizon is an integer multiple of T. Constraints (14) shows

that F is an integer greater than one, and finally,
Constraints (153) are the non-negativity Constraints.

Moreover, since some time must be left for setups at
each stage, the necessary conditions to have feasible
solutions for the problem can be written as follows:

»~GL—+—S—iL <M, V=1,
epl Py

But the value of variable T is not determined so far,
thus we can redefine necessary conditions as follows:

At each stage j (j=1,..., m), the products are sorted in a
non-increasing order of dj/p, values. The term d/p,
represents the fraction of one machine at stage j required
by product i. Then according to this order, each product is
assigned to the first available machine. At the end. if the
following conditions are satisfied, then there would be at
least one feasible schedule.

d

Minkll - Z ———} >0 Vj=1,.,m
st gy P,,

.

2

-

3. SOLUTION PROCEDURE

Problem P is a mixed zero-one nonlinear program.
Non-linearity of this model is due to slightly nonlinear
term (A+Ysc)/T in objective function (respect to T) and
nonlinear constraint (13) in the constraints sets. Since it
will be difficult to solve this mixed nonlinear model
directly, we propose an enumeration method with an
iteraiive process for solving it to optimality.

Let T* and Z* denote the optimal common cycle and
the corresponding total cost per time unit. respectively.
Moreover, let ZF denotes the objective function value of
Problem P foi 1 given value of F. Then this Problem can
be solved using the following iterative procedure:

Initialization step. Let F=1, and solve the resulting
mixed zero-one linear program. Set: Z* =Z1, T* =H
step. lIncrease F by 1 and solve the
corresponding mixed zero-one linear program for this new
value of F. If this model has no feasible solution, stop;
else, if ZF < Z* then set Z* = ZF and T* =H/F and go to
the next iteration.

Basically, this procedure enumerates all feasible values
of F and for each value of F, it solves a mixed linear
model to optimality. Thus, this procedure produces the
optimal solution of problem P.

To solve these mixed linear models, we can use one of
the large-scale mixed integer optimization tools such as
CPLEX and LINGO. However, within our computational
study, we used the LINGO 6.0 solver from LINDO
systems, Inc.

Iterative

4. NUMERICAL EXPERIMENTS

In this section, in order to evaluate the performance of
the proposed selution method, we indicate how the
computational time increases as the size of the test

87

Amniirkabir/ Vol 16/No.62-B/( Mechanical Engineering)/ Summer-Fall 2005 %



problems increase. The test problems are randomly
generated so that all parameters are drawn from discrete
uniform distributions that are presented in Table 1.
Moreover, for each problem instance, the necessary
conditions are checked in order to make sure that these
test problems are suitable for our experiments.

The process route of each product is also randomly
generated without any skipping of stages by products.
Four sets of test problems with different sizes have been
considered (see Table 2), and five problems for each set
are randomly generated.

For each set of test problems, a LINGO model has been

generated using LINGO 6.0 modeling language, and all of

the test problems are solved on a personal computer with
an Intel Pentium 4 processor running at 3.2 GHz.

Table 3 represents the average CPU time required to
obtain an optimal solution for each set of test problems. It
is noted that for 8 X3 problems, it was not possible to find
an optimal solution within a reasonable CPU time.

Computational results indicate that the proposed
solution method can obtain an optimal solution for small-
sized and moderately medium-sized problems within a
reasonable time. But it can not obtain an optimal solution
for medium and large size problems within a reasonable
time because solution time grows exponentially with the
size of the problem.

Therefore, a more efficient heuristic method should be
developed to obtain a near-optimal schedule for medium
and large size problems within a reasonable CPU time.

5. LOT STREAMING

In this section, we consider lot streaming case that is a
generalization of Problem P. Lot streaming is the process
of splitting a lot into a number of portions, often called
transfer sublots (or batches) so that successive operations
can be overlapped in a multi-stage production system, A
major benefit of lot streaming is the reduction in the
manufacturing lead time (MLT) and thereby provides an
opportunity to the considerably reduction in work-in-
process inventories (WIP) at the supplier and
corresponding holding costs. The required modifications
in this case, can be examined in the following sub- cases:

5. } . pi,,u(/,r-l) Z pi./l(f,r)
In this sub-case, the production rate for product i at

stage u(ir-1) is greater than at stage u(i.r). Therefore, the
processing start time of this product at stage u(7,r) must be
at the time that the first batch is transferred from stage
u(ir-1) 10 stage u(i,r). Then Constraints (2) must be
substituted with the following constraints:

al, ( |
bi‘,u(i.r) 2 bl,;/(u‘-l) + #lr-1) T ulir-1)
Piulir-1}
L Vi=heon,r=2,,m; {16)

Where a, .1 18 the transfer batch size of product
from stage u(i,r-1) to stage p(i,rj (determined based on

existing unit load), and 7, ., is the transfer time for one
batch of product / from stage ufi,r-1) to stage u(ir.

The evolution of inventory of product i between two
successive stages u(i,r-1) and p(i.r) in this sub-case is
shown in Figure 4(a). Therefore, we will have:

{ N
Piutr)
]:.,u(i./"-l) - d:(b,,u(l sy T b,,u(,f~1))\2 - : l
Piytry)
+}~de( o1 j.r (17 ).
2 Pty PiuGe)

Wlﬁ(l el

Time
»

o Ll
b piny el 1 Prien

b b b irn v AT D, it

a1} ialir) Y

Figure 4(a). WIP inventory between stages z(7,r-1) and p(i.r)
(pl‘u(:‘r-/) z pl,m'l.r))

5- 2 p;,/l(l_r/ 2 pi,‘u(/./u[)
In this sub-case, the production rate of product i at

stage u(ir) is greater than at stage u(i,r-1). Therefore, the
processing start time on last batch of this product at stage
wli,r) must be at the time that the processing of entire lot
of product | at stage u(i,r-/1) is completed and last batch of
this product is transferred from stage u(ir-i) to stage
u(ir). Then, instead of Constraints (2) we will have the
following constraints:

d, T D)ol
byt = - bl by ey
Piatr) P
d,.T
+ — T ey 2V =20 my (18).
pz\;:(i;rq)

The evolution of inventory of product 7 between two
successive stages p(7.r-1) and u(i,r) in this sub-case is
shown in Figure 4(b). In this sub-case, 7, ,;.,, will be
similar to (17) and thus, the sum of work-in-process
inventory holding cost per unit time when Lot streaming is
allowed, will be :

nooay,

< we = Z Z h/.y(l.r—!) -d:[(b/.u(,.r) - bi.u(l‘r-l))

i=t or=2

(Q_ii;ﬂ_@;’l“}+!_di( ! __l_,)r )
N Piptir-) 2 PiuGery Prutir-1)

Wi

it

Time
B,

H - ; - N
br,uh.r] bl,ur.;hl) +a:[; !]t,;ur—!} bA,Ml/‘) 'rdyr/pu‘{“,i

b

e

Figure 4(b). WIP inventory between stages u(i./-1) and u(i.r)
(p:,u(/‘rl zpv'.;l(»,w/))

Therefore, the objective function in this case can be
written as equation 19. In this case, we again deal with
a mixed nonlinear model and we can apply the
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enumeration method for solving this model to
optimality.
Probiem P
A+ N sC N}
- ' ! . Voo ! !
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" oy H
) 2 i ceyd B b)) - Db b )
=i r=2 pa
Stibject 1
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G) by + Ll b e G-z -z ) M = iue p (G < o,
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“) b, + CEEL . S by SM (2 T Y T Nueiw )"
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A "
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PiwGom )
@Yy r.r =H
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Figure 3. A common cycle model for Problem P.
Table 1
Unitorm distributions used for the parameters
Parameter d, Py Sy hy; A;
Distribution U (100, 1000) U 1000, 10000) U.01, 0.25) Ui, 20) U (100, 4000)

Table 2
Structure of the test problems

Problem set

Number of

Number of

Number of

Probiem size

machines

Number of

Number of

Number of

number products stages at each stage integer var. continuous var, constraints
/ 5 2 1.2 76 11 295
2 5 5 1,2,1.2.1 176 26 688
3 5 10 1212121212 376 51 1467
4 8 5 1,2.1,2,1 449 41 2950
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Table 3

Average CPU times (in minutes) for the test problems

Problem set Number of Average
CPU
number test problems time
/ 5 87
2 5 179
3 5 - 295
4 5 N. A

A+ :
; sC i “ d di
TC = ——————— | Z hl .“J“' 3 T mmmm———
T oy 2 Pitim)

I J] o
Prytira) J

+ ] Z h/./l(/.r—l)'dl(bul(l_r) - bLu(/.r-l))
= =2

=

(2 _ Mj-— Z h/ -d['bz.;z(l»m,)'
pi_;l(l.r~i) i= ‘

",

d} 1
+ Tz’hl.u(l.r—l)( -

p:.u(/.r)

(19)

6. NUMERICAL EXAMPLE

In this section, a numerical example is presented to
illustrate applicability of mathematical model and its
solution method. The supplier’s production system
involves two work centers. In first work center there is one
machine (M,;=/) and second work center has two parallel
identical machines (M5>=2). Also, the time unit is assumed
one week and planning horizon length is equal to one year
or 52 weeks (H=32). Table | presents other required data
for this example.

Table 4
Required data for the example
i|udrn di | Piwar | Sipar | Ciuir 8C; Riugis

) ) I )
| 1 4] 3600 | 0.09 20 360 4
2 0 2500 | 0.03 0 7
, 2 60 | 4700 | 0.15 30 160 3
B 0 2500 | 004 | ° 0 5
R 1 70 | 5800 | 0.03 . 130 6

3 25
2 0 3000 | 0.16 0 9
2 57 | 3800 | 0.05 350 7

4 30
1 0 2700 | 0.14 0 9
g
5 I 48 | 3000 | 0.08 20 140 3
2 0 2000 | 0.01 0 8

Moreover, the transfer times of batches between
successive stages are negligible and assumed to be zero,
and transportation cost per delivery is 4=/0000. The
corresponding mathematical models of this example at
both allowing lot streaming (with subscript 1) and without
it (with subscript 2) are solved using enumeration method
and optimal values are computed as follows:

Z, =40323 .7, F, =42, T =1.238,
Z,=35861 4, F, =37, T,=1405.

It is observed that the total costs per time unit at ot

streaming case can be decreased by 11%.

7. CONCLUSION

In this paper, we have considered the common cycle
approach to solve the economic lot and delivery
scheduling problem in a simple supply chain where the
supplier’s production system is a flexible job shop. First,
we developed a new mixed zero-one nonlinear model to
solve the problem to optimality. Then, to avoid solving the
complex mixed nonlinear program directly, we have
suggested an efficient enumeration method to determine
its optimal solution. For validation of the proposed
solution method, some numerical experiments are carried
out. Another applicable case ot Problem P (Lot streaming)
is also presented and required modifications in the model
formulation and the solution procedure are described.
Moreover, through a numerical example, applicability of
this formulation and its solution method is shown.

However, applying the proposed solution method to
determine optimal solution in medium and large size
problems requires solving several large-scale mixed zero-
one programs that need high computational efforts.
Therefore, further research to develop efficient heuristic
methods is on our research line.

Moreover, through a numerical example, appiicability
of this formulation and its solution method is shown.
However, applying the proposed solution method to
determine optimal solution in medium and large size
problems requires solving several large-scale mixed zero-
one programs that needs high computational efforts.
Therefore, further research to develop efficient heuristic
methods is on our research line. Moreover, there are
different directions for future studies. Among them, the
following topics are recommended:
¢ Modeling problem P using the basic period (multiple

cycle) approach. In this case, it is possible that different

components have different production cycle times and
global cycle time is an integer multiple of individual
cycle times. This approach usually produces better
solutions than common cycle approach;

s Allowing multiple deliveries per each cycle (using of
nested schedules);
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e Considering non-identical parallel machines at each
stage of supplier’s production system.
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