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ABSTRACT

In this article we introduce a new class of skewed Cauchy distributions, called very skewed Cauchy, and
study properties of this class. Also, we make inference on skewness parameter. We compare this new class with
skew Cauchy distribution and the skewed Cauchy distribution introduced by Behboodian et al. in the year 2006.
We show that this new class model skew data better than skew Cauchy.
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1. INTRODUCTION

Many real world data that have been collected are
skewed. On the other hand, there are some outliers lie in
such data. For instance, consider the traffic data of a
computer network, obviously in some hours of the day such
as 10-12 or 14-16 it is very heavy but in some other hours
such as 1-6 there is just little traffic.

Many methods have been developed in order to model
data with outliers, or skewed data. A simplest way to
achieve symmetry is to exclude the outliers. But a suitable
technique to analyze these kinds of data is using a proper
model which considers outliers.

Reference [3] extended normal distribution to a general
skewed class, called skew-normal. This family of
distributions was developed by many authors, such as [4,5,
6, 10, 15, 18, 21]. This class of distributions is not such
heavy tail which may be needed. In order to. solve this
problem skewed Cauchy is developed by some authors like
[1,7, 13, 16]. But still there are some shortcomings such as
difficulties to make inference on skewness parameter or
fitting skew data properly.

In this paper we introduce a new class of skewed
Cauchy distributions, called very skewed Cauchy. This
class has two main advantages: 1. It is a member of
exponential family (has many inferential advantages), 2. It
models skew data better than skew Cauchy ( 1-stable).

In Section 2 we define a very skewed Cauchy random
variable and study some properties of it. In Section 3 we

make inference on skewness parameter. Section 4 dedicates
to some comparisons among very skewed Cauchy, skew
Cauchy and skewed Cauchy distributions. Finally, in
Section 5, some concluding remarks are provided.

2. VERY SKEWED CAUCHY DISTRIBUTION AND SOME
PROPERTIES

For simplicity computational sake, we introduce a very
skewed Cauchy probability density function, pdf, in the
following steps. In fact these steps may explain our
motivation.

1
1. Consider Cauchy kernel: ———,xeR.
1+x

2. Multiply Cauchy kernel by an exponential term, which
e—larctan(x) :

I+x

parameter.

simplifies our computations, that is:

where A is a positive Note that

d arctan(x) = !
dx 1+x%

3. Calculate the normalizing constant, which is equal to
A
2sinh(A7/2)
Based on the previous steps, the pdf of a very Skewed
Cauchy random variable can be defined as follows:
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Definition 1 4 random variable X has very skewed

Cauchy (VSC) distribution  with  parameters A,
X ~VSC(L) , if its pdf has the following form:
1
f\, (X) - : /1 1 - e-ﬂarctan(x)’ xe R,ﬂ, > O ( )
’ 2sinh(A72) 1+ x~

From (1) an explicit expression for the cumulative
distribution function, cdf, of X can be obtained as:

[an e — S PR

Ar
2sinh(~——
( B )
It can be shown that:

Fyl(x)=tan (“:1{ In(e*™ - x(2sinh (A7/2)))) @

We can use (3) by several means, e.g., finding quantiles
or generate random numbers. If P(X < ¢q)= p, then we
have:

g= tan(~;1€ln(e“ * — p(2sinh(A7/2)))) @

Also we can use probability integral transform theorem
to generate a random sample, X,,...,X,, from VSC

distribution with parameter A . We have:

X = tan(»%—ln(e"”’z ~ U, (2sinh(A72))), i=1,..,n

where U, is a random number generated from ynjform[0,1]

distribution.
Theorem 1 Let X be a VSC random variable with
parameter A . Then it is unimodal.

Proof. To prove that fy(x;A), VSC density, is
unimodal we find maximum of in(f L Ad)).

oln f(x; A)
Ox
only if x*+xA—1=0. The last equation has two real

2 2
xl:—/1~«/2/1 +4,xzz~l+\/2), +4 e have

— 0= x=-2, and azlnfxz(x;/’»):o if and
o

roots

2 : .
X, <—ﬂ,/2<)c2 and w

is negative for any
Ox

point between x, and Xx,. Therefore, ;’i is the unique
2
mode.n
Corollary 1 If X ~VSC(4) then

mode (X)=-1/2.

The VSC pdf can be written as A(x)c(A)e” ™,

where h(x) = ! >0 v,{:...wl >0>

@ =72 D= 2
wA)=A(LeR") t{x) = —arctan{x) (x € R).
Thus VSC belongs to exponential family (see [14], p. 23)
and “learCta”( X,) is a complete sufficient statistic for

A . The expectation and variance of 7, = arctan(X,) are:
I 7t 1
B(T)) =~ ~Z-coth(Am2) Var(T)) = Z-csch* (1) -5

Theorem 3 If X ~VSC(A) then E| X | does not exist
ifr>1.

Proof. By Lyapounov's inequality, it suffices to prove
that E(| X |) = . We have:

A i
E(X])=
CORINEL 2sioh(A72) 1+ %2

First consider the case X > 0, we have:

-A arctan(x)dx

_1 00 »——l i S
E(X) o - -E x - A.arctan(mdx
2sinh(Ax/2) T+x
Now by taking x=u, i:j? oA g = g and
+x

using integration by parts, we have:

© -
Y 2 o
g X . e larctan(x)dx: xe larctan(x) ];o ”g o /’Larctan(x)dx
I+x
o0 —_—

Now we just need to calculate f e P gy We

know that:

An
w w O o o0 ¥
- < arctan(x) < Fhada f e 2dx< g e e gy
For the case X <0 a similar method can be applied,
and the proof is completed. O

3. MAKING INFERENCE ON SKEWNESS PARAMETER

In order to draw inference on skewness parameter of
VSC distribution, first we find maximum likelihood
estimator of A . For this purpose we should maximize (5).
There exist standard methods for this target.

2 5
,l 'AZarctan(xi) n l ( )
W= Gazgle U

The proof of following lemma is straightforward.

Theorem 2 Let X ~VSC(A) and Y ~ Cauchy(0,1), if Lemmla 1 Consider
” T
A->0 then X and Y are identically distributed. g(x)=———coth(xm2),x > 0. Then:
Proof. By using the Hospital's theorem the proof is x 2
straightforward. o () g{x) is strictly decreasing.
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(i g(x) e (*5,0)

Theorem 4 Let X,..., X be a random sample from a
VSC distribution, and x,,...,%x, be the corresponding
observation.  Then MLE(A) exists if and only if
~n7z/2£>::':jarctan (x,)<0.

Proof. Let

1%

MA)=—Inl(1)=

(4 57 D

n(%-gcom(;mz)) -3 arctan(x, ) =

ng(A)+r(x)

By Lemma 1, ng(A) is strictly decreasing and lies in
(=nm/2,0). h(A) has exactly one root (MLE exists) if
and only if —nw2<i(x)<0 by the intermediate value
theorem (see [19], p. 93). o

Consider the case 7 =1, we have:
P(~a2 < arctan(X) < 0) =
1

2 sinh(An2)(exp(~nAnl2) — 1)
i.c., there exits a set with positive probability which MLE
does not exist. Therefore, we introduce an alternative
estimator of A based on quantiles. The following measure
of skewness is introduced in [8]:

ﬂp - (Qy.,, - Qo.ﬁ) - (Qo_s - Qp)

lep - Qp

see also [12]. Reference [9] has shown that £ , satisfies

>0, VAe(0,0)

four properties introduced by Van Zwet [22] for a proper
skewness index. It is obvious that ﬂp always exists and

robust with respect to outliers. For robustness of B, we use

breakdown value. The breakdown value of an estimator is
the fraction of that can be given arbitrary values without
making the estimator arbifrary bad, the idea attributable to
[11]. For instance, the breakdown value of median is equal
to 0.5 which means that 50% of sample can be changed
arbitrary while the median stays with no change, this
quantity is equal to 0 for mean. It can be shown that
breakdown point of B, isequalto p.

We find the quantiles of VSC in (4). Consider Qp, the

where 1 is

P -th sample quantile computed from X(an It

the sample size, | np | is the integer part of mp and y , is

the £ -th order statistic of the random sample X|,..., X, .

Thus, sample 5 computed by - ., _Q})s )“(AQo‘s -0,) .
9.,-0,
An estimator of A can be computed by solving
B,(A)=pB,(X,...X,).
A difficulty in using the quantile-based estimator is to
choose the appropriate p amount. Now we introduce a

similar estimator based on mode of the distribution which
does not depend on any unknown parameter.

Reference [2] introduced a measure of skewness with
respect to mode. That is:

y=1=-2F. (M)

where F,(.) is the cdf of a continuous unimodal random
variable and M is the unique mode of this distribution.
They also have shown that y satisfies all properties of an
proper skewness index.

We find the unique mode and cdf of VSC in Theorem 1
and Equation 2. Therefore,

1
=17 eiﬁZ _e—vﬂamtan(—ﬂz)
g {2 sinh(4/2) ( )

The mode-based estimator is the solution of
7D =7(x,...,x,), where 7=1-2F, (M) and M is

the sample mode.

The main difficulty of three previous estimators is their
numerically computation. The rest of this section dedicates
to some estimators which can be caleulated analytically.

We find that —Z; arctan(X,) is a complete sufficient

statistic for A. By an informal way, a complete sufficient
statistic for the parameter A is a function of a random
sample from this distribution which consists of all of the
sample information about A, ie., it knows all the sample
information about A and all of its information is about /.
Therefore, it is desirable to find an estimator of A based on
such a statistic.

Remark 1 Rao-Blackwell theorem justifies that a
Junction of complete sufficient statistic which is unbiased
Jor A is uniformly minimum variance unbiased estimator
(UMVUE) of A .

We introduce 7= 7(X,,...,.X,) = ~> " arctan(x,)/n as an

estimator of A which is a one-to-one function of the
complete sufficient statistic of 4. Some properties of this
estimator will be studied.

Remark 2 When n > o0, Var(T) - 0.

The proof of following lemma is straightforward.

Lemma 2 g(x) = coth(x) - 1-x , x>0 is a strictly
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increasing function.

Theorem 5 bias(T',A) € (0,00).

Proaf. Using Lemma 2 and Hospital's theorem the proof
is straightforward. o

Remark 3 T always overestimates A .

Now we introduce a Bayesian estimator of A . For the
sake of computational simplicity we introduce the following
prior distribution:

7(4)
the corresponding posterior is attained as follows,

n
—ZZ arctan {x;)

a(Alx,...,x,yece

w 25mh}(:17z/2) 150

therefore,
A\ %%, ~EXP(1/ Y arctan(x,))
where EXP(¢) indicates the exponential distribution with

paremeter ¢ . The Bayes estimator with respect to quadratic
error loss is
I .
>0 arctan (x,)
The proof of following proposition is straightforward.
Proposition 1 If X ~EXP(A) and E(X)= A, then the
p—th quantile of X , q,, is as follows:

q,= -Aln(1-p)
By Proposition 1, the Bayes estimator with respect to
absolute error loss is

E(Aln =

1
> arctan(x,) .
1
Z; arctan{x,)
In Section 2, we show that VSC pdf belongs to
exponential family and 7' = —arctan{X) is a sufficient

median(A| x) = ~In0.5

~0.69

statistic for A. It can be shown that this family has
monotone likelihood ratio, MLR, property with respect to
T . By using Karlin-Rubin's theorem one can find the
uniformly most powerful, UMP, level (size) « test for

testing H,: A <A, vs H,:A=4,. Thatis,
1 Ty
p(X) = {O et
is an UMP size ¢ test, where P(72¢,)=¢. It can be

shown that:

N S R
F: 0 2sinh(m/2)(e e
. z‘;]n(ew ~2(1-@)sinh(2))

For testing H, : F = I, where [ is a known VSC

cdf, against H,:F # F,, one can use nonparametric

methods such as tests based on chi-square test or empirical
distribution, e.g., Kolmogrov-Smirnov, KS, test. Since we
have the closed form of the cdf, performing these tests is
straightforward, Also we can use a quantile-quantile plot for
this purpose.

4. COMPARISONS

In this section we compare VSC (very skewed Cauchy),
skew Cauchy and skewed Cauchy distributions. We note
that VSC is a negative skewed distribution (despite its
positive valued skewness parameter).

Now we define a skew Cauchy random variable, which
is well known as stable random variable with index 1, or 1-
stable random variable, e.g., [20].

Definition 2 A random variable X is skew Cauchy (in

standard form) if and only if X  has the following
characteristic function:

« ) 2
gy()= EXp{— [e](1+ lﬂ; sgn(f)In|s 1)},
where g is the skewness parameter, -1<p<1, and

sen(u)=-1,0,0r 1 ifu <, =, or > 0, respectively.

By [7], skewed Cauchy random variable defined as
follows:

Definition 3 4 random variable X has skewed Cauchy
distribution with parameter A, if its pdf has the following

Jorm:
i Ax
Sx )= (1+ )
R le(+ )R
12
1 x ?"ﬂﬂ:z
= e (14 5g1(f) o)
{1+ x%) N
1+(1+ ,Z)xz
1-p
where the last equation is skewed Cauchy pdf with
- A reparametrization.
N1+ 2
As we mentioned before, in the skew Cauchy

distribution the skeweness parameter, [3, belongs to

[~1,1]. Therefore, we need a proper reparametrization for
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VSC to enable us comparing it by skew Cauchy

distribution. We introduce g~ — -
i+ 22

It can be shown that, 8" e[-1,0], f* = -1 1 —w,
and " 50 4 —0.

reparametrization.

The pdf in (1) with respect to the parameter (3 is as
follows.
2
1 - lﬂ;zz arctan(x)

Fr(x)= =
5

Now, we are able to compare very skewed Cauchy,
skewed Cauchy and skew Cauchy via their pdfs and cdfs in
Figures 1 and 2.

By Figures 1 and 2 one can find out VSC has heavier tail
than two other distributions.

In order to compare goodness of fit of VSC and skew
Cauchy distribution on skew heavy tail data, the following
procedure is introduced. We use abbreviations SC for
skewed Cauchy and SSC for skew Cauchy (first "'S” refers
to stable).

1. Generate 50 random numbers from VSC, 1=1,10,20;
SC, 4 =-1,-10,-20, and SSC, A = -0.7,-0.995,—-0.999 .

2. Calculate MLE of skewness parameters of VSC and
SSC for each 3 data sets in step 1.

3. Calculate Kolmogrov-Smirnov (KS) goodness of fit
test statistic for 2x3 different permutations of models and
data sets for each parameter.

4. Repeat steps 1-3, 10000 times.

5. Calculate means and standard deviations (S.D.) of KS
statistics.

Table 1 shows simulation results based on previous 5
steps. As one can find out by Table 1, fitting the VSC
model generally leads to smaller KS statistics. On the other
hand, the results show that VSC dominates SSC in 3
different types of data sets for each parameter. That is, the
means of KS statistics for fitted VSC distribution is less
than the means of KS statistics for fitted SSC distribution.
Figure 3 may show this matter better in a visual way.
Obviously, just where the sample generated from SSC the
performance of VSC and SSC are close to each other and in
any other cases VSC is clearly better. In particular, when
the skewness becomes greater; i.e., A becomes greater, the
performance of VSC model is much better than the SSC
which shows that VSC is a much suitable model for heavy-
tailed data.

The method of finding MLE for skewness parameter of
skew Cauchy is described in [17, p. 379-400]. Note that
since the MLE( 1) of skewed Cauchy distribution does not
exist in many cases, and there is no estimator as well as
MLE, we ignore comparison its goodness of fit with VSC
and SSC. However, we keep the samples generated from SC
in order to compare goodness of fit of fitting VSC and SSC
models on a third different heavy tail sample.

At last, the similarities of VSC, SC, and SSC are
classified in Table 2 ("e" shows property of the
distributions).

5. CONCLUSIONS AND REMARKS

In this paper, a new class of heavy tailed distribution was
introduced which form an exponential family. Also, its
properties were studied and made inference on its skewness
parameter. We showed that this distribution dominates
1—stable distribution for fitting on skew heavy tail data.
The similarities of VSC, SC, and SSC are classified.

Finally, we should note that, VSC pdf can be extended to
location and scale distribution family, to reach more
flexibility for modeling different data sets. VSC pdf with
location, scale and skewness parameters is given by:

fey=—2 ]

2sinh (%75) o

1 «ﬂarctan(x_#)

e L xueRA,0>0

1+ Gy
ag

For future research we will investigate to inference on
parameters of the location-scale VSC family and its
applications.
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Table 1: Mean and S.D. of KS statistic of fitted VSC and SSC distribution to the simulated data from VSC, SC, and SSC distribution for
different parameters.

Lo K5 Statistic

Distribution VSC(l) SC(-1) SSC-07)
VSC  Mean (S.D.) | 0.086 (0.024) | 0.091 (0.025) | 0.085 (0.022)
SSC__Mean (S.D.) | 0.273 (0.054) | 0.221(0.055) | 0.187(0.058)

Disibution VSC(0) SCC10) $5C(-0.995)
VSC  Mean (S.D.) | 0.090 (0.027) | 0.159 (0.030) | 0.105 (0.0234)
SSC_ Mean (S.D.) | 0.770(0.035) | 0.357 (0.022) | 0.120 (0.038)

Distbution VSC20) SC(00) $5C(-0.999)
VSC_ Mean (S.D.) | 0.094 (0.029) | 0.163 (0.030) | 0.105 (0.023)
SSC_ Mean (S.D.) | 0.865(0.026) | 0.367 (0.017) | 0.120 (0.038)

Table 2: Similarities between VSC, SC, and S8C

Property VSC SC SSC
Form an exponential family ® o o
Has more heavier tail than two other distributions @ o o
MLE does not always exist ® ® o
Has close form of pdf, cdf and quantiles ® ® o
When 1 - 0, converges to symmetric Cauchy distribution ® ® ®
E|.x | does not exist for r 21 ® ® ®
Is unimodal ® ® e
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Figure 3: Comparing goodness of fit of VSC and SSC models
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