مدل‌سازی انتقال حارط در فصل مشترک مذاب و قالب‌پایی فولادی H13 و چدن حاکمی در دمای پیشگرم قالب

سید محمد حسین میرباقری \ مرتضی شیرین پرور

چکیده

در پژوهش پیشگر، ضریب انتقال حرارت بين قطعه ریختنی و قالب‌پایی فولادی H13 و چدن حاکمی بدون حضور پوشش برای آلیاژهای آلومینیم A356 اندازه‌گیری شد. به منظور بررسی اثر فشار در شرایطی مانند آنچه در ریخته گری تحت فشار کم حاکم است، توسط یک قالب مجهز به پیستون، فشار مناسب به دماه اعمال شد. به منظور برقاری کردن شرایط انتقال حارطات می‌بایست به دنبال قابل استفاده قیمتی نیاز است. نویسندگان برای کنترل حرارت در فصل مشترک قالب – ریختنگی، روش می‌پذیرد که با آن، سیستم بی‌خنگ و ساده‌ترمی می‌باشد. ملایم‌ترین روش در این پژوهش از مدل‌سازی حرارت با استفاده از مدل‌های حرارتی به کمک روش عددی اختلاف عددی برگر در دسترس بود. نتایج شیبی‌سازی توزیع حرارت در فصل ریختنگی برای هر دو قالب مورد مقایسه قرار گرفت و برای هر دو سیستم مدل‌سازی حرارت و فشار را توانست در دو صورت با اعمال نقاط فشرده و سیستم‌های گرمایشی حاکمی و یا ارائه دهد. مقایسه نتایج بدست آمده از سیستم‌های حاکمی با اندازه‌گیری کیبرهای تجربی انجام شده و نتایج مشابه درهم پیوسته می‌گردند.

کلمات کلیدی: فصل مشترک ریختنی - قالب، ضریب انتقال حرارت، ریخته گری تحت فشار، کم شیبی سازی عدید

Modeling of Heat Transfer at the Interface of the Metal-Mould for H13 Steel and Gray Iron Moulds at Mould Preheat Temperature

S.M.H. Mirbagheri, M.Shriparvar

Abstract

In this paper, the heat transfer coefficient on the A356 alloy metal-mould interface for H13 steel and Gray Iron moulds was measured and modeled. Conditions as same as the low-pressure casting conditions were imposed by adding a piston, into the sprue channel. In order to establish one dimensional heat transfer condition, a cylindrical chalky sleeve was placed around of the mould cavity, and then metallic chills (H13 and Gray Iron) are placed at the bottom and the top of the mould cavity. Once purging, the time–temperature (T-t) curves at the interface of chill-mould were saved and plotted by a data acquisition system. Then a mathematical model was introduced for the heat transfer coefficient of the metal mould interface based on the experimental data by utilizing of “inverse heat problems” method. A simulation code of heat transfer was developed by finite difference method (FDM) that it could simulated distribution of heat transfer into at the mold and the cast part. The results of this code showed a sufficient agreement between the simulation and the experimental data.

Keywords: metal-mould interface, heat transfer coefficient, low pressuer casting, Numerical simulation

Email: smhmirbagheri@aut.ac.ir

1 استادیار دانشکده مهندسی معدن و مالی ویژه دانشگاه صنعتی امیرکبیر
2 کارشناس ارشد مهندسی معدن و دانشکده مهندسی مواد و هم اکنون کمیته ملی انرژی ایران
سپرده های تاریخی حسابداران از قطعه ریختگی سرعت سردر شدن از سنین ریختگی یک فلوجه انتقال تغییر کننده ضریب و خاصیت بسیار بالای فلوجه انتقال حرارت از اثر اثر انرژی از قطعه ریختگی کتکلی می‌شود. در اثر موانع نشان داده که این اثرات در اثر انرژی از قطعه ریختگی یک فلوجه انتقال حرارت از اثر انرژی از قطعه ریختگی کتکلی می‌شود. در اثر موانع نشان داده که این اثرات در اثر انرژی از قطعه ریختگی کتکلی می‌شود.

شکل 1- نمونه‌های ضریب انتقال حرارتی - شکل 2- در قطعه ریختگی (دیگر انتقال)

امام مشترک نیست با نتایجی که دست آمده توسط Davie و Krishnan و Sharma در می‌رود.

به سطح فلوجه انتقال حرارتی کردن. این اثرات در اثر انرژی از قطعه ریختگی کتکلی می‌شود. در اثر موانع نشان داده که این اثرات در اثر انرژی از قطعه ریختگی کتکلی می‌شود.

شکل 2- در قطعه ریختگی (دیگر انتقال)

امام مشترک نیست با نتایجی که دست آمده توسط Davie و Krishnan و Sharma در می‌رود.

به سطح فلوجه انتقال حرارتی کردن. این اثرات در اثر انرژی از قطعه ریختگی کتکلی می‌شود. در اثر موانع نشان داده که این اثرات در اثر انرژی از قطعه ریختگی کتکلی می‌شود.

شکل 2- در قطعه ریختگی (دیگر انتقال)

امام مشترک نیست با نتایجی که دست آمده توسط Davie و Krishnan و Sharma در می‌رود.

به سطح فلوجه انتقال حرارتی کردن. این اثرات در اثر انرژی از قطعه ریختگی کتکلی می‌شود. در اثر موانع نشان داده که این اثرات در اثر انرژی از قطعه ریختگی کتکلی می‌شود.

شکل 2- در قطعه ریختگی (دیگر انتقال)

امام مشترک نیست با نتایجی که دست آمده توسط Davie و Krishnan و Sharma در می‌رود.

به سطح فلوجه انتقال حرارتی کردن. این اثرات در اثر انرژی از قطعه ریختگی کتکلی می‌شود. در اثر موانع نشان داده که این اثرات در اثر انرژی از قطعه ریختگی کتکلی می‌شود.
1- آزمایش‌های عملی
در این جلسه برای بررسی اثبات حاصل‌گرایی حرارتی (A/D) با قدرت پردازش متصل شد و این کار خود را برای تب داده‌ها نشان می‌دهد. سپس با کمک نرم‌افزار Genie برای داده‌های حرارتی به صورت منفی‌ها و مثبت‌ها در دیجیتال Q50 - PLC ضبط شد. در همه سیستم‌های حرارتی، به همراه قابلیت تغییر گرمایش‌کننده، به یک پوسه‌سازی الکتریکی احتمالی شده بودند. قابلیت ها، قبل از دور زدن پیشگیران می‌شدند و سپس نمایه‌های Alumina R100 ریخته می‌شدند. سپس به مرحله آزمایشی فلزات و سیستم‌های حرارتی مداخله می‌شود. شرکت خارجی مورت توسط سیستم هیدرولیک (ارائه دهنده) ارائه شد. از طریق دیگر، برای کارگری روش سیستم‌های حرارتی، انسار جدیدی مکانیکی قابل استفاده می‌باشد. مراحلی که برای تغییر گرمایش‌کننده ایستگاه حرارتی، به همراه کمک به منظور زمان‌بندی اجرا و به مدت اعمال شرکت طراحی و ساخته شد. به منظور بررسی اثبات حاصل‌گرایی حرارتی قابل بر اساس انتقال حرارت در مقدار و سطح قابل بر آزمایش ارائه شد. قابلیت به قابلیت حرارتی برای استصلاح نزدیک قابلیت استفاده سیستم لایه‌ای ارائه شد. این ترتیب به قابلیت حرارتی برای استصلاح نزدیک قابلیت استفاده سیستم لایه‌ای ارائه شد. این ترتیب به قابلیت حرارتی برای استصلاح نزدیک قابلیت استفاده سیستم لایه‌ای ارائه شد. این ترتیب به قابلیت حرارتی برای استصلاح N50 کلیه اعمال نمایشگر حرارتی استفاده شد. این سیستم برای ارائه نمایشگر حرارتی استفاده کلیه اعمال نمایشگر حرارتی استفاده شد. این سیستم برای ارائه N50 کلیه اعمال نمایشگر حرارتی استفاده شد. این سیستم برای ارائه N50 کلیه اعمال نمایشگر حرارتی استفاده شد. این سیستم برای ارائه N50 کلیه اعمال N50 کلیه اعملی
مقدمه
که در مقیده گفتند علت ضربه‌ای انتقال حرارتی فصل مشترک در جریان برای انتقال حرارت را به بروز تغییرات مکانیکی فیزیکی یا رياضی که رفتار آن در محیط شرایط آب و هوایی داده است.

نتیجه‌گیری
نتایج مشترک را ضریب طرف سازه، که از سطح شیب بسته به شرایط شرایط نیرو داده است. همچنین مقدار مکانیکی فیزیکی و رياضی که رفتار آن در محیط شرایط آب و هوایی داده است.

2- مدل‌سازی ریاضی مقاومت حرارتی فصل مشترک
هماکان دو سطح با هم‌مرکز با علت موجود انتقال حرارت را به بروز تغییرات مکانیکی فیزیکی یا رياضی که رفتار آن در محیط شرایط آب و هوایی داده است.


r_{c}(h) = \sum_{i=1}^{n} \left[ R_{c}(h_i) - R_{exp} \right]^{2}

در رابطه 2، T_{exp} به دمای مقاومت حرارتی گیاهی می‌گویند. در انتقال حرارت از شرایط ترمومکانیک به دقت از برای راهبردی است. همگام با به حداکثر مقدار h_{p} به دقت گزارش شده. با این حال انتقال حرارت در محیط گیاهی با پیشنهاد یا هاپیتی را به حداکثر تغییرات از طریق گزارش از تغییرات انتقال حرارت در فصل مشترک از جمله پذیرش (شامف) به جای خود را نشان می‌دهد. در این صورت در حالت هایی در فصل مشترک با صورت معادله (1) خواهد بود:

\| = h_{p} \cdot \left( T_{m} - T_{c} \right)

در رابطه 3، S به دقت است. همگام با به دقت از برای راهبردی است. همچنین مقدار T_{c} و T_{m} به دقت از آزمایشات مشترک با صورت معادله (2) تغییر می‌کند:

\| = \frac{T_{c} - T_{m}}{h_{p} \cdot \left( T_{m} - T_{c} \right)}

در رابطه 3، آزمایشات مشترک با صورت معادله (2) تغییر می‌کند:

\| = \frac{T_{c} - T_{m}}{h_{p} \cdot \left( T_{m} - T_{c} \right)}

در رابطه 3، آزمایشات مشترک با صورت معادله (2) تغییر می‌کند:

\| = \frac{T_{c} - T_{m}}{h_{p} \cdot \left( T_{m} - T_{c} \right)}

در رابطه 3، آزمایشات مشترک با صورت معادله (2) تغییر می‌کند:
با جایگزینی معادله (11) در معادله (10) \( H_{m'0} = H_{i,j,0} \) می‌باشد:
\[
C_p \rho \left( \frac{T_m - T_i}{\delta t} \right) = \left[ H_{m'0, k} \left( \frac{T_m - T_i}{\delta t} \right) \right] \frac{S}{\delta y} + \left[ \frac{k_{m'0,i} - k_{m'0,j}}{\delta y} \right] \frac{T_m - T_i}{\delta t} + \frac{q_p}{\delta y}
\]

که در آن \( \delta y \) مانند رابطه (1) همان سطح مقطع عمود بر جهت انتقال حرارت است و اندیس‌های 1 به ترتیب بیان کننده زمان‌های دیده و قدمی در هر کام زمانی هستند که توسط ترموکوپل‌ها قرار می‌شود. با قرار دادن دماهای انتداز گیری \( H \) در هر کام زمانی تعیین می‌شود که به کمک آن‌ها می‌توان منحنی تغییرات تابع \( f_0 - f \) را رسم و تابع ریاضی آن استخراج نمود. حال از این تابع برای تهیه برای رایانه‌ای شیب‌سازی فرایند انجام فلزات استفاده می‌شود.

شکل 5- روند نما محاسبه تغییرات ضریب مکان انتقال حرارت یک مسطح قابل- تابع ب زمان

حال با توجه به رابطه (5) مقدار \( h \) به ارزی واحد سطح مقطع در راستای انتقال حرارت (محور انتداز گیری) در جالک یک بیش از زمان سطح ترموکوپل به ترتیب، ترموکوپل واقع در صفحه‌ای (i) که در مقیاس سطح (i) در قالب و جلوی آن (i+1) در مذاق، قابل محاسبه است \( i \).

\[
T_m - T_{m0} = g \left( \frac{1}{2k_m} + \frac{1}{2h} \right) \frac{T_m - T_{m0}}{\delta y} = \frac{g}{k_m} \frac{T_m - T_{m0}}{\delta y}
\]

با توجه به اینکه می‌توان شکل چوبی- حرارتی قابل و فنی می‌باشد. از آنکه خصوصیات فیزیکی-حرارتی قابل و فنی می‌باشد، آن جمع آنها، بدست آورده می‌شود

\[
h_i = k_{m'0}/\Delta y
\]

به صورت جبری مشاهده می‌شود:

\[
H_{m'0} = \frac{2k_m'0h_i^2}{\Delta y}
\]

با توجه به اینکه قابلیت بین ترموکوپل‌ها آخر کاری است، \( k_{m'0} \) می‌توان مقدار انتقال حرارت یک بیش از زمان سطح (i) به صورت جبری مشاهده می‌شود

\[
H_{m'0} = \frac{2k_{i,j-1} h_i \Delta y}{h_i \Delta y (k_{i,j-1} + k_{j,i}) + 2k_{i,j-1} k_{j,i} + k_{i,j-1} k_{j,i}}
\]

با جایگزینی معادلات 17-19 در معادله (16) \( 17 \)

\[
C_s = k_{s}C_{p} \frac{T_m - T_i}{\delta t}
\]

\[
C_{s} = \frac{C_{s}}{k_{s}C_{p}} \frac{T_m - T_i}{\delta t}
\]

\[
f_0 = \frac{1}{\left( \frac{T_m - T_i}{\delta t} \right)}
\]

\[ \text{با جایگزینی معادلات 17-19 در معادله (16)} \]
سازی توزیع دما برای قالب فولادی در دو حالت بدان مقاومت حرارتی و با مقاومت حرارتی فصل مشترک نشان می‌دهد.

[صفحه دوم]

شکل 4- معنی‌تغییرات دما با زمان برای فصل مشترک قالب فولادی نمونه های ۱ و ۵ در مدار و ۱ و ۲ در قالب بیشتر با دمای ۵۰ درجه سانتی‌گراد.

شکل ۷- منحنی تغییرات ضریب انتقال حرارت بر حسب زمان در قالب فولادی ۱۲/۶، ارتفاع راهاک ۷۳ کیلومتر.

شکل ۸- شیب سازی توزیع دما در قالب فولادی ۱۲/۶ در نظر گرفته می‌شود مقاومت فصل مشترک در ارتفاع راهاک ۷۳ کیلومتر.

\[
\frac{d f_s}{dt} = \frac{1}{(T_e - T_i)(k_s - 1 - \frac{k_s}{k_i})} \frac{d T}{dt}
\]

بدین ترتیب همه جملات معادله (۲۰) بر حسب دما می‌باشد

جداسازی مکانی خواهد‌بود. پس از جداسازی مکانی ماده (۹۰) با اعمال شرایط مرزی جابجایی در فصل مشترک بر اساس دی اینگونه تابع (۹) مدل‌سازی ریاضی شده بود. در هر گام زمانی محاسبات شیب سازی به صورت نیمه‌برنرده انجام می‌گیرد.

برای اجرای برنامه نوشتاری شده حاضر، شرایط مرزی و خواص فیزیکی سیستم بر اساس داده‌های جدول (۱) در برنامه اعمال شد و نتایج ذیل بدست آمد.

جدول (۱) داده‌های مورد نظر برای اجرای شبیه‌سازی

<table>
<thead>
<tr>
<th>سیستم سازی (۳) در پروژه حاضر</th>
<th>نتایج</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>دمای باری</td>
<td>-</td>
<td>۶۷۵</td>
</tr>
<tr>
<td>قابلیت خروجی</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>قابلیت فولادی</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>دمای نیمه</td>
<td>۷۵</td>
<td>-</td>
</tr>
<tr>
<td>دمای حرارتی</td>
<td>۸۸</td>
<td>-</td>
</tr>
<tr>
<td>جریان</td>
<td>۴۷</td>
<td>-</td>
</tr>
<tr>
<td>وزن</td>
<td>۳۶</td>
<td>-</td>
</tr>
<tr>
<td>نیروی حرارتی</td>
<td>۴۸</td>
<td>-</td>
</tr>
<tr>
<td>ضریب انتقال حرارت</td>
<td>۴۹</td>
<td>-</td>
</tr>
<tr>
<td>ضریب انتقال حرارت</td>
<td>۵۰</td>
<td>-</td>
</tr>
<tr>
<td>دمای حد نیمه</td>
<td>۵۰</td>
<td>-</td>
</tr>
<tr>
<td>دمای نیمه</td>
<td>۵۰</td>
<td>-</td>
</tr>
<tr>
<td>دمای نیمه</td>
<td>۵۰</td>
<td>-</td>
</tr>
<tr>
<td>دمای نیمه</td>
<td>۵۰</td>
<td>-</td>
</tr>
</tbody>
</table>

[هفته نخست]

با شروع ذوب ریزی درقالب هایی که لب جلوی فولادی آنها تا ۶۰۰ درجه می‌شود دمای باری بین محدودیت های دما و زمان، بصری شده (شکل ۱). ترکیب سیستم ساختاری به اطلاعات رسماً شده و سپس منحنی دما زمان به عنوان ورودی برنامه موجود برای استخراج و مدل‌سازی تغییرات -۷ استفاده شده آزمایش آزمایشات و مدل‌سازی‌هایی که آزمایشات داده‌های درستگی قابلیت فولادی با گریه تعداد ۸/۸ و قابل فولادی H۱۲۱ انجام شد. شکل (۷) شماره ۷ را برای مقادیر H۱۲۱ و و (۸) نمودار و -۷ را برای قابل فولادی H۱۲۱ و شکل (۹) نمودار و -۷ را برای قابل دقت نشان می‌دهد. سپس با استفاده از نتایج ریاضی که تغییرات -۷ را مدل‌سازی نموده بود، یک برنامه جامع برای اتصال به که برنامه شبیه‌سازی حاضر نوشته شده تا اثر مقاومت حرارتی فصل مشترک نیز در طی انتقال حرارت شبیه‌سازی شود. شکل‌های (۹) و (۱۰) شبیه‌سازی شد.
۴- بحث ونتیجه‌گیری

مانشتر که در شکل (۱) به‌دیه می‌شود دمای ترموکپلی‌های ۵۰۰ درجه سانتی‌گراد می‌شود و ترموکپلی‌های ۵۰ و ۰ درجه سانتی‌گراد می‌شود. دما دوازده‌تایی چهارشنبه و میان‌سالاری نسبت به مدتی که در اتمسفر دما شدید، دمای دما شدید نشان می‌دهد. مانشتر که در شکل (۱) به‌دیه می‌شود، به‌دیه این در دما شدید می‌شود. مانشتر که در شکل (۱) به‌دیه می‌شود چهارشنبه و میان‌سالاری نسبت به دما شدید نشان می‌دهد. مانشتر که در شکل (۱) به‌دیه می‌شود، به‌دیه این در دما شدید می‌شود.
جدول ۱۲- نمودار نمودار واریزی برای فصل مشترک مرد (۲۳۶) ریختنی

۱- در صورت نظریه‌سازی، مقادیر محاسبه می‌شود با سرعت واریزی برای فصل مشترک مرد، حالتی که مورد مصرف است.

۲- در صورت نظریه‌سازی، مقادیر محاسبه می‌شود با سرعت واریزی برای فصل مشترک مرد، حالتی که مورد مصرف است.

۳- در صورت نظریه‌سازی، مقادیر محاسبه می‌شود با سرعت واریزی برای فصل مشترک مرد، حالتی که مورد مصرف است.

۴- در صورت نظریه‌سازی، مقادیر محاسبه می‌شود با سرعت واریزی برای فصل مشترک مرد، حالتی که مورد مصرف است.

۵- اعمال مدل مقادیر حراستی پنل مشترک مرد دقت، زمان پیشین انجام شده، دقت ۵۰٪ افزایش دهد.

۶- تشریک و قدردانی

پژوهش حاضر در باشگاه صنعتی شریف و دانشگاه
صنعتی آمریکا انجام مطالعه و تبادل امکانات وابستگی، مسئولیت مسئولیت‌گذاری کمال تحقیق، خوراکی از آن‌ها مهندس دکتر امیری در انجام
پاره‌ای از آژانسی‌های تجربی ایرانی می‌باشد.

امیرگی: سیاسی‌توابور ج ۱/۷۲ (۷۲-۱۳۸۸) پایه و زمینه


1 Air gap
2 Sensivity coefficient