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Abstract
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In this paper Dynamic stability and behavior of an automatic dynamic ball-balancer (ADB) with |
double race are analyzed. :

Using the nonlinear equations of motion the linear variational equations are obtained by the
! perturbation method. Based on the linearized equations, the stability of the ball-balancer is |
analyzed around the balanced and unbalanced equilibrium positions. In addition, the time |
| responses for the nonlinear equations of motion are computed by a numerical approach. However,
! the effects of fluid damping and external damping on the stability of the ADB are considered, also
the effect of number of races on the operation of the ADB are investigated by the stability analysis |
| and the time responses. :
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Introduction
Unbalance in rotating machines is a common source of vibration excitation. For a rotor

" with a constant unbalanced mass, only one time of balancing is sufficient .However, if a rotor
has variable unbalanced mass depending on running conditions, balancing of the rotor can not
_ be achieved by only one time of balancing. For this purpose automatic dynamic ball-balancer
is used, to reduce the imbalance in rotating mechanisms, such as washing machine, turning
lathes, etc. ADB is a device to automatically eliminate the variable imbalance of rotating
mechanisms. ADB, is usually composed of a circular disk with a groove, or race, containing
spherical or cylindrical weights and a low viscosity damping fluid, although early attempts
used other approaches. Many inventors have suggested various kinds of ADB's through U.S.
. patents, but they left it for others to explain why this system will or will not work. Basic
research was initiated by Thearle[1,2], Alexander[3], and Cade[4]. Dynamic analysis for
various ball-balancers can be found in references [1-5]. Recently, Lee[6] and Lee and
Vanmoorhem[7] presented theoretical and experimental analyses of an ADB, but their
presentation did not provide explicit requirements for the ADB, to balance the system. In
addition, they used rectangular coordinate system instead of polar coordinates. Consequently,
they derived the equations of motion for a non-autonomous system that requires the
application of the floquet theory to stability analysis, however, this method has limitations on
the complete stability analysis and has inaccurate stability results. In order to overcome to this
problems Chung and Ro [8] derived the non-linear equations of motion using the polar co-
ordinate system, for an autonomous system. Based on these equations, they obtained
equilibrium positions and the linear variational equations, by the perturbation method and
then by using Routh-Hurwitz criteria, they analyzed the stability of the system. In addition
they computed the time responses of the system by the generalized-a method [9]. Hwang and
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Chung [10] applied this approach to the analysis of an ADB with double race, but they didn't
consider the effect of fluid damping and external damping on the operation of the ADB. Also
they did not theoretically show what benefits, the ADB with double race has with respect to
the ADB with one race, and also they did not consider the effect of inner race radius on the
stability analysis. Also, in another paper{11] Chung and Jang considered the Stodola—Green
rotor model, of which the shaft is flexible, and their model is able to include the influence of
rigid-body rotations due to the shaft flexibility on dynamic responses

In this paper, the stability and dynamic behavior of an ADB with double race are analyzed,
and the effects of fluid damping, external damping, number of races and other parameters on
the stability of the ADB are considered. Also For the stability analysis the roots of
characteristic equation are considered instead of Routh-Hurwitz criteria, because of simplicity
in programming. The advantages of the ADB with double race compared to the ADB with
single race are: (1) the impact between the balls can be avoided so the fracture of the balls is
prevented, and (2) fine balancing is possible because there is no interference between the
balls.

1-Non-Linear Equations of Motion

In order to obtain the non-linear equations of motion, the Lagrange’s equation can be used.
For this purpose, at first we evaluate the kinematics and potential energy and Rayleigh’s
dissipation function, and then we apply the Lagrange’s equation to them [5-8, 10, 11, 12].

Rotor & ADE

Figure (1) Automatic Dynamic Balancer(ADB) with double race.
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Figure (2) Configuration of the ADB with double race.

However by considering Figures (1)-(2), the non-linear equations of motion are derived in
the polar coordinate system as follows [12]:
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The angular velocity (o) is assumed constant ,during the derivation. If the mass of balls
equals to zero, equations (1)-(3) reduce to the equations for the Jeffcott rotor which are

expressed as[8,10,12]:
M (F - r92)+ cF +kr = Meaw’*Cos(wt - 6) 4
M(ré+2f9)+ cr@ = Mew*Sin(wt - 6) | (5)

2-Balanced Position and Linearized Equations
"~ As seen in equations (1)-(3), the equations of motion correspond to the non-autonomous
system, and generally it is very cumbersome to analyze the stability for non-autonomous
systems. Therefore, the non-linear equations of motion should be transformed into those for
an autonomous system: For simplicity, in order to overcome the difficulties, this study uses a
generalized coordinate instead, which is defined by

This new parameter represents the angle from the r direction to the center of mass G, as
shown in Fig.2. In order to analyze the stability of the system the state equations can be easily

employed, using equation (6), let us rewrite the equations of motion (1)-(3) as the state
equations, to do this, we consider new symbols for 1, y, @1;, 92 as follows:

oo, ‘V':“/; > énaﬂgn > &er(Zzi (7)

LI

F
Substituting equation(6) into equation (1)-(3) and using the notations given by equations
- (7), the equations of motion can be expressed as the state

equations, which are 2n+4 first-order differential equations.
The state equations may be written by a matrix-vector equation:

A(x)% = N(x) ' (3

where,
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in which I is the (n+2)*(n+2) identity matrix, M and X are the mass matrix and state
variable vector respectively and N is obtained in terms of state variables. The equilibrium
position may be classified into two cases, the balanced and unbalanced cases, which
corresponds to r*=0 & r*#0 respectively. Since the balanced equilibrium position of r*=0 is
important, practically, only the case that r*=0 is considered. The equilibrium positions in this
case are as follows [10, 12]:

il ® ] * Meg
R Cosg” +R,Y Cosg, +—=0
j=1 =1 m (12)

nl n
R Y Sing," + R,y Sing,” =0
=1 i=l . (13)

and the linear variational equations (linearization of equations of motion about the
equilibrium points) can be expressed as[ 8 ]

A"Ax = B"Ax + O(Ax) (14)

where A* and B* are constant and O is a function of x with a second and higher order of
magnitude. The A* and B* matrices are defined by:

4 =Ax) (15)

. [ 0 I }
B = * *
—k —c (16)

where, k*, ¢* cn be found in [12]. Assuming x is sufficiently small to permit O to be
ignored, equation (14) can be approximated by:

AAi=BA (17)

which represents the linear variational equation.
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3-Stability Analysis

For analyzing the stability of the system around the equilibrium position, the linear
variational equation given by equation (17) is used.

for the simplicity of the analysis, consider the case that ADB has two races and one ball in
each race, i.e. (n1=n2=1 & n=n1+n2=2) :

Since the case that corresponds to balanced equilibrium position is important, practically,
we consider it, in stability analysis.

By considering the solution in the form of

_ it '
Ax=AXe (18)

where A is an eigen value and X is an eigen vector corresponding to,
and Substituting it into equation (17) and eliminating the y*, we apply the non-trivial
- solution condition. (As it is seen in equations (12-13) the value of y* is not defined when
r*=0 i.e. the balanced equilibrium position. As a result, the characteristic equation can not be
determined directly).

In this way the characteristic equation, is obtained which can be expressed as a polynomial
of A[12]:

ic,ﬂ‘ =0
=0

where the coefficient of Cy ( k=0,1,...,8) are functions of, m, M, R1, R2,C, D, k.The roots
of characteristic equation are used to investigate the stability of the system, i.e. if the
maximum of real part of the eigenvalues is positive, the system is unstable and if it is
negative, the system is stable. The stability of the system is investigated for variations of
system parameters such as M, m, ¢, D. The system parameters for all the stability analyses,
are given by R;=0.1, R,=0.08, m=0.01Kg, M=1Kg, k=10000 N/m, ¢=5 N.m .Sec, D=0.01
(N/m).Sec, € =0.001m.
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Figure (3-a) Contour plot of maximum real part of eigenvalues as function
of angular velocity and external damping (¢).
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First, consider the stability of the two races ADB, in the neighborhood of the balanced
equilibrium position for the variation of the rotating speed (®) and external damping(c).
Fig.(3a) shows that by increasing the value of external damping (c), the operating domain of
the ADB increases.
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Figure (4) Contour plot of maximum real part of eigenvalues as
function of angular velocity and internal damping (D).

Fig.(3b) indicates the stability versus variation of in to cases, i.e. c=2 & c¢=5. As you see,
by increasing ¢ from 2 to 5, the time that the system is balanced decreases. Because the
maximums of real part of the eigen values, in this case are smaller than the case, ¢=2.

Fig. (4) shows the contour plot of maximum real part of eigenvalues versus angular
velocity (@) and internal damping(D). As it is seen, by varying in the value of (D) the
operating domain of the ADB decreases until d=0.003, after this, the operating domain begins
to increase. Fig.(4) also shows that that the ADB doesn't work near d=0, i.e. when there is not

. any fluid damping ADB doesn't work properly. ‘
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Figure (6) The effect of number of races in operating domain.

Fig.(5) shows the contour plot of maximum real part of eigenvalues versus angular velocity
(®) and imbalanced load (¢ ). By varying ¢ in the allowable domain, the operating domain of
the ADB doesn't change very much, i.e. the ADB works properly by varying the imbalance
. load.

Fig.(6) shows the stability versus (®) in two cases, i.e. two races ADB & single race ADB.

In the case of two races ADB we assume that R1=0.1 and R2=0.08 and in the case of
single race ADB we have R=0.1. As you see, in the case of two races ADB the operating
domain is greater than a single race ADB.

4-Time Responses
Time responses of an ADB are investigated to verify the stability of the ball balancer and
~ to analyze the dynamic behavior. From the non-linear equations of motion given by equations
(1)-(3), the time responses are computed by the generalized-o. time integration method [9],
when the ball balancer has two races with one ball, in each race, the non-linear equations (1)-
(3) may be expressed by the following matrix-vector equation
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M (x)i+ N(x,%) =0 (19)

where M is the mass matrix, N is the non-linear internal force vector, and x is the
displacement vector. x, M, N are respectively:

x = {r»Wa¢1l’¢21 }T (20)
and
M=
M +2m 0 - mR, sin(g,, +y) - mR, sin(g, +y)]
0 (M +2m)r = mR, cos(¢, +y) —mR, cos(¢, +y)
—mR, sin(¢, +y) - mRr cos(d, +y) lez 0 1)
|~ mR, sin(@,, +y) —mR,r cos(g,, +y) 0 mR,’ ]
and
Y +2mr(w —y@)* +cf +kr ~ Mew® cosy — }
| MR, (én +w) cos(¢, +y)-mR, (432\ +w) cos(@y, +y)

[ 2(M +2m)F(@ ~p) - cr(@ — ) + Mea* siny + }
| MR, (B, + @)’ sin(@,, +y) +mR,($,, + @) cos(gy, +v)

Dy, +mRr(@— ) sin(g,, +y)+2mR (@~ ) cos(,, +v)

(D +mRyr(@ = §)? sin(@y, +v) +2mR (@ — ) cos(dy, +)] 22)

The system parameters for computation time responses are given by R1=0.1m, R2=0.08m,
m=0.01Kg, M=1Kg,e=0.001m, k=10000N/m, c=5N.m.Sec, D=0.01(N/m).Sec

The procedure to obtain the time responses by using the generalized-o method can be
found in reference [9].Time responses are computed for w/w, = 0.6, 1, 2.

The initial condition are given as 1(0)=0.001m, y(0)=0, c1)11(0)=7c/3, b21(0)=n/6.

Figures7 and 8 show that the rotating speed w/®, =0.6 and 1 are in the unstable region for
the balanced equilibrium position. If the balancer has the system parameters given above, on
the other hand it is observed that the speed of @/, =2 is in the stable region. Time responses
of an ADB, when @w/w, =0.6 are presented in Fig. (7) as you see, it demonstrates that the ADB
does not work properly in this case, in addition, the non-pleasant vibrations increase.
Anyhow, we ignore from the ball positions in this case and the case, ®/m, =1, because it is
not important, practically.

Fig.(8) demonstrate that when w/®, =1 the ball balancer is also unstable around the
balanced equilibrium point. However, when the ball balancer is in the stable region for the
balanced equilibrium position, e.g., when w/w, =2, the balancer achieves the balancing of the
rotor, in this case the radial displacement converges to zero. The converged values for the ball
positions, are ¢11=-132.6° and §,;=112.13°, which can be obtained from equations (12)-(13).
This means that the balancer is not only in static equilibrium but also in dynamic equilibrium,
Fig.(9). Fig. (10) & Fig. (11) Show the time responses for the position of ball in the first and
* the second race, respectively.
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Figure (7) Time response of the radial displacement when w/®,=0.6.
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Figure (8) Time response of the radial displacement when o/0, =1.
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Figure (9) Time response of the radial displacement when w/©, =2.
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Figure (10) Time response of position of the ball which is in the first race, o/m, =2.
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Figure (11) Time response of position of the ball which is in the second race, /o, =2.

5-Conclusions
In this paper, dynamic stability and time responses are analyzed for a double race
- automatic ball balancer. By using the nonlinear equations of motion and applying the
perturbation method to these equations, balanced equilibrium position and linearized
equations in the neighborhood of the equilibrium position are obtained. Based on the
linearized equations, around the balanced equilibrium position, the stability analysis is
performed by using the roots of characteristic equation in this position. On the other hand,
time responses are computed from the nonlinear equations of motion and they are
investigated. The results of this study may be summarized as follows.
1- The two races automatic ball balancer can achieve the balancing of the jeffcott rotor as
well as a single race ADB.
2- By increasing the external damping (c) the operating domain of the ADB increases, also
the time which system is balanced, decreases.
3- By increasing the number of races, interference between the balls decreases, and the
operating domain increases
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