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ABSTRACT

The generalized wave model (GWM) representation of singular 2-D systems has been recently introduced
[1]. Based on this index-dependent Model, the general response formula is derived to express the global
state of the model solely as a function of inputs and boundary conditions within the admissible subspace.
The notion of global asymptotic stability of the GWM is defined and sufficient conditions for stability of the
model are obtained which guarantee local stability of the original singular 2-D model.
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1. INTRODUCTION

Interest in the theory and practice of 2-D (two
dimensional) and the more general m-D systems grew
heavily during the last two to three decades due to the
variety of applications in areas such as image processing,
pattern recognition, distributed parameter systems, models
of multipass processes, and numerical analysis of partial
differential equations.

The most popular state-space 2-D models were
introduced by Givone-Roesser (GR) [2], and Fornasini-
Marchesini  (FM) [3] and have proven useful in
representing 2-D linear systems. However, in the 2-D
plane there is no natural notion of causality. Indeed, only
partial orderings may be defined for the double index set
(i,j) with local state and input vectors in the first

quadrant. This has led to some awkwardness in extending
results from the 1-D state space theories to their 2-D
counterparts.

For this reason, Porter and Aravena {4} introduced the
wave advanced model (WAM) to cast 2-D system under
consideration as a one dimensional non-square, variable
structure model. In fact, augmentation of local states of 2-
D models with equal summation of indices /+ jas points,

form global states of WAM as lines with the slope of -1 in
the first quadrant.

While thinking along these lines, the hyperbolic
equation and the heat equation, which are two variable
partial differential equations with boundary conditions
specitied along all sides of a planar region, or non-
recursible masks in image processing applications, cannot
be represented by state-space models with such
boundaries. On the other hand, the singular 2-D models,

namely, singular Roesser model (SRM) [5] and singular
modified Fornasini-Marchesini model (SMFM) [6], are
more natural to describe such processes due to their
generality and their ability to express multi-directional
dynamic and algebraic relationships among the system
states [7].

We consider the singular modified Fornasini-
Marchesini (SMFM) model as follows.

Ex(i+1J +1):A1x(i +1,7)
+A7x(i,j HHB{”O +1,j)+Bvu(i,j+i).
(1)

with i and j both non-negative integer-valued vertical
and horizontal coordinates respectively, x(i,j)e %" and

u(i, /)€ R” as local state and input vectors respectively

and matrices of appropriate dimensions with E possibly
singular. Boundary conditions for (1) are given by:

x(i,0) and x(0,j) for i,jeZ". 2)

It is well known [8] that (1) is regular if there exists a
complex pair (21,72) such that
det(zyz, £ — 2,4, — 2, A, ) is not equal to zero, and simply
either det(zE ~ A4,) or
det(zE — A,) is not equal to zero. It is easy to verify that

regular if, for a complex =z,

simply regular implies regular, but regularity does not
guarantee simple regularity. Tt is also known [8] that,
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there exists a unique solution to regular SMFM model if
boundary conditions and inputs satisfy a certain set of
boundary constraint relationship determined by the
matrices £, 4;,4,,B;,and B,.

Under the assumption of simple regularity of SMFM
model, the generalized wave model has been derived [1].
In doing so, the non-singular equivalent of SMFM model
was obtained via decomposition. Next, using the idea of
wave model representation of 2-D state-space models
[4,9], its equivalent 1-D format was established. At last,
augmentation of equal size waves resulted in the
generalized wave model (GWM),

The outline of the paper is as follows. In the following
section, summary of procedures to come up with GWM is
presented. In section 3, the general response formula for
the model is derived in order to express the global state of
the model purely in terms of inputs and initial boundary
conditions within the admissible subspace. Section 4 is
devoted to the concept of stability. Based on given
definitions, sufficient conditions on global stability of the
generalized wave model will be established. Finally, a
numerical example is included to illustrate the
effectiveness of GWM model and related theories through
its MATLAB implementation.

2. THE GENERALIZED WAVE MODEL
REPRESENTATION OF THE SMFM MODEL

From this point on, we are introducing the generalized
wave model representation of (1) under the assumption of
regularity of the pair (£,.4,). Itis worth mentioning that
the same arguments hold true if (£, 4,) is regular.

In [10], it was shown that for a pair of square size
matrices (£, A,), if det(zE - 4,) is not equal to zero, or
equivalently (£, 4;) aregular pair, there exist nonsingular
matrices £ and @ such that:

7, 0
PEQ = ' 1
0 Ny,

¢c 0
PAQ = 0 [”}; n=n+n, .
" 2

3)

where n; is the degree of the polynomial of
det(z££~ A4;), [, is the identity matrix of size x, and

N It is also

1y
important to define the index of a regular pair (£, 4,), v,
as the smallest integer such that:

is the nilpotent matrix of size #,.

NV”#&O,and NV =0 (4)

In [1], it was shown that applying the same
transformation to other matrices of the model resulted in
definition of new variables

PA Q — dll dl2
’ le d?.?.

-

bll bl7
PB, = L PB,=| 2|
bll ) b22

After simplification, the non-singular equivalent of SMFM
model (1) was obtained as

(3)

x(i+1j+)=ax(i+1,))

+I§{al+2x(i,j +1+1)
+ﬂ21+iu(i +1,j+1)

+ﬁ21+2u(i,j +1 +1)}. )

[Matrices are given in appendix (See A-1).] It was also
shown that the set of inputs and boundary conditions (2)
satisfying the following relation defines the admissible
subspace.

[o an O7'x (i +1,0)

+ZNH{[dzl dzz] Q—’x (i,

+ho,u (i + L1 =1)+b,u(i, 1)}=0. (7)

Theorem 1 |1}

Under the regularity of the pair (£, 4,), the singular
system (1) has a unique solution, given by (6), if the set of
boundary constraint relations (7) is satisfied forall i 2 0.

In the wave model representation of 2-D state space
models, states propagate in lines, increasingly in size, with
slope of —1 in the first quadrant. In other words, being of
first order, all local states x(i, j) with i+ j—1=/k lie on
the k-th state of WAM. Indeed, knowledge of k local
states on & -th line suffices for computation of all £ +1 -sz
local states on the neighboring line £ +1. However, from
index dependent relation (6), it is obvious that by
arranging (v-+1) equal size lines with the slope of
~1/(v+1), each wave front is of order (v +1) . So we start
by defining new vectors for generally index v system as
follows
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tr=v+l ' =2v+1 Otk +1)=

7 @k +1)=x(0,tk +1+1) ,
for 0<l<v  and k20, 2 M, (k)D(k +1-1)
. i=l
7 (k)y=x (k +1,0) +H, (k)7 Itk +1)—i ]}
Jor k20, H ()2 (k)
+3°G, (Ut (k +2)-1-i]
(x(k +1,1)] -
for =1 k20;
x(k,t+1) 1
D@k +1) = 2 AM gy (DK +1 i)
1=l
| x(Lk +1)] +H (k)2 [t (k +1)+1 =1-i ]}

+2 Gy KUk A1) +1 +v—1-F]
r=]

for 21, k20

for <1<t ad k=20, e ®)

(See A -2 for newly defined matrices).

u(k,l+1) | (9)

uk =Lt +1+1)
Applying the same setting to (7), the boundary
constraint relation becomes

| u(0,tk +{+1) | 0. " )
8y, (i) + 2 {w,®(i =t +1)
[ =i

for 0l <v-1 e\Rm(kH) +b,, (DU +v+1~1)
k>0, +b,, U +1-D]=0 ,Viz0.
Utk +1)= (See A -3 for newly defined
vectors and matrices ).
[ u(k +1,0) ] (10)
u(k,t)

Theorem 2 {1}
Equation (9), completely characterizes (6) so it gives
. the recursive solution to SMFM (1) uniquely if boundary
conditions (8) and all inputs involved, satisfy the set of
L4 (0.1 (k + ]))~ boundary constraints (10) for all i >= Q.
Since the recursion formula in (9) is of order (v+1),

m(k+2) we need to regroup family of equal size waves in a manner
to end up with the generalized wave model. By
augmenting waves of equal size together, the global state
vector X(k), becomes

for l=v e
(8)

Rearranging the nonsingular equivalent of SMFM as
given by (6), we have
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Dtk —v)
Otk —v+1
Xy | PETVIDL s
: (1)
k)
R x(0)=0,

and rearranging the global boundary and input vectors as

RGN
2 (k)
X =| k41 | eR¥
| 2tk +2v) |
[ U@k)
U@k +1)
V(k)= c SR(3\2 +Dm (k+2)
\U (th +3v) |
for k20,
(12)
we have:
R (k+D)X(k+D)=
L (k)X(k)+S, (kW (k)
+J, (k)X (k)
(13)

where R, (k) is square and invertible [See A-4 for
Finally, if the pair (£, 4,) is
the generalized wave model

newly defined matrices.].
regular with index V,

representation of SMFM is of the form:

Xk +1)=F,(k)X(k)+ K, (kW (k)+C, (k)X (k) .

Av(i)Xo(i)+Q‘,(ij)X(i)+Fv(i)V (i)=0,Vi=0.
(See A -5 for newly defined matrices).

(15)

Theorem 3 {1}

The generalized wave model (14) completely
characterizes (9), so it gives the recursive solution to
simply regular SMFM mode! (1) uniquely if boundary
conditions XO(.) and all inputs involved V(.) as defined
in (11) satisfy the set of boundary constraint relations (15)
forall i 20.

3. THE GENERAL RESPONSE FORMULA OF THE GWM

In order to obtain the general response formula for the
generalized wave model, the state transition matrix,
T, (I, ), is defined as follows

T,(l,j)=
0 j=0
E(DFE(-D.E()  1<j<l
7 j=1+1
0 j=l+2.
(16)
Starting with £ = 0 in (14) we have:
X(D)=K,(0)V (0)+C,(0)X°(0) .
(17

Repeating this procedure for increasing values of k , using
(16) and substitution of (17) result in

X(2)=T,(LDIK,(OF (0)
+C,(OX(O)]+ K, (1Y (1)

(14) +C (DX°()),
Using the above notations, the boundary constraint (18)
relation (10) is modified for the generalized wave model
as
102
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X(3)=T,(2,H[K, (0¥ (0)
+C,(0)X (0N +T, (2,2)[K, 1V (1)
+C, (DX (1]
+K, (0¥ (0)+C,(0)X°(0)

(19)

X(n)=T,(n-LD[K, (0} (0)

+C,(0)X"(0)]

+T,(n =1, 2)[K, (W ()+C,(HX"(D)]

+. 4T, (=LK G-V (=D

+C,(j =X = D]+...

+K (n=1W (n=-1)+C (n-1X"(n-1).

(20)

To simplify the notion, we express the general response
formula as follows
n
X(n)= ZlTV(n—l,J’)[KV(j - -n
J ==

+C,(-DX°G-D] 3X(0)=0.

@n

In a similar way, to formulate the set of boundary
constraint relation (15) purely in terms of boundary
conditions X°(.) and inputs ¥(.) . we have

A (0)X (0)+T, (0¥ (0)=0,

(22)
X°(1)
[a,) Qmc,O]
X(0)
40
H,(0) QMK 0) [ }:Q,
[ ] V() (23)
X“(Q)
[4,2) Q2.0 QQ7.11CO0)] X0
XO(O)
V (2)"
H[r, Q) QK0 QLYK O] 0 |=0,
o]
(24)

[AG) QUG -D) QUG =Li=IC6-2) ..+ . QI -LDC,0)]
X |
x“(i—l)i

X X' -2) ‘
X0y |

4
+[!"‘,(1‘) QUK =Ty QUG -1Li-DK G =2) .. Q,(f)TV(i-LI)K‘,(O)]
[ vay
Vii-1)
x| V(i-2)

=0,

V(.O)
(25)
or equivalently
AOXO+T,GW ()
il
+Q, 0N 'ZOTVU -Lj+DIK, GV ()
J=

+C, (XU =0

; Q0)=0; V i20; (26)

4. GLOBAL STABILITY OF THE GENERALIZED WAVE
MODEL

Although, the bounded-input-bounded-output (BIBO)
stability of singular 2-D systems has been considered in
[11], the issue of asymptotic stability, which is the most
rigid type of stability is still untouched in the literature. In
this regard, the generalized wave model is used to extend
the results obiained on asymptotic stability of the wave
maodel representation of standard 2-D systems 1o singular
2-D systems.

For this
definitions.

reason, we begin with the following

Definition 1
The regular system of equation (1) is said to be locally
asymptotically stable if whenever u(.)=0, there exists a

finite pair of integers & and M such that
x(i,0)=0 for i=2N and
x(0,j)=0  for jz=M

are from admissible subspace, and

im  x(i,j)=0.

1 and ! o j~>o

Definition 2

The system of equation (14) is said to be globally
asymptotically stable if whenever V(.)=0. there exists a
finite integer L such that

X(iy=0  for i=L,
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is from admissible subspace, satisfying (15) and
lim X(i)=0.

1 =

Theorem 4

Under the assumption of simple regularity of the pair
(£, A,), the local asymptotic stability of SMFM model
(1) is guaranteed by the global asymptotic stability of the
generalized wave model (14).

Proof

Using theorems 1-3 and above definitions, it is obvious
that as the global state of the GWM tends to zero, all local
states of the original SMFM model would also converging
to zero in the first quadrant. In fact, under the condition of
regularity, the global stability of the GWM is sufticient for
local stability of the SMFM model. Q.E.D.

Next, some sufficient condition for asymptotic stability
of'the GWM is established.

Theorem 5
The system of equation (14) is globally asymptotically
stable if there exists a finite N such that

27

7@ <1 Vi zN.

Proof
From definition 2, it is assumed that after a finite step,
the input and boundary vectors vanish and

XV +k +D)]|<
[F, (N +k)-F,(N +k =1)-.... F, (N || XV N, (28)
<IE OV + RN +k =Dl O] XOV]29)
as k goes to o, ||X(k )H approaches to zero, thus

lim X(4)=0.  QED.

=L

This theorem is equivalent to the so-called one-step test of
stability as referred in [9]. On the other hand, the state
transition matrix can be utilized to check the stronger
condition, equivalent to m-step stability test [9].

Theorem 6
The system of equation (14) is globally asymptotically
stable if for every &,

n
limX(n)=1lim 3 T,(n=Lk)K,(k =1W (k 1)
7>t n«—)v.k:]

+C (k =DX°(k =1)].
31

Now, if the condition of the theorem is met for every k,
lim X(n) =0,
n-yo0
and therefore the global state of the GWM converges to
zero, hence the system is globally stable. Q.E.D.
Since the structure of F, (/) and therefore 7, (/,k)
matrices are index dependent and cannot be expressed
uniquely, the following milder conditions may be checked
instead.

Corollary 1
The system of equation (12) is globally asymptotically
stable if

l

lim g]]}\/ll,%,,m(k){{d Vi<l <t .
Proof

Using theorem 3 and equation (10.1),
,!im X(k)=0 if klim O(k)=0.

And from (8) and definition 2,
lim [tk + )] < Jim T4, K]

e et

Jim {max ek +1 - )] Vi<i<i. (33)

Under this condition
tim otk + D] < lim {max ok +1 -0} visise. G
Hence, ®(.)and therefore X(.) are converging sequences.

Q.E.D.

Corollary 2
The system of equation (12) is globally asymptotically
stable if

i+l

> <1,

lim [T, (1,k)|=0. (30) 35)
K >
Proof Proot
Following the definition of the state transition matrix,
T,(l,k), and according to equation (21), taking the limit
from both sides, we obtain:
104

% Amirkabir/ Vol.16/No.62-A/( Electrical Engineering)/ Summer-Fall 2005



By inspection,

My (K )”<”a II ” IH
for 1<1 <1, (6)

and also HM{(/—1)1+,‘}(k )“ < ”a, H

for 1<l <t and 2<i <1.(37)
Therefore

7+
Z“MW (0] zua | . forisise. (38)
QE.D.

5. NUMERICAL EXAMPLE

Consider a 2-D system modeled by(l) with the
following matrices:

25 -5 -14 16
-3 =5 -10 -6
12 -4 -8 6
28 -8 -20 16J
[6 14 22 18]
4 -3 -5 -8 —-7;
1 5 10 5
Lé 14 22 18
[2 4 6 5
1 -3 -4 =2
{1 0 -1 1/
3 3
1
2
-2
{0
B, =| 1.
2 {2
Lz (39)

We are interested to obtain the solution of local state
Xx(6,6) assuming that u(lL,y=1, and

s
x(O,l)z[l 11 1] are the only non-zero input and
boundary condition on horizontal axis, respectively.

To check if the system is regular, we follow the

decomposition algorithm to expand the polynomial of

det(=E — A4,)

|ZE ~A,|=-24z" +12z =-24(z* - 0.52)

=24z (z —0.5) = 0.(40) (40)

Since the system is regular, we need to obtain other
elements of decomposition as follows:

40 0
n=2n,=n-n=2 ;c= ;
N 0 1/2

rank (EY =3 ;rank (N )=rank (E)—n, =1
(41)
Eig(E) = {37.1 5,-10.66,0,1.5 l}
: Number of blocks of N
=Number of zero Eigenvdlues of E =1;

{0 1
= ;ov=E2;
100

Pl 1 0 sl
-3 -1 -1 3 |
~-5/3 1 -3 5/21
-10/3 1 -5 9/2
Q= 2/3/ 0 1 —1J;
7/3 -1 4 -3 (42)
which would rosult in decomposed form as
1 000
g:PEQ: 0100 ,
00 01
0000
0 0 060
/;!'PA]Q‘—IVO 1/2 0 O};
0 0 10
10 0 0 IJ
1/3 0 0 0
" 0 -1/2 0 1/4
A2=PAQ =
’ -1/3 172 0 0|
o 0 0 12] 43)
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B,=PB,=[-1 -1 3 -6];
B,=PB,=[-2 -3 4 -3]

The non-singular equivalent of (1) would become as in
(6) with the matrices

!Fl/z /72 2 1/2
Y22 2 12
“Tlo 0 0 o

-1/2 <12 =2 -1/2

s

[-5/3 7/6 5/6 0
-10/3 17/6 25/6 0
a, = ;
U230 -2/3 —4/3 0
73 -11/6 -13/6 0

(-4 9/2 29/2 -1

=7 15/2 49/2 -2
a, = ;

*T132 32 =5 12
|5 -6 -19 1 (44)
3 0 -3 3
50 -5 5
“Z 01 Al
¢_4 0 4 -4
13
7/3 11/3
b= ~2//3 h -4//3 ;
4] s
24 ] [39/2]
2| 67/2 |
ﬂzz 9 ﬂzz: T
30| |25
-18 [ -9]
-30 B —15!
B = 6 I Bs = |
|24 12 |

Unique solution to (1) exists, if boundary conditions
and inputs satisfy the following boundary constraint
relations

{o 2 3 2J _
x (@ +1.0)

2.0 -2 2
[3/2 =12 0 1/2

+ / / / x (i1

|1 0 -1

1 0 -1 1

+ x(i,2)

100 0 0

[u(i +1.0)]
+’3 4 -6 -3 u@,D ’_ 0
-6 -3 0 u(@ +LD | |0
u(i,2)

Yi=>0. (45)
Since the desired local state x(6.6)lies on ®(21)or

equivalently X(7), using the general response formula of
the GWM (21), we have

©(19)

D(20) |;
D(21)

[x(7.3) ]
x (6,6)
x(5,9)
x(4,12) |;
x (3.15)
x(2,18)
| x (1,21) |

X(7) =

0.1189 1
15347 |
~0.7079 [
| ~0.8268 |

®21) = x(6,6)=

6. CONCLUSION

The general response formula for the generalized wave
model has been derived. By doing so, the global state of
the model is expressed purely as a function of inputs and
boundary conditions from admissible subspace. Also, for
the first time, the concept of asymptotic stability of
singular 2-D systems was introduced and sufficient
conditions for the global stability of the GWM were
established.

The above considerations can be extended to study the
controtlability concept, the minimum energy optimal
control problem, and to obtain stronger conditions on the
stability of the model. Work is proceeding in these areas
and are topics of future research.
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7. APPENDIX

A-1 Refer to Equation (6).

0] . Aldu di
o0 @0 e

o{b"} B o{ 0 } B o[ 0 } 1</ <
=0\ Pl Bua=0| o |5 Bua=0l sl<y
0 " -N"",, TELN S,

a, =0 (C'

L0

(]

M, (k)=
0 0
0
_av+3‘/ O
O av+3~-/
0
0

A-2 Refer to Equation (9).

0 @y 0
0 0 Ay i3y
My (k)=
0
L0

0 0
P, =0

-1
. . 1</ <v
-N"d, -N '"'dsz

0
0
. - 0
e for =1, i=0 and k 21 eiRn(kH)X”k
a, A,
0 o |
0
0
for 1=\, 1<i <v, and k 20 ew"FTDxak+D
a! a\'—Z
0 a |
0 - 0 Dk
for 2<1<t,0<i sl and k 21 e*)’x’n(k 1)
O a\»i—'/
0 0 |
O i
0 i
! Jor2<isvigisv.and k=0 e‘]?n(kﬂ)xmkH)
aws—iﬁ
o
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G(/'i »/](k )=

ﬂl|'+3—2/ O 0

0 A 0 Ol for 1<l<v. and o<i<i-1 en®+Dxmk+2)
L 0 ’ 0 132\/+3--2/ 0
—O ﬁ2v+3—2/ 0 ! 0
0 0 Sy -0 for 1<l <v. and 1<i<vy gy Uk +xm (k +3)
_O 0 ﬂ2v+3'-2/ O
ﬂl ﬁ2|'+2 O O

nlk +xmk +2)

Jor I =t, and 0<isv e®R
0 0 B o]
_182(2/‘/) 0 0 : 0
O e 000 (k +1)xm(k +1)
0 0 fBgyy - O for t+1<i<t', and 0<i<i-t-1 eR” xm
L 0 0 ' 0 ﬂzmwlu
[0 ﬂz(::~/) 0 ) 0
0 oy iy 0
0 Pruen for t+1<l <ty and |-t <i Lv e‘)?n(k +1)xm (ke +2)
_O : . 0 ﬂz(z:—l)
0 [,
H, (k)= O Sfor 1<i <t ;and H. (k)= k=0 e RIED AL
av+3—i O
A-3 Refer to Equation (10)
5::{:0 1,,7 ]Q—l E\J{nzxﬂ
w =N""[d, d,]0 e R l<i<v
% (i +2
by ()= Ny 0 . 0] ey +2)m 1<l <v
1
b,y (i) = [N/»lbzz 0 .. O] E‘.anx(l ym 1<l <y
O =y (v-1) 1</ <y
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A-4 Refer to Equation (13)

! 0 0 0]
~M_ (k) 0 0
R, (k+1)= . . , e Dxan(k+1)
~ My (k) e =M () / 0
M (K)o =M () =M (k)
M, (k) M, (k) .. . M|(k)]
0 M (k) o . My(k) o
Lky=| . S . e gy /nlkertixink
0 0 M, (k) M,k
0 0 M, (k)
(G, (k) G, (k) Gy(k) G,k 0 . 0
Sv (k) = 0 GZ/'(k) G2l'—-l (k) Gl'+2(k) Gl'+Al (k) o - 0 c m’”(k+])x(3v+})i’l’l(k+2)
L O - ‘ 0 G, Gu by - - Gk
(H (k) H,(k) H,(k)y .. .. H(k) Hk) 0 0
I (k)= 0 0  H, k) H(k) .. .. Hik) H(k) .
L0 e e O H(K .. HK) H(K)

A-3 Refer to Equation (15)

F, (k)= R (k+ DL, (k); K, (k)= R (h+1)S, (k) C, (k)= R (k+1J, (k);

0 Jori=0
Q (= e g
o, ©, .. o, 0 forizl
|f[5 w, @, .. @, 0 .. O] for i=0
A‘,,(i):=% c mn2><21n
“5 (U 0] Jor i21

()= [ (7)o by (i) by () oo By (i) 0 o 0] e Gy Fhm(i+2)
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