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 Abstract

A new technique is developed for determining optimal trajectory of mobile manipulators to
! maximize their load carrying capacity between two points of their workspace. This problem in
mobile manipulators is more complicated, since, wheeled mobile bases are usually subjected to non
i integrable kinematic constraints besides to have extra degrees of freedom due to combined motion
of base and manipulator. In this paper, to solve the non holonomic constraint problem and

dynamzc load carrying capacity on mobile manipulators is converted into a trajectory optimization

problem Dynamic equations are formulated in the state space form and then are linearized as well
. as constraint equations. Then, Iterative Linear Programming (ILP) method is used to defermine
; maximum load of mobile manipulators. Finally, by a numerical example involving a PUMA robot
1 using the method is presented.

'
s

Keywords

" Introduction
Some common types of mobile manipulators are wheeled mobile manipulators, tracked
robotic manipulators and gantry robots. One of the main applications of mobile manipulators
is handling heavy loads from one place to another. Finding the full load motion for a given
point-to-point task can maximize the productivity and economic usage of the mobile
manipulators. In the classical fixed base manipulators, dynamic load carrying capacity is
defined as maximum load, which a manipulator can carry repeatedly on its fully extended
configuration, while the dynamics of the load and the robot manipulator itself must be taken
_into account [1]. For the fixed base manipulators, the major limiting factor in determining the
maximum load is the joint actuator capacity. In mobile manipulators, end effector motion is a
superposition of the base and the manipulator motions, thus the overall system has extra
D.O.F in its motion. Therefore, redundancy resolution should be considered in the trajectory
synthesis of mobile manipulators. Also, considering tipping over stability increases the
analysis complexity.
Wang and Ravani [2] are presented that in fixed base robots, determining the load carrying
capacity -can be formulated as a trajectory optimization problem. On their analysis actuators

torque capacity is stressed as the main constraint. Korayem and Basu [3-4] by relaxing the

" rigid body assumption on robot joints and links imposed an additional constraint to the
allowable deformation at end effector besides the joint actuators capacity. S. Yue et. al. [5]
used the finite element method for describing the dynamics of the system and are computed

i redundancy resolution, the extended Jacobian matrix concept is used. Then, the problem of
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the maximum payload of kinematically redundant flexible manipulators, Korayem and
Ghariblu [6] introduced the load workspace concept and considered the effect of base initial
location on dynamic load carrying capacity of robotic manipulators on a given trajectory. Due
to increasing applications of mobile manipulators especially on carrying heavy loads on large
workspaces, there have been some researches on tipping over stability on mobile
manipulators [7-9]. Also, some works done involves mathematical and kinematic modeling of
mobile manipulators [11-13].

A new computational technique is developed for determining load carrying capacity of
"~ mobile manipulators between two points of their workspace in this paper. By considering
non-integrable kinematic constraints and extra degrees of freedom, which both arise from
base mobility, solving the dynamic equation of system is more difficult with respect to
classical robotic manipulators. Thus, to overcome these difficulties the extended Jacobian
matrix concept is used which simplifies the system coordination and control during the
motion. The problem of increasing load carrying capacity of mobile manipulators by proper
formulation is converted to a trajectory optimization problem. Suitable objective function is
defined and dynamic equations are linearized as well as other constraints on its state space
form. Then, Iterative Linear programming (ILP) method is used to numerical solution of the
linearized trajectory optimization problem. Finally, by simulation study including a PUMA
arm, application of the method is investigated.

1-Kinematic Modeling and Motin Planning of Mobile Manipulators
The position of the end effector in the task space of mobile manipulators can be defined as
follows:

A X =Xp(qp) +Xen/p(Am) (1

where X =[x y z]"andX, =[x, y, z,]" arethe position of the end effector and the
base in the inertial reference frame. X, , =[X,,, Vms Zms] is the position vector of

manipulator with respect to the base, also g,and ¢, are base configuration space and joint
space vectors. The Jacobian equation of the mobile manipulator can be determined as:

X=1Iq @)

where J = (J , J,) and c}: (éb ém)T. X e R" denotes the end effector velocity with

respect to the fixed coordinate frame and g € R" is the joints velocity space. We denote the

mobility plus manipulation D.O.F of the system by » and working cartesian space dimension

by m. If n>m, then the degree of redundancy n—m is denoted by 7. By the other means for

solvability generally r additional function must be applied to relate joint vectors to each
~other. If n<m, then there exists ¢ =m ~n constraint equation in the system dynamics.

In mobile manipulators, the mobile bases are subject to nonintegrable kinematic
constraints. Rolling contact between the wheels and ground generally causes such constraints.
As a result the base must be move in the direction of its main axis of symmetry. The general
form of the nonholonomic constraint equation can be written as:

Joq=0 )
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where J, € R”". The combined system of mobile manipulator has extra degrees of

~freedom (n>m) on its motion. Therefore to resolve the redundancy, we can apply
r additional constraint equations, which can be given as:

X, =1,q 4

where J, € R™" . Hence, the kinematic equation of mobile manipulators by combining the
equations (2), (3), and (4) one obtains:

(X X» o):() 5, 1) q %)

Here J, = (J J, J.) is named as augmented Jacobian matrix. As explained by Seraji

[11] to resolving the system’s redundancy the simple method is to choose user specified
constraint equations in general form as follows:

X, =g (6)
By differentiating of Eq. (6) with respect to time, we have X z =Jz& similar to Eq. (4).
Note that the augmented Jacobian equation enables us to consider the differential kinematics

of mobile manipulators as if they were non-redundant robots.
The augmented Jacobian matrix J,, regardless of the configuration ¢ of the mobile

manipulator must be non-singular, or the determinant of J, must be non-zero:
Det(J,) # 0. @)

If the resultant J, to be non-singular then joints velocity acceleration vectors are found:

e ‘. < T

q:J;I(X X oJ ®
’ .13 o5 °0 T e e

q=J;‘([X Xz o) -1, @ ®

2-Linearized State Space Representation of Dynamic Equations
"To determine an optimal trajectory for a mobile manipulator, proper modeling of the
system and load dynamic is a prerequisite. The Lagrangian method is used to model the

mobile manipulator and load m, , which is presented on its closed form as:

7=M@m)]3+ @ q.my) (10)

where 7 € R” is the joints actuator torque, M (§,m, )is the inertia matrix (mass and inertia

of actuators are seen in main diagonal elements of the M matrix). Also C‘(Ej, g,m, )includes
gravity, Coriolis and centrifugal force components.
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To compute the numerical solution of nonlinear constrained trajectory optimization
problem to increase load carrying capacity, the dynamic equation (10) are rearranged as
bellow:

e e @

i=M@Gm"(F-CE.qm) = 1E4.7,m,) (an

-y

By defining state vector as X =[x, x,] which x1=(q,, gy»-erq,)’ and

x2=(q,,q, »>q,)" ,the equation (11) is written as:

X=X { X }sz |
FXG) () my) X(}#(ikmo) (12)

The equation (12) is the state space representation of dynamic equation (11), where

- -
X eR¥™ and f consist of n nonlinear functions. Discretized form of the equation (12)
results: .

| ~——5<0“3‘5<G)=F(>"<(J),?(jlm],) (13)

where, h = AT and AT is the overall motion time and m is the number of points are used
m

fof discretizing trajectory. The nonlinear function f at the (k+I)th trajectory is expanded in
Taylor series about the k-th trajectory. After neglecting the higher order (non linear) terms and
simplifying the expressions the following equation is obtained:

%(5+1) =6, KG)+[H, )+ Bjm, + D, | (14)

where, the matrices [G;],[# ] and B j,ﬁ ; are as bellow

ol ] w

2|26

2

e RanZn (1 5)

i, ]=| 101 ¢ gowe (16)
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By =2 Jer (17)
ark .
[hé‘r;;(l)J

. e 2n .
Tl Ihe* () : (1%

In the above expressions &*(;) is
)02 50020102070 2 ) o (19

In these equations, /1] is an nxn identity matrix, /0] is an nx»n null matrix, and O is an
nx1 null vector.

X (] + l) can be written as a linear combination of the payload m; and the torque control
(i) ,i=12,......, . Equation (14) then becomes:

K(j+1)=%,G+10)+ B, + e F6)  and j=12,...m (20)
i=l

" This equation is the basic linearized equation, where:

%0-%6) @
%, (+1)=[o; %, () + B, | 22)
B =B, (23)
B;=16;1B;1 +B; 24)
lesi]=1G;1254] Jor ij @5)
loji =[] Jor i=j (26)

4-The Problem Formulation

The problem of synthesizing dynamic mobile manipulator trajectories with maximum load
carrying capacity can be formulated as a trajectory optimization problem. By considering
point-to-point motions with actuator, joint variables, and redundancy constraints throughout
the trajectory, the complete formulation can be written to maximize:

The mLoad .
While ensuring that the state space Equation 12 is satisfied, where the individual joint

torques are bounded by:

057050 @7
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The bounds 7, ()? () and 7, (}? (t)) are arbitrary known functions of the actuator joint

‘ angles and velocities. In addition to constraints of the joint torques, the initial and final states
must be reached. Thus, the following conditions must be satisfied:

Xy (ti):q(fi): Xy, > X, (ti):O (28)
fz(ff):q(f/’)zflf , it )=0
During the motion, the joint displacements are also usually bounded by

i<x)<E (29)

where Xx,% are the upper and lower bounds of the joint variables, respectively.

Redundancy constraint equations in general form of equation (6) must be satisfied.

The final constraint is that of the payload m; upper bound must be smaller than the static
load carrying capacity at the two end positions. The trajectory synthesis problem formulated
above is a constrained nonlinear optimization problem. In the above formulation, the
objective function consists of a single variable m;, which is time independent and is a single
valued quantity for the entire trajectory.

5- The Problem Solving

The Iterative Linear Programming (ILP) method is used to solve the trajectory synthesis
problem described above. At first, the final state reaching condition from equation (15) can be
obtained as:

Ko=)+ B, + Sl 0= 30 (30)

Equation (30) can be written as:
oy +[EF = X(te)-Xalm) €2y

where, [E]=[ [a,,1.Ia,, )10, ] I € R?™™ and 7 =[7(1),7(2)..... #(m)]" e R™.
It should be noted that [E] 8, X, (m)are computed based on the values of the state and
- control variables of the previous iteration. Therefore, the only unknowns in the equation (26)

are m, and T, - In order to facilitate the LP solution, equation (31) can be written with two
sets of inequalities:

Bumy, +[EJEy -8 < X(tp)— Xy (m) (32)
Bomy +[EJEn +82 X(t;) - Xy (m) (33)

- 2n o .
where, € = [e post» € pm,...,e‘,e“,eve,z,...]e R*" represents the final position and velocity
error tolerances. This modification introduces two more variables (epos, eve) and 2n inequality

constraints. The actuator constraints can be written separately as follows:

()2 7 (X)) for j=12,....m (34)
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() < e (RO) ) for  j=1,2,..,m 3%

Assuming a typical torque-speed characteristics for DC motors the "fmm.()? (j) ) and
T ax ()? () ) can be approximated as

#)> 7 (R0) )= R, [ 2 () - (36)
7% P (%0) )= R, - [, 2 ) 37
where K, is an nx1 constant vector and [K,] is an nxn diagonal constant matrix

obtained from the equivalent motor constants. Writing these constraints in matrix form leads
to: '

g, - [K,Rks@)
Fep, - R - KR5Q) (38)
R oK. RS (m
-, - [K,REQ)
cre-p, = KiK. F:Q) | (39)

LR - KoK

-

where bl and I;u are the lower and upper bound vectors of joint actuator torques,

V respectively. The problem can be converted to a standard linear programming problem by a
change of variable as below

Y=b,~7 or F=b,-Y ,Y20 (40)
Substituting equation (35) into (33) leads to:

- Y<by-b, 41
Using equation (20), the joint variable constraints outlined above can be written as:

SE,‘—i,h(j)sﬁlij+§[a,ji}2(i)si;’—i]h(j) for  j=1,2,...,m (42)

where 5(1;1 (j+1) and ﬁ,j are the upper nx1 vectors of )?h (j+]) and Bj, respectively

~and [al j.,.j is the upper n x n submatrix of [a i J Equation (42) can be written in the following

Bimy -] <& -%uG+))-[a . for j=12.m (43)

_.Blij+[Aj}i}$l5(lh0+l)“ifj+[Aj]Bu for j=12,....m (44)
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Combining all the constraints and expressing the result in matrix form gives:

1 0

0 mmax
0 1 o0l b, - b,
,Bij ‘[Aj] ‘ 0 n:},L 5‘;: “}zlh (j)"[Aj]%u (45)
‘Fu A1 0 < XD —x1 +[A;1b,
B -IE] -1} 72 R(t) - X, (m)-[EP,
=B [E] -1 | Xa(m) - X(te) +[Eb, |
The objective function of this problem is defined as:
Z=my+WE (46)
where W = (w;,w;,..... ,Wa,) > 0 are weighting factors of final state error tolerances. With

this objective function we can maximize the load carrying capacity m; and simultaneously
minimize the position and velocity errors at the end points of the trajectory. Since the
objective function (46) and the constraints (45) are all linear, we have a standard linear
programming problem.

- 6- The Computing Method
The computing method for the optimal trajectory problem is formulated as shown in Figure
1. At first, an initial control and state variable trajectory is suggested such that non of
constraints are violated. By discretizing the initial trajectory into m points the corresponding
linearized constraint coefficients are computed and then iterative linear programming
subroutine is invoked to update muf and €. Using these updated variables, the new
trajectory X*"1() is synthesized. Then, the termination conditions are checked:

max{epos,evel} = € (47)

max{[ik“(j)-i(k(j), §=2pm}< & (48)

imlﬂ” ~mf‘sg3 (49)

where ¢&,,¢,,&, are predefined small positive constants. If the termination conditions are

satisfied then, the updated trajectory is the optimal and corresponding value of my is the
maximum allowable load, which can be carried by the mobile manipulator. Otherwise the
program jumps to Step 2. Also, satisfying termination criterion means that linearization errors
eliminated or significantly reduced.
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|

- - === Find the initial trajectory and compute f,k,j'l(j),mz

A
1
: '
t
i = = P oy .
: Compute D, B,[H,1,[G] and [ct, ], B,, X, (j+1)
1 ¥
4
1 Compute the constraint Eq. 45
: and Invoke the ILP subroutine
! v
i
. : k4l
' Solve the load carrying capacity m,” and actuators
: torque %}k” corresponding to the new trajectory
1
: 7
] -
X Compute the new synthesized trajectory X b+l
;
L] . :
! Figure 1
: Check the termination Flowchart . of
k=k+1 |*- criterion — satisfying computing
Equations (37-39) procedure for
mobile
manipulator

Find the optimal trajectory and corresponding m,  ,

7- Simulation Results ,
- A simulation study was carried out to investigate the validity and effectiveness of the

proposed algorithm. A spatial three-jointed PUMA robot (without the wrist) mounted on a
linear tracked base is considered as shown in Figure 2. The combined system include
manipulator and its base have degrees of freedom of order n=n,,+n,=4. Conversely, the end
effector motion in cartesian space is of order m=3. Therefore, the system has extra degrees of
freedom equal to r=n-m=1, and it is necessary adding a user specified kinematic constraint
into system for its proper coordination. In this case the redundancy is resolved by the
controlling the “elbow angle” [ between the upper-arm and fore-arm and the forward

~ kinematic model of the robot is extended by
X,=f=rn+6, (50)

In this simulation the angle £ variations are considered such that during the system motion is
changed from p; =-Z~to B, :_2_575_. The extended differential kinematic model relating the

rate of change of task variables to the joint velocities is found to be [11]:
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= Isin(@, }(sin(6,) +sin(@; + 6,))  Icos(6,)(cos(f,) + cos(6; + 6,)) lcos(8,)cos(B, +86,))

1 90 Xe
lcos(f, )(sin(G,) + (sin(6, +6,))  Isin(8)(cos(d,) + cos(, +8,)) Isin(f,)cos(6, +8,)) 0 9.1 B B;e (51)
0 ~I(sin(6;) + sin(@, + 6,)) ~1sin(G, + 6,) 0 6; - z.
0 0 1 of &I
Xy z
Singularities of J, are found from
Det(J,) = Ixcos(8, )(sin(8, ) +sin(6,.6,))? (52)

It is seen that J, is singular when:
1: Base singularity occurs cos(fy)=0= 6, =270° oré, =90°
2: Manipulator singularity occurs  sin(8,)+sin(8, +6,) =0
At the singular condition 1, the first and forth columns of J, are multiplies, at singular

~condition 2 the first columns of J, is zero and in both conditions J, is not full rank. In
comparison with the classical fixed base PUMA singularities, it is seen that the base mobility

eliminates the elbow singularity sin(@,) = 0. It means that, the arm is no longer singular when
it is fully extended or fully folded. However, a new singularity has been introduced
cos(d,) =0 when the end effector and the base have the same x-direction and is due to
additional task variable .

Table (1) Link parameters and inertia properties of the PUMA arm.

LINKS MASS LENGTH MOMENT OF INERTIA LINKS CENTER OF MASS
NUMBER (KG) (M) (kg.m"2) REL.TO DISTAL JOINT (M)
1 12.0 al=0.40 0.2 0 0 0.00
0 02 0 0.00
. 0 0 0 -0 20
2 10.0 a2=0.50 0 0 0 -0.25
0 0.2 0 0.00
0 0 0.2 0.1
3 5.0 a3=0.50 0 0 0 -0.25
0 0.105 0 0.00
0 0 0.105 0.00

Suppose  that initially the load is at a point with coordinates
{x, =050 m,y, =020 m,z, =030 m), and it must reaches to final point with

coordinates {x, =130 m,y, =040 m,z, =030 m) ; at T=2.4 sec. The base motion
coordinate x, is limited between 0 m to 2 m and joint limits of the manipulator are such that
the first joint is free, second joint —27/3 < 91 <27/3, also 6, is controlled by the user

 specified additional task variable. The base mass is assumed to be 21 kg and manipulator link
and inertia characteristics are shown in Table 1. The joint actuator constants are:

K, =[40.62 10.02 30.0 6.67]N or N.m

6.15 0 0 0
0 175 0 0
[K,1= N.s/rad or N.m.s/rad
A 0 0 468 0O

0 0 0 145
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Since the angle 8, is known priory as the additional task variable, therefore its joint and
control variables are not considered on trajectory optimization analysis. Selecting m=50, the

procedure for synthesizing the optimum trajectory converged after 8 iterations and my g0

=4.38 kg is found. Figure 3 gives the linear programming solution of the m1;,,, at iterations.

Figure (2) A view of linear tracked mobile PUMA manipulator.

MASS (kg )

-
NG S
L2 e e
AN S,
(37} WO
['o, ) NN
FUT S
(o]

o

ERATIONS
Figure (3) Optimal load carrying capacity at each iteration.

Figure 4 shows the initial and final optimal position and velocity of the base and
manipulator’s joints. Also Figure 5 shows the initial and final optimal path of the load on
cartesian space, and Figures 6-8 are the optimal control trajectories.
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Fighre (5) Load initial and optimal final paths and corresponding base path.
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Figure (6) Actuator force at the base.
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Figure (7) Actuator torque at the first joint of the manipulator.
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Figure (8) Actuator torque at the second joint of the manipulator.
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8-Conclusion

This paper presented a computational algorithm to find an optimal trajectory to increasing
the load carrying capacity on mobile manipulators, for a given two end positions. This was
achieved by considering additional kinematic constraints to redundancy resolution. A
simulation study is presented to investigate the application and validity of the algorithm. It is
seen, during the motion actuators are working with full or near to full capacity. A linear
_ tracked base PUMA robot is used for simulation study. It is seen that, in the optimal trajectory
the load carrying capacity is increased to my..s =4.38 kg from its initial value 1.17 kg.
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