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Example 4:

In this example we will consider an
asymmetric body of elliptic cone with b=1,
cone half angle of 10.26 degrees in the
windward plane , and an ellipticty of 1.5, i.e.
B=2.25. Starting from an initial shock wave,
24 iterations were required to converge the
subsonic - transonic solution for a region with
M < 1.05. This took about 105 seconds on a
pentium-200. Circumferential surface
pressure distribution at an axial location of
x=0.3 is compared with the results of
computer codes HALIS® and STEIN? , and
results of Ref.16. The agreement is
unexpectedly very good. Present results
match the results of Ref. 16 very well. In

I’

y 1

Figure (1) Side view of shock wave geometry.

T

¥ ‘S'(p

Figure (2) Rear view of shock wave geometry.
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comparison to HALIS/STEIN results, the
higher prediction of present algorithm is in
the same order of the prediction of Ref.16;
otherwise the overal prediction is impressing.

Having presented the above examples it
can be concluded that the present algorithm
is capable of predicting inviscid flowfields
around hypersonic body noses with different
geometries at angle of attack. In all cases very
good results were predicted when comparing
with experimental data and other numerical
results. The method is an approximate
engineering one and the accuracy of its results
should be analyzed in this context and the fact
that its computer costs are very low.

Figure (3) Side view of shock-oriented
curvilinear coordinate system.

Figure (4) Front view of shock-oriented
curvilinear coordinate system.
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Example 2: |
Consider a spherical nose at zero angle of

attack. The inviscid flowfield around this nose
is solved for free stream Mach numbers of 5,
10, and 20. Solution domain of this symmetric
flow includes the subsonic-transonic region
where M_< 1.2 For the mentioned Mach
numbers, the following figures were
observed. Number of iterations needed for
shock - shape correction were 20, 10, and 11,
respectively. Number of points along the
surface (i.e. in & direction ) were 53, 52,juand
51, respecvtively, and CPU time of execution
on a pentium-200 were 38, 22, and 23
seconds, respectively. Pressure distributions
along the surface from stagnation point to the
end of solution domain are plotted against the
results of Ref. 20 (Riley) and the finite-
difference Euler code of NSWC[21] in Figs.
9, 10, and 11. In these figures p, is the surface
pressure and w indicates the position angle
of a point along the surface. As seen surface
Mach number of 1.2 occurs at w =57.9, 56.0,
and 53.14 in these figures, respectively. The
agreement between the present results and
those of Ref.20 is generally good. Both of
these results have predicted higher pressures
in comparison to the prediction of NSWC
code. However, as an approximate method
which has the advantage of being economic
and very fast in terms of computer
performance, the present results have
excellent accuracy. Note that results of Ref.
20 lie some where between the present results
and the experimental data. It should be
mentioned that approximate methods perform
better when the shock layer is thinner.
Therefore at M_ =5, it has cost more iterations
and CPU time for solution convergence.

Example 3:
In this case an axisymmetric paraboloid at

Amirkabir/Vol. 12/No. 47/ Summer 2001

12 deg. angle of attack is experiencing free
stream Mach number of 9.9. Starting with an
initial shock shape, the fully three-
dimensional subsonic-transonic flowfied
around the body is obtained after 15 iterations
of shock- shape correction. With pentium -
100 processor this computation took less than
two minutes. The only available data for
comparison is the pressure distribution along
the surface in plane of symmetry; this is
shown in Fig. 12. As seen comparison is made
with the experimental data of Ref.22. In this
figure, ; is the distance along the surface
starting from the stagnation point. In the
leeward section the agreement with
experiment is very good. In the windward
section, however, present method has
predicted pressure higher than that of
experiment . However, the agreement is still
good since we are comparing our results with
experiment.

To compare the shape of shock wave
produced by such a paraboloid body, free
stream Mach number is changed to 5.73 for
which experimental data are available in
literature. Comparison of shock shape with
the experimental data of Ref.22 is presented
in Fig.13. As seen, the agreement with the
results of Ref.22 is very good; although the
present method has predicted a shock wave
which is a bit closer to the body. In this case
18 iterations were performed in less than 2.5
minutes to determine the correct shock wave
and its fully 3D flowfield for the paraboloid
atM_=5.73. Again, note that more efforts are
spent at lower Mach numbers. It is noted that
the iteration procedure implemented in this
paper is more simple than that of Refs. 11 and
12, however the number of iterations needed
for convergence is higher than those given in
these references.
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calculations.

Note that this is the procedure for subsonic
transonic region. Although there is no
limitation to apply the above procedure in
supersonic region, a space marching approach
is more convinient and easy to apply in this
region. This is not considered in this paper.
Finally we mention that the variables are
nondimensionalized as given bellow

L' ’
- wers
d p VL
o oo T
\4 ’
Vz—-,—-— P=-E7—-
V°o pw
p=—2L L
, ’2 ,
PV v?
, R'T
T=1_  S—
T v

where prime denotes dimensionalized
variables, subscript o indicates free stream,
and L represents the reference length.

4-Results

In this section numerical results obtained
by the present method are compared with
those obtained from experiment and other
numerical results. A as was mentioned before
we are using an inverse method. Therefore
the flowfield behind a given shock wave is
first solved to obtain the corresponding body
shape. Since this body shape will not match
usually the shape of real body, a process of
repeating shock-shape correction and solving
the flowfield behind of it is continued until
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the calculated body matches the real one.
Therefore, the first example chosen in this
paper is to evaluate the algorithm for the first
part of the above process.

Example 1:

Consider a symmetric shock shape of
f=2x. Angle of attack is zero and M_=25.
Twenty one points are chosen in the direction
of normal to the shock wave. Along the shock
line, i.e. £ direction, position of points
depends on the accuracy chosen in the
variable step-size integration of six variables.
Integration steps are small at the front of shock
wave since it is higly curved in this region.
For the same accuracy, larger steps are taken
at the downstream of the shock. On a
computer with pentium-100 processor it took
less than 10 seconds to calculate flowfield
between the shock wave and its corresponding
body (the resulted body with y =0). In Fig. 7,
the body shape calculated by the present
method is compared with the one obtained in
Ref. 14. The agreement is excellent. Figure 8
demonstrates the good agreement that exists
between the two pressure distributions. The
small difference between the results is
because Ref.14 calculates pressure from a
formulation excluding a (n*-1) term given in
Eq. (10); it is expected that pressure
distribution of the present method would be
more accurate.

In next examples, inviscid flowfield is
solved around several 3D bodies. Obviously
our test cases would be limited to cases whose
results are available in the literature of
approximate engineering methods. In all of
the following examples 21 points are chosen
in direction of 1 between the shock and body,
and the circumferential direction of B =0° to
B=180" is subdivided into 18 sections (i.e.19
points).

Amlrkabir/Vol. 12/No. 47/ Summer 2001



h = yz (28)

B (B2y2 +22)0‘5
_ YZ
Voo g 29
where

1 B2 cos? B+sin2 B)
sinBeos B Beos? Brsin? B

(30)

With these shock line variables at each J3,
values of p, u, v, p, and enthalpy,j, ,are
calculated for different values of 1 along a
line normal to the shock; see Fig.6. Shock
stand-off distance is also calculated for each
B at x_. All of these quantities are computed
using limiting form of Eqgs. (10-14); see Ref.
16.

4) Since the initial values of shock line
variables are known, Egs. (21-23) can be
integrated to obtain their values for different
€ along the three B constant lines. It is obvious
that when these values are determined at each
£ and B, Egs. (10-14) should be used to
calculate shock stand-off distance, n,.
Therefore by marching along B constant lines
all of the flow variables and gemetric values
have been determined for shock layer under
these three shock lines. Marching procedure
is stopped, whenever at the calculated body
(where y =0 ), surface Mach number
becomes supersonic on B constant lines.

5) Having known n,(§, B) at all § along the
three B constant lines, the calculated body
shape for the assumed shock wave has been
already specified. It remains to compare this
calculated body shape with the shape of the
given body. Based on a defined error, if these
two bodies match each other the guessed
shock shape would be the one that will be
produced by the given (real ) body Otherwise

\
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the shock shape should be so corrected that it
results in a calculated body with less miss -
match. Since the shock shape is generated by
six parameters, six equations are required for
calculation of new parameters. The procedure
is as follows
a) At the end of three shock lines of f=0°,
90°, 180°, errors in body position and its
slope are estimated as

n, -n
b b

e o2 im0y

1 (ie),

! nb geo ]
an—angeO

erz(mvn ) (ie), (31)

bgeo

in which subscripts geo and ie indicate real
body and the last integration point on the
shock lines, respectively, j represents the
shock line number, and —is backward
differencing operator along b constant
lines.

b) Based on these errors new positions and
slopes are estimated at the last integration
points of the three shock lines.

¢) Imposing these six conditions to shock
shape equation of (16), results in a
nonlinear system of six algebraic
equations. New values of shock shape
parameters b, b, b,, ¢, ¢,, and d, are
obtained by iteratively solving this system
of equations. With these values steps of 2
to 5 are repeated until the six shock
parameters remain unchanged within a
defined tolerance. Now , since the right
shock shape for the given body nose is
specified, one can repeat steps 2 to 4 for a
number of B constant lines (e.g. 19 lines)
to determine the whole solution domain
between shock and body; this will be
needed later for supersonic flow
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_E_)_f_i_n__r_‘_ =-K cosT (23)
ds £

s

where%:f-s% . The above equations are

obtained using Egs. (1) and (7), and relations
transforming coordinates between cylindrical
and curvilinear systems [16]. Values of PP,
and v, should be also calculated since they
are defined at the shock surface by Eq. (12).
Note that as is seen in Figs. 3 and 4 a shock
line is formed from intersection of a B-
constant line with shock surface. Equations
(21-23) are reported in Ref. 12; however in
this reference instead of s, integration variable
of x is used. Due to this replacement the first
PD.E. in Egs. (21) is eliminated, and right-
hand-side of other five equations are divided
by cosI. Note that for axisymmetric flow only
one shock line is needed.

The integration is performed numerically
using a variable-step size, second-order,
predictor-corrector scheme [19]. In this
scheme, shock line variables at location i,
representing current &, are calculated using
their values at two previous locations i-1 and
i-2. Predicted and corrected values at i are

compared with each other. If the error is less

than a prescribed value, the step size A& (or
As) is acceptable, otherwise the step size is
varied until the above criterion is met. Note
that the above scheme can be started from i=3,
and for i=2 a second-order Runge-Kutta
scheme may be used. Reference 16 has
proposed to transfer s, the distance along a
shock line, to a time-like variable, ¢, so that at
each integration step the same axial location
is ensured for all shock lines. This
transformation relation is

0 x 0

% cosT a5 (24)

We have adopted the above transformation
since it makes the numerical calculation of
other derivatives (specially in ¢ direction)
convenient .

3) Integration cannot be started from
stagnation point, i.e. § =0, since this point is
asingular point. Therefore using limiting form
of shock shape given by Egs. (15-18) at
stagnation region, i.e. £ — 0, initial values of
shock line variables x, r, ¢, T, hﬁ, and A will
be determined for all shock lines originating
from this region (at this stage only three of
them ). A limiting from of shock shape could
be an elliptic paraboloid as

By2+22=2cx
where
RZ
c=R,  B= e (25)
y

and R and R, are shock radii of curvature at
the origin in x-y and x-z planes, respectively.
By choosing a small value for €, x-coordinate
is determined for stagnation region using

£2=0cx e (26)

where subscript € indicates initial values at
stagnation region . Although in Ref. 16 a value
between 0.01 and 0.1 is proposed for €, our
experience is that values around 0.03 work
very well. As before f§ = ¢, and therefore 9,
is determined for each of the three shock lines.
Using Eq. (25) r, and therefore y, and z_are
determined for each . Continuing derivation
of other shock line variables of I", h, and v,
the following expressions can be obtained for
the limiting case of stagnation region based
on their definitions.

[

tanT = (27)

2 0.5
®%y% + 2%
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B o=12 (17)

Note that f (x,0) is radial coordinate of the
3D shock surface in shock cylindrical
coordinate system. The three longitudinal
conic sections are introduced as

F2+b x?2c, x+2d, xf, =0 k=123 (18)

where k represents shock profiles for ¢ = 0°,
90° and 180°, respectively. This shock shape
has the limitation of not allowing inflections
in the axial direction. Therefore sonic line
should remain on the blunted nose of body.
The shock shape, defined above includes nine
parameters of b, ¢, and d, where k=1, 2, 3.
For a shock wave with continuous curvature
at the origin in the plane of symmetry c,
should be equal to c,.

Additional constraints on coefficients dk,
which are d, = 0 and d, = -d, imply that the
shock would be symmetric with respect to x-
y plane. Therefore, angle of attack is only
defined in the x-y plane. With these
constraints the number of parameters reduces
to six.

3-SOLUTION PROCEDURE

In this section, the iteration procedure for
determining six parameters of b, b,, b3, Cps
Cy and dl is introduced. These parameters
define the shock shape that will be formed
ahead of a body nose with the following
formulation

r=f(x,9) (19)
where

=2 = 9= .2 T T2 20)
f (Bcos” ¢ +sin“ ¢ }=2x-b x (

in which r.x.¢ are the body-cylindrical
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coordinates. Figure 5 demonstrates positions
of shock and body axes with respect to each
other. In this equation, the non-dimensional
nose radius in ., plane is equal to unity.
Parameter g governs the ellipticity of the
body cross section; g = (ellipticity)®. The
parameter , determines the longitudinal
shape of the body. An ellipsoid is produced
if; 20, and a paraboloid is generated if
=0. For determination of shock wave
parameters following steps should be taken.
Note that in this procedure flowfield is also
solved behind the shock wave.

1) Initial values are guessed for the above six
parameters. For an axisymmetric flow these
six parameters reduce to b, and ¢ . Better
values can be guessed using Ref. 18.

2) By moving along three shock lines of
B=0°,90°, and 180°, extending from
stagnation region to the end of subsonic
region, shock line variables of x, 1, ¢, I', hﬁ,
and y_ are calculated at each E. These
calculations are performed by integrating the
following partial differential equations along
the three shock lines.

ix_ =cosl’
ds
Qf- = sincosd
ds
30 sin " cos &
s =" - @2n
oh
--—B- =h k tanT
s B B
oy
S =h sinT (22)
Js B
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equations .

PEBM=P EB+P, &8 [n1]+P, & 1]

(10)
vE.B M =v, EB) +v, EP[N-1] (11)
where
Yy u_ k
P](é’ B):.—.f___i_.é..
hg
WS VS
,B)=- K +K
Y1 &P h cosF( §+ ﬁ)
B
Y, vy tanl
P s = (K K
2 & B) o0 ( et B) (12)

p

in which subscript s indicates values just
behind the shock. Most of the details for
derivation of Eqs.(10-11), and assumptions
used for this purpose are given in Ref. 16.
Some of these assumptions are that velocity
component w is zero throughout the shock
layer, curvilinear coordinate (€,8,1) is strictly
orthogonal ,u= u, v=v, w=w, and B=1.1It
is noted that Egs. (10-11) are approximate,
however, they can be explicitly used to
calculate p and v along the lines normal to
the shock, i.e. 1} variable lines at constant &
and B. For calculation of shock values P> P,
and v, in relations (12) the shock geometry
should be known; this will be introduced later.

Having calculated p at each point along
an M variable line, other thermodynamic
properties of p and h can be evaluated using
isentropic relations for a perfect gas. In fact
at each point, 1 and therefore \ is known;
see Fig. 5. Since the flow is isentropic along
the streamlines, thermodynamic properties at
each point are related to their values just
behind the shock for the same v; these

include p,T and enthalpy h. The other
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component of velocity , u, would be calculated
knowing that the total enthalpy is constant ,
ie.

~ 1,200
H=h — =H
+ 5 W+ ve) - (13)

The other important equation that is
obtained by integrating Eq. (6) is

_— =_S |
b 5 h ou (14)
B o

Using this equation , n,, the normal distance
between the shock and the calculated body
(where y =0) is computed at each & and B.
This distance is along 1} variable line towards
the body.

Shock geometry

Based on the suggestion of VanDyke and
Gordon [17], shock surface produced by a
longitudinal conic-section body shape can also
be described by a conic - section. Using this
idea the three-dimensional shock surface in
the subsonic-transonic region can be
represented by three longitudinal conic-
sections blended in the circumferential
direction with an ellipse as

r=f(x.9) (15)
where f (x, 0) is defined as

7 2[ B ocos 2gusin 20J+£C (cosp=D x) (16)
in which

2

F1f3

g(x) =

Cw=Boolfs-f,)
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flow. Therefore, if F(x, 1, ¢ ) = r-f (x, ) =0,
then the unit vector & would be

Er d
eu=E @
[v¥|

Unit vectors éé and é[5 are tangent to the
shock surface and are so chosen that éé would
be in the direction of tangential velocity, and
& is perpendicular to & and € ,ie. &= € X
€. The velocity vector in shock coordinate
system is defined as,

- A N

V=u/e\§+ven+weﬁ 3

in which u, v, and w are velocity components.
Based on the definition of é& and éB _the
crossflow velocity component at the shock,
w, would be zero. It is noted that this
curvilinear coordinate system is not
orthogonal within the three-dimensional
shock layer. For thin shock layers, however,
orthogonality can be assumed in the outer
inviscid region of shock layer (i.e. excluding
boundary layer). Transformations between
curvilinear, cylindrical, and cartesian
coordinate systems must be available to
complete the analysis. Details of these
transformations are given in Ref. 16, and will
not be discussed here.

Stream functions
According to Ref. 15, two stream
functions W and @ are such defined that

- >

pV=V \px_V>d> Substitution of this relation

in continuity equation, and rewriting this
equation in curvilinear coordinate system
yields [12]

puh  B=OY 0% 9y 9®
B o on on IP

p\/h h :.?.\.'V_ a_(b_ — .a_\y_ .Q.(_)l.
£ B 06 o B 9E
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owhn A=Y 30 2y 0P )
3 on 0§ o0& on

in which p is density, h, and hg are scale

factors in § and [ directions respectively, and

A and B are geometric factors given by

A=1-nK B=1-nK (5

3 p

where kg and kB répresent curvatures of the
shock surface in §&~n and &-P planes,
respectively. For a blunt body at hypersonic
speeds it can be assumed that with a good
approximation w = 0 in the outer inviscid layer
[14,15]. This assumption is satisfied if ® be
a function of B, e.g. ® = B. In this case, the
last equation in (4) is satisfied and for y we
would have

d
AL - (6)
o _

Pressure equation
The momentum equation for steady
inviscid flow is

—> - 12
V.VVv=-Vp (8)
P

inwhich p is pressure. Again rewriting this
equation in curvilinear coordinate system of
(¢,8,n), and assuming w=0 , the momentum
equation in direction normal to the shock , 1.e.
n, becomes [12]

u

—_— L av +uk
A

P Vo= = €)
hé ok &

Euations (6,7) and (9) are the governing
equations for the outer inviscid flow in the
shock layer. Without discussing any details,
by defining a new coordinate system of (§,3,1)
where n= 3, the two following important
equations can be obtained from these -

37



boundary layer. Using boundary layer
analysis at stagnation point and on a flat plate,
relations can be obtained for determination
of convective heat transfer coefficient, C, as
a function of boundary layer edge properties
and wall temperature, T . Fortunately, these
relations can be modified for axisymmetric
flow, and if the body is at angle of attack or it
has a non symmetric geometry, they can still
be modified to determine C, along streamlines
on the surface of body [1-5].

From the above discussion it is clear that
the solution of inviscid flow not only is
needed for calculation of C,, but also is
required for determination of streamilne paths
on the surface of body [3,6,7]. Although
numerical solution of Euler equations are
more economical than that of N.S. equations,
they are still not fast enough. Various
approximate engineering methods have been
developed to calculate distributions of
pressure, temperature, and velocity
components on the surface of body [8-13].
All of these engineering methods, that solve
Euler equations approximately, are essentially
based on Refs. 14 and 15. The first step in the
procedure of these inverse methods is to
assume a shock wave for the body at
hypersonic flow. Flowfield calculation starts
right behind the shock wave and will be ended
where the stream function y becomes equal
to zero. The surface with y=0 defines a
calculated body for the assumed shock wave.
Based on the error between geometry of
calculated and real bodies , a new shock wave
is introduced. Calculation procedure is
repeated until the computed body matches the
real one. To make the calculation faster, such
an iterative procedure is only applied to
subsonic-transonic portion of the inviscid
flowfield, and for the supersonic portion a
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marching method is used in which the shock
wave is modified step by step.

In this paper, using an approximate
engineering method, inviscid flow is solved
around a number of hyperonic noses, and their
results for subsonic-transonic region are
compared with other numerical results and
experimental data. In all cases excellent
agreement is observed. These results include
flowfields behind a parabolic shock wave,
around a spherical nose at zero angle of attack.
around a parabolic body at angle of attack,
and around an elliptic cone at angle of attack.

2-Analysis

As stated in previous section, inviscid flow
is solved using an inverse method, therefore
it is needed to define an initial 3D shock
geometry. This geometry is introduced in a
cylindrical coordinate, as r=f(x,0). According
to the views of shok geometry, shown in Figs.
1 and 2, angles of I'(x,¢) and 5¢(x,¢) are
defined as

=14
tan 3, % (1)
g = q) hae 6¢

tan I’:éf- cosd,
dx

In these figures, €, €, é¢, are unit vectors
of cylindrical coordinate. Note that in
axisymmetric flow 8¢ = 0. The shock oriented
coordinate of (€, B, n), to which the Euler
equations will be transferred is introduced in
Figs. 3 and 4. According to these figures, &
and P represent coordinates of a point on the
shock, and n would be the normal distance
from this point towards inside the shock. Such
a coordinate system, which is co-centered
with cylindrical coordinate, is suitable for the
analysis of thin shock layer in hypersonic
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Abstract

Aerodynamic heating calculation of a hypersonic body is normally performed during the—l

| critical part of its flight trajectory. This requires solution of inviscid flowfield around the |

hypersonic body and most crucially around its nose, for several times. In this paper, using |
Thin-Shock-Layer theory, three-dimensional Euler equations are transferred to a shock-oriented
I coordinate, and by implementing appropriate approximations, an inverse method is applied
for the calculation of flowfield between the shock wave and the body surface. Based on the
nose shape of a hypersonic body flying at M_a three-dimensional shock geometry is first

behind the shock wave is numerically calculated. From this calculation the resulted surface

: estimated. Using explicit formulations obtained from the inverse method, inviscid flowfield
I
I

with zero stream function corresponds to a nose that has produced the estimated shock wave. I
I Based on the error between this nose and the real one, the 3D shock shape is repeatedly I
changed until the calculated nose matches the real one. Using this engineering approximate
I method, which is very fast, all of the flow variables can be determined in the solution domain. |
IAn excellent agreement is observed between the results obtained in this paper and those I
| calculated by others or extracted from experiment. Since the method is very fast it can be used |
for preliminary design, or parametric study of vehicle aerodynamics and thermal protection I
at hypersnoic flows. Such a fast method is also desirable for making initial conditions suitable I

: for CFD codes.
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1-Introduction

Since Aerodynamic Heating is a function
of V_*, its consideration in hypersonic flights
is more important than that of aerodynamic
forces. Therefore in high speeds the first
concern is the large amount of heat production
on the surface of vehicle which highly
increases the shell temperature. One way to
calculate this shell temperature is to solve
viscous flow equations around the body and
heat balance equation within the shell,
simultaneously. At the present, solution of 3D
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viscous flow equations around a hypersonic
vehicle, or even its nose, at angle of attack is
expensive and very time consuming. If such
a calculation was needed only once, the cost
and time were not a major problem. However,
the difficulty is that shell temperature should
be calculated during parts of flight trajectory
for several times.

The method often used is to split the
flowfield into two regions of viscous flow in
boundary layer and inviscid flow outside the
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