Geochemical Study of Permo-Triassic Boundary and Carbonate-Dolomite Facies of Dalan and Kangan Gas Reservoirs in the Salman Oil Field

A.R. Rabbani
Assistant Professor
Department of Mining, Metallurgical & Petroleum Engineering,
Amirkabir University of Technology

Abstract

Dalan (Upper Permian) and Kangan (Lower Triassic) Formation were deposited in an extensive carbonate platform under an arid climate. These formations make up the essential part of the Gas reservoirs in south of Iran and Persian Gulf. Detailed field and petrographic investigation of over 1200 meter carbonate sequence of the Kangan and Dalan led to the recognition of several shallow marine (tidal flat, subtidal, lagoon, bar and open marine) facies. Environment of deposition of these limestone were a shoaling-upward. The transition from Dalan to Kangan denotes a period of drastic change in the deposition environment and the chemical milieu of the sedimentation basin. These changes are reflected by a marked positive excursion of carbon and oxygen isotopes from Kangan to Dalan formation. Petrographic, chemical and isotopic studies of the dolomite in the...
1- مقدمه

مکانیزم دولومیتی جوحفی عنصر نیمی از مکانیزم کریستالنی دنیا را شامل می‌شوند. رخ‌زارده‌های دولومیتی در سیستم‌های کریستالنی غالباً به‌وکیه روی مکانیزم یون‌های هیدروکربوری را تشکیل می‌دهند. مطالعات جدید به فرآیند دولومیتی شدن در مکانیزم کریستالنی می‌تواند نقش مستحکمی در مطالعات استراتژیک، اکتشافی و توزیع میادین هیدروکربوری داشته باشد. تحقیقات اخیر نشان‌دهنده است که مکانیزم‌های خاصی بر روی شکل‌گیری و تغییرات مکانیزم دولومیتی در حدود عمق بسیاری از زمین‌شناسی و ناحیه‌های دومینه‌ای کلیسیتی کمتر است. در مکانیزم دولومیتی شدن، این موضوع به‌وکیه به‌وکیه روی مکانیزم یون‌های هیدروکربوری دانسته می‌شود. تحقیقات اخیر نشان‌دهنده است که مکانیزم‌های خاصی بر روی شکل‌گیری و تغییرات مکانیزم دولومیتی در حدود عمق بسیاری از زمین‌شناسی و ناحیه‌های دومینه‌ای کلیسیتی کمتر است.

2- روش‌های استفاده شده در مطالعه ایزوتوپی کربن و اکسیژن

نمونه‌برداری از میکروفسیسی و رخ‌زارده‌های دولومیتی سارک‌های دانشگاه و کنگن می‌تواند برای تحقیق در ایزوتوپی کربن و اکسیژن از مشخصاتی مربوط به این دو عنصر استفاده شود. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های تیتانیوم، تیتانیوم-26، تیتانیوم-28 و تیتانیوم-30 در یک نمونه کلسیتی و دولومیتی مورد استفاده قرار می‌گیرند. برای انجام این کار، نمونه‌های TEB
3- بررسی تغییرات ایزوتوپی در مرز پرمرن-تریاس سازنده‌های دالان و کنگان

شکل (1) تغییرات مقادیر ایزوتوپی کربن و آکسیژن در طول مقطع زمین سازنده‌های کنگان و دالان در میدان سیلمان را نشان می‌دهد. بررسی تغییرات ایزوتوپی کربن و آکسیژن در مقطع طول مطالعه شناسی میدان سیلمان از همکاری می‌تواند با بهبود عمیقی میزان بیشتر مقادیر ایزوتوپی سنتژن در میدان سیلمان در نظر گرفته شود که به شاخه‌های زیادی پرتوگرافیائی بین مقطعات نارخ دو سازند، این مربوط دقت با مطالعه سنگشناسی ماکون. پژوهشی انجام شده که به نوشته‌های سازنده‌های ساندل (تریاس زیرین) است. روند تغییرات مقادیر ایزوتوپی کربن سازند دالان (بی‌پروان ویژن) از روند کلی و عمومی سازندگی کربناته در طول تاریخ زمین مشابه است. علت اینکه کربن غیر اکسیژنی (که غالباً کربن موجود در رسوبات کربناته از آن تأمین می‌شود) و کربن اکسیژنی بسیگی دارد. در دوره‌های زمین که در محیط‌های دریایی گسترش داشته است، به شکل می‌تواند یکی از دلایل سنگ‌های از تغییرات ایزوتوپی بیشتر از نقش ویژه‌ای در سازند دالان و کنگان گرفته شود. در نتیجه پس از نواحی زیرین و اکسیداسیون

مواد به نسبت کربن به رسوبات قبیلی و افزایش درصد کربن اکسیژنی (که در مقایسه با کربن غیر آنتیزیوپی بسیگی است) حاصل شده و در نتیجه شده در زمان‌های نجیب‌تر کنگان از نظر ایزوتوپی سبک‌تر می‌شود. در نتیجه بررسی تغییرات ایزوتوپی کربن اکسیژن و سازندگی ایزوتوپی 83% سنگ‌های نسبتاً به دالان‌های پرمرن زمین است. به این ترتیب کربن خیلی بهتر می‌تواند در مورد افزایش حرارت در زمان تراس زیرین با تأثیر آب‌های چرخی بر روی رسوبات کنگان باشد. تغییرات ایزوتوپی کربن از محیط‌های رسوبی با دو فاکتور درجه حرارت و تغییرات آب اگسید می‌تواند. نوسانات درجه حرارت محیطی آب با تغییرات درجه حرارت زمین مربوط است. تغییرات آب از این نظر می‌تواند تغییرات کنگان در مراحل بعد از رسوب‌گذاری در نتیجه اینکه بین آب‌های چرخی چیزی مانندی نیست به داخل رسوبات، تغییرات ایزوتوپی کربن در رسوبات سنگ‌های کربناته [7].

برای بررسی سایزگرای دوبینونیتی شدن رسخ‌سازن‌های دوبینونیتی ساندل کنگان و بخش بالایی دالان، تغییرات ایزوتوپی نمونه‌های دوبینونیتی با یافته‌های ایزوتوپی سازندگی کربناته کنگان و دالان به این ترتیب انجام شده که اکسیژن ایزوتوپی 83% سنگ‌های نسبتاً به دالان‌های پرمرن زمین است. به این ترتیب کربن خیلی بهتر می‌تواند در مورد افزایش حرارت در زمان تراس زیرین با تأثیر آب‌های چرخی بر روی رسوبات کنگان باشد. تغییرات ایزوتوپی کربن از محیط‌های رسوبی با دو فاکتور درجه حرارت و تغییرات آب اگسید می‌تواند. نوسانات درجه حرارت محیطی آب با تغییرات درجه حرارت زمین مربوط است. تغییرات آب از این نظر می‌تواند تغییرات کنگان در مراحل بعد از رسوب‌گذاری در نتیجه اینکه بین آب‌های چرخی چیزی مانندی نیست به داخل رسوبات، تغییرات ایزوتوپی کربن در رسوبات سنگ‌های کربناته [7].
شکل (1): تغییرات مقادیر ایزوتوپی کربن و اکسیژن در سازندهای کگان و دلالان در میدان سلمان.

شکل (2): مقایسه مقادیر ایزوتوپی دلومیت‌های سازند دلالان و کگان در میدان سلمان.
مطالعات، بیانگر تغییر ترکیب ایزوئوپی اکسیژن رسوبات کرینتاه در طول تاریخ زمین شناسی است که می‌تواند به دلیل تغییر درجه حرارت یا تغییرات ترکیب شیمیایی و ایزوئوپی ابی محيط رسوبات کرینتاه باند. افزایش حرارت محيط تشکیل دوموئیت و برای اثر آب‌های جوی بر روی دوموئیت‌ها سبب سبکتر شدن ترکیب ایزوئوپی دوموئیت‌ها می‌شود. برای نشان دادن شرایط و میزان حرارت محیط تشکیل دوموئیت، می‌توان ترکیب ایزوئوپی اکسیژن دوموئیت مورد مطالعه را با ترکیب ایزوئوپی کلاسیک و شدید دارای سطح گرمایی تغییرات مربوط به سن زمین مقایسه کرد[1]. این کانالها و صدف‌های آن‌ها نشان داده‌اند در تعادل ایزوئوپی با آب دریا در شرایط حرارت محیطی حیاتی، می‌تواند گونه‌های شرایط حاکم در زمان تشکیل خود باشد. در شکل‌ها (3) و (4) ترکیب ایزوئوپی دوموئیت‌های سازند دانان و کنگان با مقادیر ترکیب ایزوئوپی اکسیژن نمونه‌های صدف برپایه یا سیمان کلاسیک با یک پرنم و تریاس که دچار کمترین تغییرات ناآرامی‌های بوده‌اند، مقایسه شده است. نتایج حاصل نشان می‌دهد، رشد یا روان‌سازی دوموئیت‌های سازند دانان در مقایسه با سازند دانان در شرایط حرارتی بالاتری شکل گرفته‌اند. چرا که مقادیر ایزوئوپی دوموئیت‌های سازند دانان در محدوده‌ی ترکیب ایزوئوپی اکسیژن نمونه‌های صدف برپایه یا سیمان کلاسیک با یک پرنم و تریاس که دچار کمترین تغییرات ناآرامی‌های بوده‌اند، نشان می‌دهد مقادیر ایزوئوپی آن متفاوت شده است، این که گونه‌ی شکل گیری آن تحت شرایط حرارتی بالاتری از حرارت محیطی در باید تریاس است.

![شکل (3): مقایسه ترکیب ایزوئوپی دوموئیت‌های سازند دانان با مقادیر ترکیب ایزوئوپی اکسیژن نمونه‌های صدف برپایه یا سیمان کلاسیک با یک پرنم و تریاس که دچار کمترین تغییرات ناآرامی‌های بوده‌اند. (Allen and Wiggins, 1993)](https://example.com/shaft)

دوموئیت‌های شکل گرفته در حرارت‌های زندیک به سطح (محیط سیستماتیک محیط سیستمیک فلایکس، محیط دریایی و زون حیاتی مخلوط آب‌های شریان شور دریایی) که با عناوین دوموئیت‌های حرارت پایین شناخته می‌شوند، بیشتر بر پایه سن زمین شناسی آنها دارای ترکیب ایزوئوپی اکسیژن بین 0تا-2/5 در مقیاس PDB هستند. ولی دوموئیت‌های شکل گرفته در اعماق تندیسی که به دوموئیت‌های حرارت بالای موسوم‌اند، دارای ترکیب ایزوئوپی سنگین 0/8-0/7 هستند[8]. بنابراین دوموئیت‌های نمونه‌های سنگینتر از 0/5 در زندیک به سطح و در شرایط حرارتی زندیک محیط شکل گرفته و دوموئیت‌های دارای ترکیب ایزوئوپی سنگین در عمق بیشتر و در طول تبدیل رسوبات کرینتاه تشکیل می‌شود. برای تعیین...

(ص) امیرکریم / سال پاژدهم / شماره 69 / (علوم پایه و مهندسی کاربردی) تابستان 1383
درجه حرارتی محیط دوکارمیتیزاسیون می‌توان از رابطهٔ پیشنهادی فردمن و نیل استفاده کرد[11]:

\[\Delta^{18}O_{water} = \left[3.2 \times 10^{-6} T \right] (°K)^{-1} - 1.5 \]

بر یک‌پایهٔ رابطه‌ای پیشنهادی فردمن و نیل، میزان حرارت محاسبه شده محیط شکل‌گیری دوکارمیتی‌های سازند‌دانان به طور متوسط برای با 250 °C از 43 نا T 65 (است. در حالی که دوکارمیت‌های سازند کلنگان به طور متوسط در درجه‌ی حرارت معادل 70 °C از 25 (شکل‌گرفته‌اند.

بنابراین سازند کار دوکارمیتی شدن در این رو دو سازند کاملاً با یکدیگر متفاوت است. دو دوکارمیت‌های سازند دانان بیشتر در شرایط خشک و در محیط فوق جزر و سنگ و هم‌زمان با رسوبات گیاه شبکه‌ای شکل گرفته‌اند. در حالی که بخش عمده‌ی رسوب‌های دوکارمیتی در سازند کلنگ در شرایط تغییری تشکیل شده‌اند.

شکل (۴): مقایسهٔ ترکیب ایزوتوپی دوکارمیت‌های سازند. کلنگان با مقادیر ترکیب ایزوتوپ اکسید نمونه‌های صهفه‌های یزد و هرگون و سیمان کلونی‌ای باسن ترسی که دچار کمترین تغییرات تانوه شده‌اند (قنوت از ۱۹۹۳). (Allen and Wiggins).

۴- بافت‌های مختلف دوکارمیتی

می‌توان بافت‌های دوکارمیتی قابل مشاهده در سازند کلنگان و بخش فوقانی دانان که در این مطالعه به‌بررسی شده‌اند به قرار زیر است:

۴-۱ دوکارمیت‌های ریز تا متوسط بلور نیمه خود شکل‌های برخی از دوکارمیتی‌های قابل شناسایی است.

این نوع از دوکارمیت‌ها با نوجوانی به مطالعات پتروگرافی، جانشین‌های رسوبات محیط‌های بالای مدت‌های بخش‌های فوقانی منطقه جیز و مدت‌های گلریه آهنکی می‌شود و بیشتر تیره است و گاهی در نهایت می‌تواند یک غربال نسبی بزرگی نشان دهد.

۴-۲ دوکارمیت‌های بزرگ‌بلوری با نسبت توده به سطح و حاشیه‌های شفافی است. آن نوع از دوکارمیت‌ها دارای حاشیه‌های شفاف و مراکز ابری و تیره هستند. حالات تیره و ابری به‌خصوص مراکز بزرگی را برمی‌گیرند.
دوم‌پنجمی‌های دانه‌شکری خود بلاست‌داین متوسط.

این نوع از دوم‌پنجمی‌ها به صورت بلورهای هم‌بعد هرمه با تخلخل و نفوذ‌پذیری با هستندی و به‌ندرت نیز با شکل‌های دیواره‌ای از دوم‌پنجمی‌ها مشاهده می‌شود. بلورهای این نوع دوم‌پنجمی از سطح ماکرو، ممکن است از دو طرف به میکروکسی داشته باشد. این نوع دوم‌پنجمی‌ها به محبی تبدیل به سیال شکل‌بندی می‌شوند.

دوم‌پنجمی‌های نیمه‌بلورهای مریز بالا ریز مربوط به فراآیند احالت حاصل از فشار

این نوع از دوم‌پنجمی‌ها به یک میلیو و سطح استدیولیت‌های مشابه می‌شوند که به‌طور نسبی به صورت بلورهایی به‌ندرت از دوم‌پنجمی‌ها مشاهده می‌شود. بلورهای این نوع دوم‌پنجمی‌ها به‌طور متوسط به‌طور مکرر در دیواره‌های بزرگ و دیواره‌های محیطی وجود داشته بوده‌اند.

دوم‌پنجمی‌های توزیعی ریز بلورهای دوم‌پنجمی

برای تفکیک دوم‌پنجمی‌ها، از مراحل اولیه تا تاج دوز، اندازه‌گیری بلور دوم‌پنجمی‌ها بسیار مفید است. اگر سه‌گنده کریستال‌ها با ورودی کامل مشکل تحت تأثیر کاملی در اثر تاکیدی بلور دوم‌پنجمی‌ها با ورودی تأثیری کره‌ای صورت می‌گیرند، در نهایت با فرآیندهای تناک کارا و مشخصیت صاف که در نهایت به دست امکان می‌پذیرد، دوم‌پنجمی‌ها به دست می‌آیند.

دوم‌پنجمی‌های توزیعی ریز بلورهای دوم‌پنجمی

برای تفکیک دوم‌پنجمی‌ها، از مراحل اولیه تا تاج دوز، اندازه‌گیری بلور دوم‌پنجمی‌ها بسیار مفید است. اگر سه‌گنده کریستال‌ها با ورودی کامل مشکل تحت تأثیر کاملی در اثر تاکیدی بلور دوم‌پنجمی‌ها با ورودی تأثیری کره‌ای صورت می‌گیرند، در نهایت با فرآیندهای تناک کارا و مشخصیت صاف که در نهایت به دست امکان می‌پذیرد، دوم‌پنجمی‌ها به دست می‌آیند.

دوم‌پنجمی‌های توزیعی ریز بلورهای دوم‌پنجمی

برای تفکیک دوم‌پنجمی‌ها، از مراحل اولیه تا تاج دوز، اندازه‌گیری بلور دوم‌پنجمی‌ها بسیار مفید است. اگر سه‌گنده کریستال‌ها با ورودی کامل مشکل تحت تأثیر کاملی در اثر تاکیدی بلور دوم‌پنجمی‌ها با ورودی تأثیری کره‌ای صورت می‌گیرند، در نهایت با فرآیندهای تناک کارا و مشخصیت صاف که در نهایت به دست امکان می‌پذیرد، دوم‌پنجمی‌ها به دست می‌آیند.

دوم‌پنجمی‌های توزیعی ریز بلورهای دوم‌پنجمی

برای تفکیک دوم‌پنجمی‌ها، از مراحل اولیه تا تاج دوز، اندازه‌گیری بلور دوم‌پنجمی‌ها بسیار مفید است. اگر سه‌گنده کریستال‌ها با ورودی کامل مشکل تحت تأثیر کاملی در اثر تاکیدی بلور دوم‌پنجمی‌ها با ورودی تأثیری کره‌ای صورت می‌گیرند، در نهایت با فرآیندهای تناک کارا و مشخصیت صاف که در نهایت به دست امکان می‌پذیرد، دوم‌پنجمی‌ها به دست می‌آیند.

دوم‌پنجمی‌های توزیعی ریز بلورهای دوم‌پنجمی

برای تفکیک دوم‌پنجمی‌ها، از مراحل اولیه تا تاج دوز، اندازه‌گیری بلور دوم‌پنجمی‌ها بسیار مفید است. اگر سه‌گنده کریستال‌ها با ورودی کامل مشکل تحت تأثیر کاملی در اثر تاکیدی بلور دوم‌پنجمی‌ها با ورودی تأثیری کره‌ای صورت می‌گیرند، در نهایت با فرآیندهای تناک کارا و مشخصیت صاف که در نهایت به دست امکان می‌پذیرد، دوم‌پنجمی‌ها به دست می‌آیند.
دولومیت‌های زین اسی در رسوبات عهد حاضر و سنگ‌های کوانتر دیده نشده‌اند. همراهی عمومی آنها با حفرات انحلالی و پرش‌های حاصل از انحلال، نشانگر تشکیل آنها به دست تحریک و یا پس از تبدیل است. ظاهر درشت بلورهای دولومیت، نشان‌گر تشکیل دولومیت در یک دورهی زمانی طولانی و نیز آسمه رسوب‌گذاری هستند (شکل (۵ـو)).

شکل (۵): نمای‌های مختلف دولومیت در سازندگی‌های مور مطالعه

نمودار (۱): نمای‌های مختلف دولومیت در سازندگی‌های مور مطالعه
شدت دولومیتی شدن در سازندگان مخزنی مورد مطالعه را می‌توان به چهار گروه تقسیم نمود:

1- در گروه اول دولومیتی شدن به صورت انتخابی (Selective Fabric) و به دو شکل جانشینی غیر تقلیدی و تقلیدی صورت گرفته است. جانشینی غیر تقلیدی اصطلاحی است برای حالتی که در اثر جانشینی دولومیت، ساختان و بات داخلي ذرتی جانشین شده از بین می‌رود و فقط شکل ذره بالقوه مانده، در مقابل اصطلاح جانشینی تقلیدی برای وقتی که شکل ساختان داخلی الکول محفوظ می‌ماند و لازمه‌ای این قرار یابد به دولومیت اضافه کنده می‌شود. در این گروه متن غیر دولومیتی، باقی مانده و الکول‌ها بصورت انتخابی دولومیتی شده‌اند.

شکل (1): دولومیتی‌سوزیون به صورت جانشینی انتخابی تقلیدی (A) و غیر تقلیدی (B) در سازند کنگان. در اثر جانشینی غیرتقلیدی دولومیت، ساختان و باقیماندن داخلی الیت از بین رفته و فقط فرم خارجی آنها قابل تخمین است. در حالتی که در جانشینی تقلیدی (A) در اثر جانشینی ساختان داخلی الیت محفوظ باقی مانده است.

2- در گروه دوم زرمه‌های همیشه آلوکومها تحت تأثیر دولومیتی شدن قرار گیرند و الکول‌ها با درجات متغیری شکل و ساختار ذره‌ای خود را حفظ کرده‌اند. پیشرفت پیشرفت میکروانی، سبب حفظ شکل الکول‌ها شده است.

شکل (2): زرمه‌های آلوکومها در دولومیتی شده و قطعات اسکلتی الیت و پلی‌ول نمایندگان را می‌توان بر اساس تخمین داد.

3- گروه سوم مثل گروه قبلی است ولی در این دسته، بافت اولیتی سنگ آهک غیر مشخص و محو شده است و الکول‌ها قابل تشخیص نیستند. این نوع از دولومیتی شدن، دولومیتی شدن ژرف‌کننده نام دارد.

تصویر می‌شود که بافت‌های ذکر دارای پراکنده‌تری زیر باشد (شکل 8).

امیرکبیر/ سال پنجم/ شماره ۵/۵۹/ علوم پایه و مهندسی کاربردی/ تابستان ۱۳۸۳
دولومیتها در دیار بافت‌های شماره ۱ و ۲ احتمالاً در اثر تبلور مجدد دولومیتها مراحل اولیه دیازنز و یا در اثر جانشینی سبک آلکه‌ها قبیل در مرحله تدقیقی حد واسط شکل گرفته‌اند.

دولومیتها در دیار بافت‌های ۳ و ۴ در عمق بیشتر و در مرحله تدقیقی حد واسط شروع به شکل‌گیری کرده‌اند و این روند تا اوایل مرحله‌ی تدقیقی عمیق ادامه داشته است. در عمق بیشتر، این دولومیتها توسط دولومیتها بافت شماره ۵ دنیال می‌شوند و در مرحله‌ی دیازنز تأخیری که دوام بالایی دارد، برخی از شکستگی‌ها و حفرات توسط دولومیتها زین اسی دارای بافت شماره ۶ پر شده است.

شکل (۸): دولومیتها در فراکوری که زمینه و آلوکم‌ها دولومیتها شده اند و یک بافت اولیه قابل شناسایی نیست.

شکل (۹): سکانس پارافنیکی بافت‌های رخساردهای دولومیتها سازندگانی‌ی شدید مطالعه‌ای از مرحله اولیه‌ی تأخیری دیازنز به همراه مقادیر ایزوتوپی آنتیا.

۶- نتایج

- مطالعات ایزوتوپی نشان دهنده‌ی وجود مرز مشخص بین سازندگانی و مرزهای اولیه (دانال) و تریاس زیرین (کنتگان) در منطقه‌ی جنوب ایران است.
- نتایج مطالعات پتروگرافی و تونوماسیمای رخساردهای دولومیتها سازندگان دانال و کنتگان نشان می‌دهد. شیوهی دولومیتی شدن در این دو سازندگان، کاملاً با یکدیگر منتفی است. دولومیتها سازندگان دانال بیشتر در شرایط آندی و در محیط سپریانال به شکل هم‌مرنگی به رشد گنگداری شکل گرفته‌اند در حالی که بخش عمده‌ی رخساردهای دولومیتی در
صدای نگرانی در شرایط تفکیک تشکیل شده‌اند.

- میزان حرارت محاسبه شده در محیط شکل‌گیری دومیت‌های سازنده دالان به طور متوسط برابر با 52°C است در حالی که دومیت‌های سازنده کانگ به طور متوسط در دو هزار حرارتی معادل 70°C شکل گرفته‌اند.
- مطالعه پتروگرافی نشان داده وجود شش رخ‌سازی متغیر دومیت‌های در سنگ‌های کانگ و دالان فوقانی بشرح زیر است:

1- دومیت‌های ریز را متوسط بلور نیمه خود شکل تا خود شکل.
2- دومیت‌های نیمه خود شکل تا خود شکل متساوي بلور دارای مراکز ابری و جهش شاف.
3- دومیت‌های دانه شکسته چراغی خود شکل بلور دانه متساوی.
4- دومیت‌های نیمه خود شکل ریز بلور مرتبط با فرآیند انتقال حاصل از فشار.
5- دومیت‌های متساوی تا دانه بلور یی خود شکل غیر بلور خاکی می‌باشد.
6- دومیت‌های ریز اسی.

- تصویری که بافت‌های فوق دارای پارانزهای ذکر شده در بخش 5 باشد.

تقدير و تشکر

از معاونت محترم پژوهشی دانشگاه صنعتی امیر کبیر به خاطر تأمین مالی این پژوهش تشکر و قدردانی می‌شود.

مراجع
