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ABSTRACT

This paper presents delay-dependent stability analysis for some types of nonlinear time-delay systems.
Motivated by Lyapunov-Krasovskii functionals and the related theorems on stability of time-delay systems,
we introduce a new procedure for generating such functionals. The main reason for considering Lyapunov-
Krasovskii functionals is the less conservatism of this method. The obtained conditions are sufficient and
local. Applying the introduced procedure on a typical system with time-invariant parameters derives more

results and a numerical example presents the capability of the method.
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1. INTRODUCTION

Many control systems in various fields such as aerospace,
biology, mechanics, economic, chemical as well as
process control systems often experience a phenomenon
called "time-delay". Delay may appear either in the state
variables, the control input, or the system output. This
phenomenon changes the dynamic equations governing
such systems from those of a nonlinear one (i.e. the
ordinary differential equations). The time-delay, in many
cases, acts as a source of instability. Unlike ordinary
differential equations, time-delay dynamic equations are
infinite dimensional. Therefore from both theoretical and
practical aspects, the performance of time-delay control
systems and stability issue are of great importance.

The time delay equations studies first began in the 18"
century. Some geometrical models were introduced by
Euler, Condorect and Bernoulli. V.Volterra (1920) and
others like R.Bellman and A.Myshikis followed the work
in a more advanced way till 1950 [1]. At the end of 1950,
N.Krasovskii and B. Razumikhin opened a new chapter of
studies about the stability of time-delay systems by
introducing Lyapunov functionals and Lyapunov functions
respectively [1,2]. Tt was the point afier which the
discussions became much more complex in related fields
such as mathematics, biology and control engineering.

The stability region of the time-delay systems is
divided into two areas. Within one area, the system is
stable regardless to the amount of delay (delay-

independent stability regain) while within the second area,
delay has significant effects on stability (delay-dependent
stability regain). Delay-dependent stability has a less
conservative constraints than delay-independent stability,

so due to this fact, the controllers of such systems which
are designed according to the results of delay-independent
stability analysis need an over design. For the systems
with unknown delay, using the delay-dependent stability
conditions is a more suitable choice [1,3].

It is very difficult to make a good choice of Lyapunov-
Krasovskii functionals to obtain the stability conditions. In
another word, in addition to the complexity of analytical
discussion of such systems with respect to the ordinary
systems, the calculation of Lyapunov functionals is more
difficult than that of Lyapunov functions. The general
form of Lyapunov-Krasovskii functionals leads to a
complicated system of partial differential equations [4].
The special forms of Lyapunov-Krasovskii functionals
lead to simpler delay-independent [5,6,7] and delay-
dependent conditions [8,9,10].

Most of the researches accomplished so far (as the least
knowledge of the authors) are related to the stability of
linear time-delay systems. The most used method in
stability analysis of the linear systems, in frequency
domain is root locus [11] and in time domain is Lyapunov-
Krasovskii functionals [2,12]. The simple forms of
Lyapunov-Krasovskii functionals introduce the delay-
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independent stability, which is sufficient for analysis of
systems, where the coefficient of the delay term is small. If
the delay is small, the system with discrete delay is
converted to a system with distributed delay by model
transformation methods. Then the delay-dependent
stability condition of the main system is determined by
applying Razumikhin stability criterion or Lyapunov-
Krasovskii functionals on the transformed system [13]. If
the delay is not small, the method introduces a great
conservatism. The main reason of this conservatism is that
the transformed model may make additional poles one of
which possibly cut the imaginary axis before the main
system poles [14,15]. Another reason of conservatism is to
make additional assumptions to obtain the stability
conditions of the transformed model [8]. In recent years,
in order to investigate the delay-dependent stability of
such systems, a new transformation method has been
introduced called "descriptor model" [3]. In contrast to
preceding transformations, the descriptor model leads to a
system, which is equivalent to the main system and is not
dependent on additional assumptions for stability. It
should be noted that the most of the present researches on
stability analysis of linear time-delay systems are related
to analysis and synthesis of uncertainty systems with time
delay [10]. This uncertainty may appear either in system
parameters or delay. The major method for the robust
stability analysis of such systems is Lyapunov-Krasovskii
functionals. In recent researches, efforts have been done to
reduce the conservatism of the robust stability results by
modification of these functionals [10,13,15]. The results
obtained by these functionals are considered as sufficient
condition for robust stability. If there is no uncertainty in
the systems, these results would be both the necessary and
sufficient conditions [15,16,17].

Carried out researches on stability analysis of nonlinear
time-delay systems has not developed as linear time-delay
systems. The results obtained for the stability of such
systems are more about the delay-independent stability
where many assumptions should be made to receive the
results [18]. The reference [19] discusses robust
stabilization of a class of nonlinear time-delay systems in
order to design a stabilizer controller using Lyapunov-
Krasovskii functional. It showed that they have some
mistakes in their derivation [20]. As far as the author
knows, there are a few literatures in the field of delay-
dependent stability analysis. For example, there is a paper
in this field that discuss delay-dependent control for time-
delayed T-S Fuzzy systems using descriptor representation
[21].

The present paper introduces an algorithm for
constructing Lyapunov-Krasovskii functionals by which it
could be possible to analyze locally the delay-dependent
stability of some nonlinear time-delay systems. The main
method used here is to expand the concept of Lyapunov-
Krasovskii functionals. The final results have been
obtained by applying the linear matrix inequalities (LMI).

The method has been also applied to a class of nonlinear
time-delay systems in which there is a stable linear term in
scalar case [24,25]. The main advantage of this method is
that it could be possible to expand it for other types of
nonlinear time-delay systems. So, the applied assumptions
on the system is limited and finally, it is possible which we
derived delay-independent stability results for some cases.

Section 2 describes the time-delay systems and their
stability theorem. The next section explains the main
problem and how to construct a proper Lyapunov
functional. The final results are applied to the scalar
system with constant parameters in section 4. Section 5
includes a numerical example. Finally, the conclusions and
some propositions are offered in section 6.

2. TIME-DELAY SYSTEMS AND THEIR STABILITY [2]

Generally, time-delay systems are represented as
follows :

)= 1(0.%,0)) ,
x,(0)=xlt + 6)

where xe®R” is the state vector of system, he R" is the

delay, f is a function of class C,x(f) = ¢(z) is the initial

condition of the system for the time interval
~-h<@<0and x, is of class C for +20. Having an

appropriate Lyapunov functional V:R, xC-—> R, the
sufficient condition for stability of (2-1) will be [2]:

D ule0))<r(.0) @)
iy V(,p)<0 3)
where I(p(OX:maxl(p(T] and #:R" - R"is a function

~h<r<0

120

1
-h<0<0 Sy

for which #(0)=0and u(s)>0 (seR™).
In order to establish the stability condition, the offered

Lyapunov functiona}l should meet conditions (2) and (3)
fort20.

3. THE PROBLEM STATEMENT

The time-delay nonlinear dynamic equation is defined
as follows:
x(1)=BF(x(1)+CF(x(t—h)) , t20 4
where xe€R” is the state vector, 7€ R™ is the delay and
B and C are the diagonal matrices with real elements
and have the relation B+C<0. x =0 is the equilibrium
state of the system (4). F=[f, fr o S ]T is a vector

function with »n components which are continuous
functions of the state vector. It is assumed for this system
that the following relation is true for each component of

the vector y e R” — {0} :
0 <4
Yi

&)

<m, , that i=12,.,n

@@ Amirkabir/ Vol.16/No.61-A/( Electrical Engineering)/ Spring 2005 40



where each m; (i = 1,2,...,n) is positive constant. It should

be noted that due to the existing of condition (5), the
system stability would be treated locally. Note that the
condition (5) is a special case of Lipschitz condition. From
the relation (5), one has:

lf,-(y)!Sm,.|y,-l s that y,#0 , i=12,.,n

Regarding this fact that y and F are n vector
components, we can prove the following relations for any
given negative definite diagonal matrix K e R™";
YV KF<FTM7'KF o FTKy<FTKkMT'F  (6)
where M =diag(m;)is a positive diagonal matrix [26].

The Lyapunov functional construction algorithm:

The Lyapunov functional ¥ :C-— % is assumed as

follows:

V(Xl)=V|(xl)+V2('xl)

where

, T
= %{x(t) + jR(t, u)F(x(u))du}

1—h

[x(t)+ '[R(l,u)F(x(u))duJ

i~h

R(t,u) is an unknown non-constant nxn matrix with
time-dependent coefficients which is determined as the
algorithm is proceeded. If this matrix is positive definite,
then ¥, will also be positive definite and meet the required
constraint (2). On the other hand, if ¥, can be a Lyapunov

functional (i.e. conditions (2) and (3) are hold) we can just
derive the delay-independent stability condition. In other
word, because we apply no limits on the matrix R(¢,u), it

might be possible that ¥, does not satisfy constraint (2).

To solve this problem there should some assumption be
made on R(t,u), so that ¥, become positive definite. Also

we can select V,in a way that Lyapunov functional

V satisfies constraint (2). Now, we should first calculate
the derivative of ¥, before to reach the final conclusion.

So, we will have:

T

=-;—l:x(t) + f RO, u)F(x (u))

[ IaR(t 1) F(x(ue))d + BF(x(1))
t~h

+ R(t,OF (x()) + (C = R(t,¢ = B))F(x(t — h))]

. 2{ faRg %) F(x(at)) s + BF (1)

t-h

+ R, 0)F(x(1)) + (C = R(t,1 — )F(x(t - )

~h

% {x(t) + fR(z, u) F(x(u))du

for simplicity, we assume :
Rit-m=C 0

If we consider the scalar case for the problem (x e R),
then R(r,u) would be a three-dimensional surface with

independent variables rand u. For each re®*, this
surface would be of distance C from 7—u plane at the

points (f,u)=(t,1 - h).

In order to put ¥, in quadratic form, the first step is to

let %‘Sin terms of R. Therefore, %i-?is considered as
t

follows:

OR(t,u)
ot

W(t) is an unknown matrix and for simplicity could be

=W(OR(t, u)

assumed as a constant matrix Q:

6Rg ,U) — OR(, 1)

Applying the initial condition (7), matrix function R
would be as follows:
R(t,u) = Q=10
Qis an unknown real matrix which it’s structure is

determined in the procedure of obtaining the stability of
the system (4). We define the following two relationships
to simplify the relations:

F(x()= IR(t, W F(x())du =C |e2“"" F(x(u))du
1-h i-h

B, =B+ Ce?

Then ¥, would be as follows: .
V= xT (0B F(x(t) = F (x(1)Q7 x(t)
+ F (x(D) B, F(x()) = F (x(D)QF, (x(1))
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Remark (1): Q is the only arbitrary matrix.in ¥, and v,
which can be determined. Because, the sign of ¥, is not
important, the structure of Q is determined in such away
that ¥, meet the constraint (2). Therefore, if the constraint
(2) is satisfied by V', it must be also satisfied by V, in
addition to 7] . So, the optimum choice of V, can be made
according to the following lemma:

Lemma (1) [22] : For the continuous function g(¢), one
has the following equation:

—g—t[ (] 'J‘g(u)duds}

kb i+s

il

hg()~ [g(r+s)ds
-h

it

r
ng(0- [gr)ar
1—h
in which 4 is some positive constant.

The following relation for ¥, could be considered

according to above lemma:
0 !

v, = j IF’(x(u))PeQ‘F(x(u))dum

~h 145
where P is a constant unknown nxn matrix which is
assumed to be positive definite. Thus, the derivative of
V, would be as follows:

0
v, = j[FT<x(z))PeQ-‘F(x(1))]ds

~-h
0

— [lF7 Gt + 9P Fixte + spis ©
“h
= FT (x(0)PQ™ |1 - @ JF(x(1))
- jFT(x(u))Pe‘-""")F(x(u))du
-h

Now, the last term of the above relation should be
converted to a quadratic form of F|.

Lemma (2) [23]: Linear Matrix Inequalities (LMI)

Schur complement : Let G:V — S is partitioned
according to:
G(x)=|iG,,(x) G,z(x)}
G, (x) Gy, (%)

V' is the vector space and S is the set of matrices which:
S:{M|3n>0,M=M’ en )

It is also assumed that G,,(x)is a rxr ndn-singular
matrix. So, the matrix 7=G,, - G,,G;{G,, is called the
Schur complement of G,;in G. Then G(x)>0 if and

only if

G, (x)>0
{ > ©

Gp(x) -Gy, (x)[G” (?‘)]_l G, (x)>0

Note that the second inequality in (9) is a non-linear
matrix inequality in x .

Applying the lemma (2) into the second term of the
equation (8), one make the following matrix :

14[ /42
A= (10)
4, 4,
Where
1 t
A :[ J.eQ"du]P‘leQT' , Ay= IFT(x(u))eQT"du
1-h t—h
f
4y = jeQ" Fx(u))du

t=h

A, = .’.FT(x(u))PeQ("")F(x(u))du
t—h

If @ and P would be diagonal with nonzero elements,

then the matrix A4 will be symmetrical and so the
conditions of the lemma (2) satisfied. We can show that
the matrix A is positive definite [15]. Thus, the relation
(9) is satisfied by the matrix 4. In other words, by
applying the lemma (2) on the matrix 4, one has :

IFT(x(u))PeQ("")F(x(u))du

[

> ,J.FT(x(u))eQ"du]
1-h
{ rjeg“du}]""eg'] [ IJ-eQ”F(x(u))du)
t—h 1~h
> ]FT (x(u))e® du](e o pff - 0] gere)

1-h

jeQ"F(x(u))duJ

1-h

the right hand side of the inequality is set as follows:
( '[FT(x(u))eQ(""”’)CduJ

t-h
(C”‘e"Q"P[I —e o] Qe'g"C")

[ ]CeQ(""*h)F(x(u))duJ

t=h

then, one has:
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j F7 (x(u))Pe®“ F(x(u))du

b
> F7 (x(t))[C"’e'Q"P[1 —e o] Qe'Q"c“]
CRG@)
thus, one can write:
7, < FT(x)PQ 1~ [F(x(r))
-F (x(t))[C"e"QhP[] —e o] Qe'Q"C"J
F (x(t)

Finally, the derivative of the Lyapunov functional
¥ will be obtain as follows:

Vo< X" OBF(x()) - F (x(0)Qx(1)
+ ] (x(1))B, F(x(1))
+ FT )P [1 - e [ -
~F (x(t)){Q +Cle 2 plr - ooh | ge-eh ]
F(x(1)

If the diagonal matrices B, and ~C(Q are negative

(I

definite, then by using the relation (6), the following
inequalities are hold :

X (OBF((0) < FT (x(0)M ™ B F (x(1))
= F (x()0x() < ~F (x()QM ™ F(x(1))

(12)
(13)
Applying (12) and (13) into (11), one has:
Vo< FTop|u™'B, + PO [r - eor
+ B (xy[B, - oM~ Fxey

-F (x(t))[Q +Cle 0 p[ - 0] Qe’QhC"]
F(x(D)

JFe)

In order to be converted ¥ to the quadratic form in
terms of F or F,, one should have the following
inequalities [26]:

) Q+c*'e'Q”P[1-e‘QhFQe‘Q"c" >0
i) M7B 4P -] < 0 (14)

If the inequality (1) satisfied, then the following

inequality can be proved using the LMI algorithm [26] :

-F, (x(t»[Q+ e plp - o0 ! 9ot }F (x(1)
+ KT (x)[B, - oM (s

< FT(xm)B(B, - M)

x(Q+C"' QhP[ -Oh]' Oe —OhC—l)
% (B, - oM JFx)

(15)
Finally, ¥ is expressed as follows:
Vo< FT(x(t))[M“B, + PO [1 - e'Q”]
+%(BI - M“Q)
4 (16)
(Q+ C“e‘o"P 1 e‘o”f Qe “th*‘)
(B, - oM Py
or, on the other hand :
Vo< Ay MB PO - o]
+:1;-(B1 - M“Q)
17

x (Q +CTle @ ply - o] gp-Ohc )4
x(8, - om 7 JIFGo):

where 4, [D] is the maximum eigenvalue of the square
matrix D .

Remark (2) : In order to reach (16) (or (17)) and also

obtain the minimum necessary conditions for ¥ to be
negative definite, it is necessary that (14) is satisfied. The
limits on matrix P can be determined using the relations
(14). Undoubtedly, in order to find the exact limits of
Pand Q, we need to analyze the relations (14) more

deeply. We do this investigation for the scalar case in the
next section.

Choosing P and Q from relations (14) properly, the
system (4) is Lyapunov stable if:
A [M7IB, + PO (T - &0y

+i—(B1 —M"Q)
X(Q+C_]e‘QhP[1 —e'Qh]‘l Qe'QhC")_l
x(Bl—QM'l)] <0 '

(18)

Using the above relation, we can obtain the boundary

of matrix M (regain of attraction) for the local stability of
the system (4). The simulation results showed that there is
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at least a proper £ and Q for the stable systems for which
(18) is satisfied.

4. THE SCALAR CASE OF THE PROBLEM

The scalar time-delay nonlinear dynamic equation (4) is
considered as follows:

xO)=bf(x(N+ef(x(¢-m)

t=0 19)
where x € Ris the state variable, #e R is the delay and
b,care the real parameters of the system (19) that
b+c<0. x=0 is the equilibrium point of (17), f isa

S (y)

continuous function and the relation 0<=—=~<m( for

each yeSR—{O}) is satisfied for the system (19)
(Lipschitz condition).

¥V, and V, are considered as follows:
2

V=5 50+ [ren o

t-h

=0j ije‘”f’(x(u))duds

~h 145

Applying the procedure of preceding section, one has:

V, = byx(t) f(x(1)) = gx(t) f,(x(1))
+by f(x(O) £, (x(1) = ¢f 2 (x(1)

Vo= pf 0 e ds— pe™ e 1 (xtu)atu
1-h

i~-h

Using Schwarz integral inequality (instead of LMI
algorithm), we have:
t 2 1 t
{ o f(x(u))du} < j'e‘f"dux Ie"“ L2 (x(u))du
t—h 1-h t=h
thus:

f 2
. !: e""f(x(u))du}
fer 2o > 22—
" J e du

i~h
~2qh
eq’ g

= —— £ (x(1))

j “ds

~h

Therefore, the derivative of V, can be obtain as

follows:

<L La-e o) 2 x(ry) -2

*T“—_:,;Gfx (x(1))

Adding ¥, to V, yields:
Vo< bt f(x() ~ gx(t) f,(x(1)

+b, f(x()) f,(x()) + fa —e ™) f2(x(1))

_ Peﬁzqh 2
q(————————-—cz it l)fx (x(1)

If b, <0 and gc>0,
0< IO
y

then by applying the assumption

<m yields:

V'SPJ e }f (x())
m q

Pebzqh 2
[b ———]f(x(t))fl(x(t)) q *“(—“e—qh—)ﬂ S (x(0)
In order to satisfy the conditions b, <0 and gc>0, one
has :
by=b+ce? <0 =
if ¢>0,b<0 = e <—2
c

1 b
= O<q<—l;ln(~—c—) that |c| < |b]

(20)
if ¢<0,b>0 = e"">——b-
c

1 b
= O>q>—;ln[—;) that |c| > 0]

if ¢<0,b<0 => geR”

l

One of the results which is derived from above
relations is &+c¢ <0 that it is one of the assumptions of
problem.

In order to be converted ¥ to the quadratic form in
terms of f or f;, one should have the following
inequalities [26]:

2qh)

D) g pe” +1 2 0 = p>cz(e""—e
,CZ‘]—e_qh; N -

i) é‘—+-‘2(1--e“”’) <0 = 951
m

q psmie“”’-x)

If the inequality (1) is satisfied, then the following
inequality should be hold :
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~24h
_ q(mfie_.__; ¥ 1) £ (x(0) + (bl - -’%)f(x(t))f. (x())

F-e?
2
( l )
m

-2qh
P [ L a— 1
c(1—-e™)

finally, ¥ is obtained as follows:

2
b -4 (1-e7)
; _b_l_ Pfi_ - (l mj
Vv < m+q(1 eq)+4q[pe‘2qh+cz(1"e—qh)jf

<

J A EI0))

If ¥ is negative definite (or the system (19) would be
stable in the sense of Lyapunov), then :

(n-2]-e)

b} 14 ~gh m
Lt —ll-e <0 21
—~+ " ( e )+ aglpe ™+ e 7)) 21)
From (i) and (ii), there exists p such that :
cz(e"" ——ez"") < p < 95, (22)

cz(e”"—ez"”) < C_]f:" 1 (23)
mle™ ~1)

So, g is derived properly from (20) and (23) initially
and then p will be determined by (22). Applying (22) and
(23) in (21) yields [26]:

cz(e"h—l)+———ﬁ%~———]cl(b,+g—] <0 (24)
m(e? ~1) m
The inequality (24) may be reduced to
q
b+c) |-c+—"t1<0 or ¢ >
be) ( m(e"h——l)J %
2gh q
ce ™ -1+ b) e+ —2— 150 or c¢<
oo o) (et
2

Obviously, derivation of the stability results from (2
is simpler than (21). For example, when ¢ > 0, accordi
to the constraint of the problem (b +¢ <0), the relati
(21) would be converted to :

-c+——~————-—q =2 0 = 9 me

m(e? —1) et -1

If the above relation can establish with the selected

from (20) and (23), the amount of delay, the existence
coefficients of the system and a proper m, then the system
(19) will be Lyapunov stable. In other hands, the amount

of m determines the boundary of local stability of the

system.
Remark (3): An important note about the introduced

method is that when ¢ <0, one may derive independent-
delay stability results of the system (19) letting ¢ — —oo.

It is shown that if b<c¢ then the system (19) is
independent-delay Lyapunov stable [26].

5. THE NUMERICAL EXAMPLE

Consider the following dynamic equation:

2x(0)) XO)=x'()=20x°@¢~-h) , 120 (26)

The initial conditions of the system is assumed to be as
follows:

o(t) = 0.5¢> , -h<t<0

The object here is to investigate the effect of delay (/#) on
stability of system (26) and compare the simulation results
with the proposed theory. By carrying out a simulation,
one can observe that the system (26) would be stable up to
h=043. For example, if h=02, we choose
g = -0.1 and obtain the range of p as follows :

7.76 £ p £306.97

Choosing p =50, the derivative of Lypunov functional

would be as follows:

2
Vo< {:w+10+0,454(—18.604+0.1i) :]fz(x(t))
m m

If the value of m is within the interval 0<m <0.3026,

then V is negative definite. In order to prove such a
condition, the initial value of the state variable of the
system (26) should be within the following region:

3

0<X-<03026 =  x0)<0.56

x
The simulation results show that system (26) is locally
stable with the above preset values.

3

05

0.4

03 )l ,f $h=0.43

02
(.

01

2 o

S t{ssac.)

1
\
1
e, h=0.1
i
)
A

01 4 ','~"'h=d.3 B
0.2 et
i

03kt

0.4

05 L
o] 1 2 3 4 8 3 7 8 9 10

Figure 1 : The trajectories of system (26) with #<042
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6. CONCLUSION

In this paper, we extend the Lyapunov-Krasovskii
theorems to some types of nonlinear time-delay systems
by deriving a new algorithm for generating proper
Lyapunov-Krasovskii functionals. These functionals can
analyze delay-dependent stability for mentioned systems.
Obviously, the obtained conditions are sufficient and used
to analyze local stability. The proposed results give also
less conservative conditions. By applying the introduced
procedure to a typical system, the more results have been
obtained so that, by solving a numerical example, the
capability of the algorithm is demonstrated. So, it is
possible to derive delay-independent stability conditions
in this case. This method could be extended to a more
general case where we have
x(0)= BFE(x(t)) + CF(x(t — h)) and even to time varying
nonlinear systems [26].
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