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dr “(TL TG}
dt pL(hG“hL)

where o is the heat transfer coefficient between the droplet surface and the vapour. The
nucleated droplets are initially small in comparison with the mean free path of the vapour
molecules ( 1 ) but can grow to become large in comparison. The following expression due to
Gyarmathy [28] is used in the present study to cover the entire range

(36)

A (37)

Ol == e
r(1+3.18Kn)

Where Kn = 1/ 2r is Knudsen number. Using equations (35) and (37) to eliminate Ty and o
respectively from equation (36) yields:

o v (T-T
dt (r+1.591)p; { hg —hL) (38)

with the surrounding vapour conditions regarded as constant, the only variables on the right-
hand side of equation (38) are r, Ty and hy. Writing hy, in terms of Ty, and using equation
(35) to substitute for Tp. in equation (38), the resulting expression can be integrated

analytically to give

]’—‘d.St (39)

L1

—(r -1 )+b(r r1)+cln(
where 1 is the initial value of r at t=1t;, dt=t-t;, Tp is datum temperature and

a=hg —c [T5(P)~Tp ]
b=(r"+1.591 ) {hg —c, [Ts(®)=Tp [Jeur [Te@) - T4 ] (40)

e=1"(r"+1.591 ) [hg — oy (Tg - Tp) ]

i

Within the validity of equation (35), the above equation describes the variations of a
droplet radius with time accurately. However, although analytic, because of the logarithmic
term it has to solved by iteration.

Notation 1 Mean free path
B Second Virial coefficient L Enthalpy of phase change ,
c Specific heat n Number of molecules per unit mass of
Fec Gc Flux defined in equation(1) fluid .
G Gibbs's free energy N Number of droplet per unit mass
h Specific enthalpy P Pressur‘e .
j Rate of formation of new droplets per P(T) Saturation pressure corresponding to T

unit mass Condensation coefficient

R Gas constant

K, Knudsen number = 1/2r
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The change in the free energy of a mass of vapour at P and Tg condensing to a liquid
. * . “ e M . o
droplet has a maximum AG occurring at the critical radius r*, where using an equation of
state truncated at the second virial coefficient:

* 26
* R/ [+ 28 psT) e |} (31)
and
AG" =§—nr*26 (32)

AG’ presents an activation barrier to the condensation of vapour. The formation of critical
droplets in a pure vapour is studied by the classical nucleation theory [23-24]. This theory has
proved to be the most effective in describing the nucleation rate and still is being used by
some researchers (e.g. see reference [25]). In the present investigation the nucleation theory
adopted is the classical result subject to the refinements by Courtney [26] and by Kantrowitz
[27]. The expression for the nucleation rate as the number of droplets formed per unit volume
and time as given by the classical theory is:

2 3 3
¥=q Pg_ | 20n exp 16nno (33)

pu ¥ 7 3p,” (RTG)s{ Lo { PS(I’DI‘G)H2

‘or per unit mass and time:

3
Pg
Following the work of Plummer and Hale [28], the surface tension of a small cluster is

taken to be that of a flat surface and the condensation coefficient is taken as unity. This

combination does not entail any adjustable constants and gives good all-round agreement with
experimental results over a wide range of conditions.

J (34

(b) Integration of the droplet growth equation

Once over the critical size the droplets grow by capturing mass from the surrounding
vapour. The condensing molecules give up latent heat to the droplets initially, but for the
droplets to grow the bulk of this energy must be returned to the vapour. For an exact
calculation of the droplet growth rate the heat and mass transfer equations have to be solved
simultaneously, which is numerically laborious. In the present study, to reduce the volume of
algebra Gyarmathy’s approximation [29] relating the droplet temperature to its radius is
‘adopted, which is

T, =Ts(P)-[ Ts(P)- T ][I?J (35)

This expression is true providing the variations in the surface tension of water and of the
enthalpy of evaporation in the temperature range T to Ty can be neglected.

With the droplet temperature determined, the thermal inertia of the droplets is regarded as
small and the growth rate calculated from the energy balance, yielding:
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shocks on the suction surface. The first is due to the trailing edge shock wave on the pressure
surface which has extended across the passage and is reflected from the suction surface, the
second is the shock wave on the suction side of the trailing edge. All the flow features have
been predicted satisfactorily by the solution.

In the case of the nucleating test, the measured pressure rise at 74% axial chord length on
the suction surface is due to condensation shock and occurs just downstream of the throat.
The location of the rapid condensation zone is predicted slightly late and there is some
smearing of the pressure change in the theoretical solution but this regarded as acceptable. It
will also be seen that pressures obtained on the suction surface from the two solutions are
similar before the nucleation zone beyond which the pressure in the nucleating case is
consistently higher than that for the dry flow.

It is to be noted that the position and characteristics of the rapid condensation zone is in
sensitive to the inlet supercooling. Downstream of the rapid condensation zone the general
features associated with trailing edge shock waves are similar except that, for similar pressure
ratios, Mach numbers are lower in condensing flows.

Contours of constant Mach number for the superheated and nucleating solutions are
presented in Figs. 12 and 13 respectively; comparison of the constant Mach number contours
.shows that in the region upstream of the throat the two expansions are very similar. In the
nucleating solution, the sonic line has shifted slightly downstream of the throat. Mach number
at the physical minimum area is below unity indicating that the flow has choked at a velocity
below the frozen speed of sound. Downstream of the throat, the detailed features of the
nucleating solution differ from those of the superheated test mainly because of the lower
Mach numbers in the condensing test.

Contours of constant wetness fraction in the wet solution are given in Fig. 14 and
variations of mean droplet radius along the stream lines corresponding with the suction
surface and pressure surface are shown in Fig.15. As expected, nucleation starts earlier on the
suction surface. The steepness of rise in the droplet radius soon after nucleation is an
indication of the extent of the rapid condensation zone. It will also be seen that on the suction
surface the droplets evaporate immediately upstream of the trailing edge and for same
distance downstream of it; this is due to the development of the shock waves which increase
the vapour temperature. Beyond this with the conditions adopted the droplets begin to grow
when the pressure starts to fall.

The droplets formed on the suction surface appear to be smaller than those formed on the
pressure side. This is thought to be a consequence of the differences in the local rates of
expansion as the different streamlines reach their limiting degrees of supercooling.

10- Summary of Conclusions

The most important characteristic of nucleating flow is the high degrees of supercooling
initially attained by the fluid and the sudden release of latent heat as the system regains
thermodynamic equilibrium. The resulting internal heat transfer is irreversible leading to
unavoidable thermodynamic losses. The release of heat caused by rapid condensation also
‘affects the aerodynamic behaviour of the flow. Furthermore, rates of pressure change in the
different streamlines in blade to blade flows offer thermodynamic paths to the working fluid
which can differ greatly. The quality of agreement between the numerical and experimental
results indicate that cell vertex Jameson scheme can be applied to yield fast results with good
accuracy for two-dimensional nucleating flows of steam in blading.

APPENDIX (Droplet behavior)
(a) Nucleation theory
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The partial derivatives, oF/0Tg, OF/0Ty, OF /0Ty, etc., for use in the successive
iterations are obtained analytically. When the variations in droplet formation and growth rates
are substantial the path between Q and D is divided into a number of subintervals and the
calculations are carried out for each step.

At the end of this sequence all fluid properties including pressure temperature and enthalpy
at point D have been calculated. The solution can then follow the remainder of the steps to
complete the iteration. When the solution converges all the equations are simultaneously
satisfied.

8- Experimental Apparatus (General Arrangement)

The general features of the equipment are shown schematically in Fig.9 The equipment is
capable of generating a supply of supercooled steam. In addition, it can operate under fully
superheated conditions; it thus allows the performance of profile under corresponding
superheated and nucleating conditions to be compared.

The receiver is a tank of 28 m’ capacity. To generate supercooled steam the receiver is first
charged with saturated steam and than vented to the condenser. This has the effect of
expanding the content to predetermined degrees of supercooling without the penalty of giving
it kinetic energy. Supercooled steam thus generated then passes to the test section.

Valve (1) is a quick acting valve with a typical opening time of 70 ms and release the flow
through the test section to the condenser. The opening of the quick-acting valve is followed
by starting transients which then decay. Thereafter a quasi-steady flow is established in the
test section which can be studied.

The test section is essentially a stainless steel fabrication which hold two cover plates 76
mm apart. The blade profiles to be investigated are mounted on circular supporting plates
which fit into the test section. The profiles are based on a typical nozzle section of an
operating turbine, and are of 76 mm length and 35.76mm chord. The pitch and axial chord are
18.26 and 25.27 mm respectively. The cascade consists of six blades and two half profiles
forming seven passages.

The central passage is the effective test section and tapping points have been drilled into
the blade surfaces either side of the central passage and into the side walls. Valve (2) is a
butterfly valve and used for setting the downstream pressure.

To take surface pressure measurements during the short run times, each tapping point is
connected by an oil filled stainless steel capillary tube to a separate piezo-resistive pressure
transducer integral with its own amplifier. The transducers are calibrated in situ through the
data acquisition system and the measurements are accurate to within + 0.01 bar. Analogue
signal from the pressure transducers are transferred to a micro computer via a data-logger
unit. The temperature of steam in the tank when superheated is measured by two shielded
thermocouples, but the temperature of supercooled steam cannot be measured by
thermocouples directly. This is because steam condenses on the surface of the instrument and
the thermocouple will indicate the saturation temperature. The procedure used for evaluating
the temperature of supercooled steam is given in [22]. It is estimated that the deduced
stagnation temperature of steam are to within + 1 K.

9-Results and Discussion

The experimental observations considered are the measurements which were carried out at
Birmingham University to investigate the performance of a cascade of typical blade profile of
an operating turbine[10]. The theoretical and experimental surface pressure distributions for
superheated and nucleating tests with supersonic outlet are compared in Figs. 10 and 11
respectively. The theoretical solution plotted in Fig. 10 is one obtained as a preliminary to the
nucleating solution, it will be seen that there are two pressure rises due to aerodynamic
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‘Hence the corrected value of Tg is

TGmew) = T(old) + ATG (28)

The iteration process is carried out until the correction, AT , meets the specified tolerance
of = 0.005°K and consequently the new values of P, Tg and hg are obtained. Once P, Tg
and hg are found, the rate of nucleation jg is calculated and compared with a minimum
value j'min which the flow is considered to be dry.

7- Procedure for Two-Phase Flow

As already indicated, the field conservation equations apply equally to two-phase as well
as single-phase fluids and with reference to Fig.8 the updating steps for density and energy at
calculating point D are the same for both conditions. The main difference arises in the
calculation of pressure from the known density and energy, which involves the calculation of
the wetness fraction. For this purpose the droplet formation and growth equations have to be
integrated, but these apply to individual fluid packages and hence must be evaluated along
flow streamlines. To achieve this the streamline QD through point D is first identified. With
the conditions along the station BAE already updated, the conditions at Q are calculated by
linear interpolation between points immediately on either side of it along the station. The time
taken for droplets to travel to the calcujating point D is calculated as:

AXg

=15 0+ Vxn)/2) (29)

The droplet radius rq and number per unit mass Ngq at this point are adopted as the
starting conditions for the calculation of droplet growth rate along QD. However, the droplet
formation and growth rates also depend on the surrounding vapour conditions. These vary
between the known conditions at Q and those to be evaluated at D. Thus, adopting Tg, Ty,
and Ty(P) as the independent variables, an initial estimate is made for these temperatures at
D and the remainder of the fluid properties evaluated from them. Based on the above
temperatures, an initial approximation to the radius at D, rp is computed using Gyarmathy’s
approximation equation (35) in Appendix. The droplet growth procedures are then carried out.
If at the end of the integration process the calculated wetness terms do not match the
estimated values, new estimates are formed and the procedure repeated. For this purpose the
values of energy, density and droplet radius, e,, pp,, and r resulting from the integration are

compared with the original estimates and the differences defined as Fj, F, and F3, i.e.

F =ep-ep = [(1——w)hG +why —Eilaeb
p

1 1 1
F,=————=l-Wvg+WV |, —— (30
*“pp Pb (=g rwvily Pb
F=rp-1

The necessary change in the estimated values of the independent variables ATg, ATy, and
ATy(p) are calculated from F,, F, and F3 by the Newton-Raphson recursion formula.
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2-With the new values of properties calculated, two points R and R’ lying along pitchline CE,
are obtained as lying on the new streamlines through A and A’ respectively. The angle ¢
and ¢' are calculated from:

_Zr VYR no 2R PYy)Re
tan(9) = AXy N (PVxIR tan() = AXy - (PVx)R @2)

Where the values of pVy and pVy at points R and R’ are evaluated by using interpolation
through (C', C, D) and (E', E, D') respectively.
3-The average angle is calculated as:

b=2 0+ ) 23)
and a common streamline is obtained as line AK and A’K'. The properties at K and K’ are

calculated by interpolation or extrapolation from the appropriate points. The calculated

pressures are equalized and the values of the remaining calculated properties are adopted.

4-By adopting the new calculating points K and K, all other points in the pitchwise direction
are shifted and the properties of the new interior points are evaluated from the old points.
The calculation is carried out successively downstream to the exit plane from which a new
grid system is determined.

B | =

6- Procedure for Single-Phase Flow
When the steam is dry the wetness fraction is zero. Hence the overall specific enthalpy, h, is
equal to hg and p is equal to pg and the internal energy is:

e zhg——P/pG (24)

In the numerical scheme, the property resulting directly from the time stepping procedure is
the internal energy, which is given by:

Vi? + vy 2 (25)
0T

~ To calculate the pressure, P, and temperature, Tg, from the known values of e and p, a
Newton-Raphson technique is employed as follows.

Using the known value of density and an assumed value for the temperature, an
approximate value for pressure is obtained from equation of state, equation(12). The
corresponding value of hg is calculate from Eq.(15) and the specific internal energy is
calculated from Eq.(24). Now, if this value for specific internal energy does not equal the
value as calculated by equation(25), then the assumed temperature needs to modified. For this
purpose the error F(Tg) is defined as:

2 2
V- V- P
F(Tg)=(eg - X ——Y)~(hg ~—) (26)

PG

from which the correction to Tg is given by:
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The values at the time level “n” then updated to the new time level “n+1” in the following

four stages:
° ="
o' =0’ +a AR +D°) 0’ =0’ +0,AlR' +D°)
21)
0’ =0’ +a;At(R* + DY) 0* =0’ +a,atR?+D%
(Dn+l — CO4

where At is the local time marching step; 1, 2, 3 & 4 refer to intermediate time step in
‘Runge Kutta scheme and the coefficients o, o, a3 and oy are 1/4, 1/3, 1/2 & 1 respectively.
This scheme is fourth-order accurate in time and second-order accurate in space.

With reference to Fig.3, there are four types of boundaries. These are the inflow boundary

(AH), the outflow boundary (DE), the solid wall boundaries (BC and GF), and the periodic
boundaries (AB, CD, HG & FE). Inflow and outflow boundary conditions used in this study
were the characteristic and extrapolation type. If the flow is subsonic there will be three
incoming characteristics and one outgoing characteristic at the inflow while the opposite is
true at the outflow boundary where there are three right running characteristics and one left
running characteristic. By the theory of characteristics, three conditions may therefore be
specified at the inflow and one condition at the outflow. The remaining conditions are
numerically determined by the solution of the differential equations. The three conditions
specified at the inflow are the total pressure, total temperature and the flow angle. The static
pressure is extrapolated from the interior cell torthe inflow. At the outflow boundary, the one
physical condition specified is the static pressure. while total pressure, total temperature and
flow angle are extrapolated from the interior. For supersonic flow, the static exit pressure is
also extrapolated from the interior point.
- On the blade surface, the “zero flux*“ conditions are imposed. For blade-to-blade
calculations in the case of cell vertex scheme, when the flow is dry the periodicity condition
on the boundary streamlines upstream and downstream of the blade row is easily satisfied by
assuming that for corresponding points on each of the streamline, all properties are equal. But
this procedure is questionable downstream of the trailing edge because the fluid reaching the
trailing edge from the suction and pressure sides of the blade will not always have followed
the same process path. For example, in the presence of a passage shock in single-phase
transonic cascades as described in standard texts [20], and shown in Fig.5. The loss in total
pressure and hence the properties on the suction side are different from those of the pressure
side this is particularly serious in case of nucleating flows. An example of shock wave
structure obtained in condensing cascade is shown schematically in Fig.6, [21].

In nucleating flows, the fluid reaching the trailing edge from the suction surface has
usually nucleated while that from pressure surface is supercooled but still dry. Even in wet
flows, the wetness fraction along the suction side is generally different from that along the
pressure side; consequently, all other properties can differ. Under these circumstances, the
only assumptions, which can be made, are that the pressures on both sides of the streamline
through the trailing edge are equal and that the two streams flow in parallel directions [12].
With reference to the magnified grid system shown in Fig. 7, the properties at two typical
points D and D' are calculated in the following steps:
1-The two lines AD and A'D' are the estimated streamlines downstream of the trailing edge

from the previous iteration. The values of all properties at D and D’ are obtained by

assuming that AD and A'D’ are solid boundaries.
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const. = 1782.24 in SI units
The above system of equations is sufficient to describe the flow completely.

S- Numerical Arrangement & Boundary Conditions

The mesh adopted is shown in Fig. 3 and an enlarged view of a typical flow element
ABCD is illustrated in Fig. 4.

Development of the solution procedure is based on the Jameson’s fourth order Runge
Kutta numerical integration using cell-vertex formulation in which the flow variables are
stored at cell vertices A,B,C and D. It has been shown by Martinelli [15], Dick [16], Swanson
and Radespiel [17], amongst others that cell-vertex formulation offers some advantages over
the cell-centered one. Since the variables are piecewise linear over the cell face, the
formulation is second-order accurate in space irrespective of the irregularity of the grid. For a
‘uniform mesh, these would be no difference between the cell-centered and cell-vertex
scheme, however, cell-vertex storage does not require extrapolation to the solid boundary to
obtain the wall static pressure which is necessary in solving the momentum equations for cells
adjacent to the solid boundary. Therefor, this scheme yields fast results with good accuracy
[18].

To calculate the change at the calculating points from those for the cell, approximation of
Eq.(1) is applied to each cell separately; For example considering the inviscid fluxes Fc and
Gc of a conserved variable, p , the right hand side of the continuity equation can be evaluated
by:

1
Ri(p)= —Ei"j‘f(Fcij (P)dy -G j5(P)dx) (17)

where, Fc (p) = pVx and Gc (p) = pV,. This procedure leads to a system of ordinary
differential equations of the form

0
= i=R@ (18)

Where Rjj(@) represents the sum of inviscid residuals. The calculated changes in @;; apply
to the values of properties within the cell, whereas, the variables are actually stored at the
nodes. Consequently, they have to be redistributed to the four surrounding nodes. This maybe
done simply by sharing the changes equally between the four cells as shown in Fig.4. Hence,

Rp(@)= 0.25R (@) +R;_y j@+Ry 1@ +R; 4 -1@] 19)

Thus, the scheme is symmetrical in space and the equivalent discretized equation for node A
will be:

0
(TG%L =R (@)+D4 @) 20)

Da(®@) is the added artificial dissipative term to suppress numerical instabilities, The
artificial dissipative term used in the present work, is that proposed by Jameson et al.[19]
modified to suit the cell-vertex formulation. This is a blend of second and fourth order terms
with a pressure switch to detect changes in pressure gradient.

Equation (20) is integrated with respect to time using the modified four-stage Runge Kutta
time stepping scheme in which the dissipative terms are frozen at the values of the first stage.
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The additional information necessary requires equations to describe the properties of the
liquid and vapour phases; The specific volume of saturated water, vy is obtained from Keenan
and Keyes:

ve+a(Te =Ty +b(Te ~ Tg) +¢(Te - Tg)*
vy = (10)
1+d(To - Tg) P +e(To - Tg)

where v, is the critical specific volume of 3.1975 cm®/g, Tc is the critical temperature of
647.27° K and

a=-0.3151548 b=-1.203374*10"
¢ =7.48908*10" d=10.1342489
e =-3.946263%10 in SI units

The specific enthalpy of water at temperature Ty, may be written with sufficient accuracy as:
hy =c (T, -Tp) (11

where Tp is datum temperature taken as 273.15° K.
The equation of state adopted for the vapour phase is:

P = pg RT(1+Bpg) (12)

where B is the second Virial coefficient and thermodynamic properties of steam are calculated

from mutually consistent relationships.
From the first and second laws of thermodynamics and by using Maxwell's relations it can be

shown that,

.
[‘a‘ﬁJL " Yo "“G(’a‘r;‘l (13)

Integration of above equation gives:

G

he= [ [VG —TG[?;@-J }dP+Fh (To) (14)

After introducing the equation of state the final expression for enthalpy of dry steam is:

R| [ 2B ) T B ) e
hg > ( HRTG 1][1 B dTGJ+ w (Tg) (15)

It may also be shown that:

F,(Tg )=alnTg +bTy +cT,° ~d T, +eT,* —£ T +const. (16)
where

a=46.0 b=1.47276 c=0.419465*%1073

d =7.33297*10® e=6.16548*107"! f=1.94063*10
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the above conservation equations apply to single-and two-phase fluid as long as in the
latter case p and h refer to overall vapour and liquid mixture.

3- Application to Two-Phase Flows

In the case of two-phase flows, the main influence of phase change is the release of latent
‘heat, which directly affects the energy equations. To deal with this aspect of the problem, the
wetness fraction is defined as:

(mass of liquid)

) (mass of vapour) + (mass of liquid) ®)

The approach is to regard wet steam as the summation of a large number of spherical
-droplets of specified size and the vapour phase of given pressure and temperature which fills
the space between them and because the radii of droplets nucleated spontaneously in turbines
is very small, it is customary to assume that they follow the vapour path line exactly with zero
velocity slip. The system as a whole must obey the conservation laws. To apply the
conservation equations to two-phase flows they have to be combined with equations (33) and
(36) in appendix describing droplet formation and growth and solve simultaneously. An
important difference between the two families of equations is that those describing droplet
formation and growth are stiff and have to be integrated over much shorter time intervals. In
addition, the droplet growth equations are more naturally expressed in Lagrangian rather than
Eulerian form and droplets are assumed to be carried along streamlines which do not
necessarily concid with the grid lines. For these reasons the two sequences of calculations are
carried out separately, but it is essential that the coupling between them be exact. This is
achieved by the introduction of the wetness fraction, w, into the expressions for mixture
enthalpy, h, and density, p, to yield:

h = why+ (1-w)hg (6)
and
1p = wipy + (1-W)/pg Q)

Where the suffixes G and L refer to vapour and liquid phases respectively. The wetness
fraction may be expressed as:

®)

w=%nf3 py N

where N is the number of droplets per unit mass of the mixture. The total number of
droplets at the end of each calculation step is the sum of the number of droplets existing in the
flow at the beginning of the step, N; and the number formed by nucleation over the time
increment ot , i.c.

N =N, + J&t )
At the end of the calculation the two populations of droplets, i.e. the newly formed ones

and those existing in the flow, are combined into one population and the mean radius r
calculated on an r.m.s basis.
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The investigation is undertaken as a contribution to a better understanding of these
problems. The development of nucleation theory has been help ful in studying the wetness
problems in turbines, as the equations describing droplet formation and growth can be
combined with the standard gas dynamic conservation equations to form a set and treated
numerically [6-11].

One particular difficulty in dealing with two-phase flows over turbine blading is that in
general these problems involve both sub and super sonic flows with appreciable transonic
sections while the speed of sound in these mixtures is not explicit and depends on the local
conditions and the form of the governing equations differ in sub-tran and super sonic flows.
Under these circumstances, the most suitable way of treating the equations is the time
marching technique. In addition, it was found in earlier investigations that wet steam
calculation methods are not only extremely time-consuming but also tend to suffer from
numerical stability problems usually traceable to the mathematical stiffness of the governing
equations [12]. Hence, if these techniques are to become standard design tools of industry,
there is obviously a need for developing faster and less temperamental programs. In this paper
one such procedure for calculating two-dimensional cascade flow is described. It is based on
the Jameson finite-volume time marching method for single phase flows [13], but departs
from tradition in the treatment of the wetness terms by introducing a novel method for
integrating the combined energy and droplet growth equations. This procedure which
explained in appendix reduces the volume of algebra drastically [14].

2- General Flow Equations

Considering unsteady, inviscid two-dimensional compressible flow of a vapour carrying a
population of droplets with no interphase slip, the conservation equations of mass, momentum
and energy in integral form applied to a flow element may be written as:

6_03____ N _
e §[fgdy gﬁdx] 0 0

‘Where Q is a fixed area of computational cell, @ represents the conserved variables, Fc and
Gg are the fluxes in x and y directions. These vectors may be expressed as:

o pV, pVy
ol b PVl +P o |V )
~ |eVy ’ £ 7oV, ’ ~C7 v, 240 @)
pey pV by pV,hy

Here, ey and hg are the total energy, and total enthalpy; where:

P
Co—-ho —-;)— | (3)
and
V2 +V,?
h, =h+——-——-2———————- 4
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Abstract
During the course of expansion in turbines, the steam at first supercools and then nucleated to '
. become a two-phase mixture. This is an area where greater understanding can lead to improved 5
. design. This paper describes a numerical method for the solution of two-dimensional two-phase
. flow of steam in a cascade of turbine blading; the unsteady Euler equations governing the overall
behaviour of the fluid are combined with equations describing droplet behaviour and treated by
. Jameson's fourth order Runge Kutta time marching scheme which modified to allow for two-phase
! effects. The theoretical surface pressure distributions, droplet radii and contours of constant
| wetness fraction are presented and results are discussed in the light of knowledge of actual surface
» pressure distributions. ?
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1- Introduction

A broad spectrum of flow conditions are encountered at various stages of a modern steam
turbine. Conventionally, the condensation process in a transonic cascade of turbine blading is
considered to be directly analogous to that observed in Laval nozzles operating at transonic
speeds. A typical expansion of steam in a convergent divergent nozzle is shown in Figs.1 and
2. Initially superheated steam (1) is expanded to sonic line and droplet embryos begin to form
and grow in the vapour. The rate of formation of these embryos is low and the steam
continuous to expand as a dry single vapour phase in a metastable, supercooled or
supersaturated state. Depending on the local conditions the nucleation rate increases
dramatically and reaches its maximum at the Wilson point (4) which occurs after the throat
and is also the point of maximum supercooling. This process is termed “homogeneous
nucleation”. From (4) to (5) the fluid condenses experiencing the associated pressure rise
(condensation shock) caused by the release of latent heat to the supersonic stream. At the end
of this zone nucleation ceased and the number of droplets present in the flow remains
constant. From (5) to (6) the expansion takes place close to equilibrium.

Many investigations into the behaviour of flowing wet steam in turbines have been
reported [1-5]. A tangible wetness effect is the erosion of blading but this is only one
consequence of the presence of water in steam. More serious are the problems caused by local
departures of the system from thermodynamic equilibrium. This is because the release of
latent heat associated with return to equilibrium can affect the behaviour of the parent vapour;
choking mass flow rate and the change of flow patterns around the blades are two specific
examples.
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