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Figure (2) Comparison of variational results
for rigid-rigid boundary conditions
(M=N=1)
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as

= 1 W 2 —;ﬂ— Z’—-JL + -4;& -
w 3 ()12 cos s X €OS 3Ly cos 3Ly A-1
where L is length of the side of the hexa-
gon and is related to the wave number k as
k = 4x/3L. Hence, noting that a = ki,

W=0@z==x (A-2)

1
2

W (z) 1s given by equation (20) and can
be tabulated when the variational equation
(29) approaches a solution for a given [> /
K.

It may be proved (see [15]) that horizon-
tal velocity components are related to verti-
cal velocity components as

o1 oW (A-3)
u_-Ot—zaxaz
-1 3w

Thus, one may plot the velocity compo-
nents of a cell when R, a, and therefore W
(z) are known. Fig. 3 shows a sample plot,
where vertical velocity (w/W (z)) is plotted
as contours and horizontal velocity (vectori-
al sum of u/?é%ng’% u/?g%3 fot-
ted as horizontal vectors. This theory has
been verified experimentally by Arrayo et.
al. [14].

Nomenclature

dimensionless wave number
concentration of diffusing fluid
d/dz operator

effective diffusivity in porous medium

@

oM g o 0 e

porosity

gravity constant

o

24

K permeability
I fluid layer thickness
m time constant
Nand M variational parameters
p pressure
Rierma thermal Rayleigh number
u; velocity components of fluid
) z-component of the velocity
W(z) dimensionless z functionality of w
X; position in fluid layer
X, external force in i direction
z vertical coordinate
Greeks
a coefficient of expansion
B inverse concentration gradient
6 perturbation in concentration
(z) dimensionless z functionalitiy of 6
LS thermal diffusivity
A% kinematic viscosity
u fluid viscosity
p fluid density
superscripts
prime perturbed
subscripts
c critical property
property at reference concentration
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\ e 35
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Figure (1) Comparison of variational
results for rigid-rigid boundary

conditions to Lapwood [9]

and Katto and Masuocka [10]
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Rayleigh number for rigid-free boundaries
is 1/16" of odd solution to rigid-rigid one,
and the corresponding wave number is one-
half of that of odd solution. No such simple
relations could be found between the solu-
tion to porous odd rigid-rigid and porous
even rigid-free soultion. Therefore, an anly-
sis similar to the previous section was ap-
plied to rigid-free boundaries.

As mentioned earlier, the origin of coor-
dinates system is placed at the lower sur-
face. If the origin of coordinates system
was assumed to be at the middle of the
layer, from the boundary condition
W=0@z== % it would be concluded that
W has an odd and an even part. However,
boundary conditions (18) and (19) do not
imply that the soultion is symmetric. There-
fore, no simplification can be made to equa-
tion (26) and P,,, Q.,, P',, and Q',, should be
calculated in a way similar to rigid-rigid
boundaries. It should be mentioned that
since cos [(2m + 1)nz] does not satisfy the
boundary conditions (18) and (19), it is re-
placed everywhere by sin [2m + 1) niz] in
the analysis.

6 - Results and Discussions

Fig. 1 compares the results obtained in
this study, by solving equation (29) for rig-
id-rigid boundaries when N and M were set
to 1 with those proposed by Lapwood [9]
and Katto and Masuoka [10]. The results
for N = M = 1 are up to 6% different with
respect to the results for N = M = 0, while
only negligible modification to the calculat-
ed critical Rayleigh is obtained when N =
M = 2 is used. It should be noted that the
critical Rayleigh numbers obtained from
the odd solution are higher than those of the
even solution and therefore they are dis-
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carded.

The relative difference between critical
Rayleigh numbers calculated in this study
and those of Lapwood [19] , and Katto and
Masuoka [10] for K/I? =0.01 are 42% and
19%, respectively. The errors reduce as K/I*
is reduced.

Fig. 2 compares the variational results
for rigid-rigid boundaries to that of rigid-
free boundaries, both obtained in this study.
In a same manner to rigid-rigid boundaries,
choosing M and N to be greater than 1 does
not change the results noticeably in rigid-
free boundaries. It may be observed that
wave number a obtained for rigid-rigid
boundaries are greater than those obtained
for rigid-free boundaries. Therefore, it may
be concluded that smaller cells are formed
when both boundaries are rigid compared to
when one of the boundaries is free (Appen-
dix).

7 - Conclusion

The instability analysis described in this
study tackles the problem in its general
form without any simplifications. No im-
provements in results were obtained by in-
creasing the values of variational parame-
ters, i.e., M and N, above 1. Therefore, it
may be concluded that the obtained results
are more accurate than previously reported
ones.

Appendix - Cell Pattern

As it may be deduced from symmetry
considerations and it was first experimen-
tally investigated by Benard [1] , the hexag-
onal cell pattern prevails in a layer of fluid
when convection starts. The details of hex-
agonal pattern are given by Bisshopp [13].
The vertical component of velocity 1s given
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tiplying both sides of equation (21) by A,
and taking the summation over m we obtain

(Dz-a2)(D2-a2-12/K)z AWy =Y Ancos [2m +1)7z

(22)

which when compared to equation (14)
gives

F=Y Ancos [(2m + 1) nz] (23)

Therefore, equation (17) is also satisfied.
Substitute W and F from equations (20) and
(23) in equation (15) to get

= Ap - 2
F~2 e cos [(2m + 1) nz) =Ra 2‘ AnWn(2)
(24)

where

Yo2m+1 == L (25)

@m+1)*n2+02
The solution to equation (21) is

W = Pmcosh az + P 'y sinh az + Q , coshbz
+ Q 'm sinhbz + ¥ 2ms1 ¥ 2m + 1 cos [2m + 1) nz}]

(26)

where

Vome1=——o>A— and b=Ya2+1%/K

em+1)%n2+b?

It is obvious that W, consist of an even
part (summation of cosine terms) and an
odd part (summation of sine terms). Appli-
cation of boundary conditions (16) requires
that either the even or the odd part to be
zero. Consider the even part and therefore
assume P', = Q', = 0. Applying boundary
conditions (16) to equation (26) and solving
the resulting system of equations yields P,

22

and Q,.

To evaluate A, equation (24) is multi-
plied by cos [(2n + 1) nz] and integrated
from

z:—-l-toz=ltogive
2 2

l_An_=Ra22 (0l MAn

29 241
@)
where
1
(alm) = j 2 Win (2) cos [(2n + 1) 1z ] dz 28)

[N)

Equation (27) is a system of N (or M)
equations and N (or M) unknowns (one
should take N and M equal in order to solve
the system). To ensure that non-zero solu-
tion exists, the determinant of the system
has to be zero. Hence,

=0 (0=0,1,...,N, m=01,.., M)

(29)

~~.ﬁm_d_wug(n{m)
0-2R'Y m+}

Equation (29) is an implicit relation be-
tween R, [ K and a. One may assume a
value for / */K and using equation (29) plot
R vs.a. If a suitable range for a is selected, a
minimum in R should be observed which is
the critical Rayleigh number. The corre-
sponding value of a is the critical wave
number that gives the dimension of the con-
vection cells formed (Appendix). It should
be noted that, as larger N and M are select-
ed, the accuracy of calculated R, will be
higher. However, the calculations become
more complicated.

Rigid - Free Boundaries
Chandrasekhar [15] stated that in a layer
of fluid (non-porous media), the critical
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where Dd/dz, and ® and W are z func-
tionalities of 6 and vertical velocity of fluid
w, respectively

The right hand side of equation (12) is
defined as F and this definition is used in
equation (13) to obtain:

(D*-a?) (D’-a2-1YK)W=F (14)

D?-a?)F=-(1%K)RaZW (19)

gap

eV

where R =2 KI* ig the Rayleigh number.

4 - Boundary Conditions

Equations (14) and (15) should be solved
with the appropriate boundary conditions.
Two different cases are considered:

1. Rigid surfaces at top and bottom of
the liquid layer

2. Free surface at top and rigid surface at
bottom of the liquid layer

Rigid-Rigid Boundaries

For this case, the origin of coordinates
system is placed in the center of the fluid
layer. This choice causes the problem to be
simplified, as will be discussed later.

Apparently, u =0, v = 0, and w=0 on rig-
id surfaces , and in addition, from equation
(4) it follows that dw/dz = 0. Or, in non-
dimensional form

W=DW=0 for z== (16)

B |

Moreover, since the concentrations on
boundaries are maintained at certain values,
they can suffer no changes and 6 = 0.
Therefore, from the definition of F it fol-
lows that

F=0 for Z:t—;j (17)
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Rigid-Free Boundaries

For this case, the origin of coordinates
system is placed on the lower surface.
Again W = 0, and since the shear stresses
are zero on the free surface, it may be
shown that {15]:

W=D?W=0 for z=1 (18)

On the rigid surface, equation (14) is re-
written as:

W=DW=0 for z=0 (19)

equation (15) is still satisfied by the
same reason as Rigid-Rigid boundaries.

5 - Variational Solution

The perturbation equations (14) and (15)
are to be solved for rigid-rigid and rigid-
free boundaries using variational methods
without eliminating wv’y, term and impos-
ing no restriction on A*/k. The solution
strategy is analogous to non-porous system
by Chandrasekhar [15].

Rigid-Rigid Boundaries

Consider equation (14) for rigid-rigid
boundaries, according to equation (14), W
should be zero on either boundaries. As-
sume that W can be represented in series as

W=2Amwm(l), 20

where Wm (z) is to satisfy the equation

(D2 a2 D*-a?-1% K)Wn = cos [(2m + 1) nz]
21

Note that right hand side of equation
(21) becomes zero on the boundaries. Mul-
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porous medium that is finite in height and
infinite in two other directions. The varia-
tional method is used to solve the perturba-
tion equations resulted from instability
analysis. Values for critical Rayleigh num-
bers as well as wave number vs. [ */K corre-
sponding to two various top and bottom
surfaces are obtained, i.e., rigid top-rigid
bottom surfaces, and free top-rigid bottom
surfaces.

2 - Governing Equations

Consider a fluid in which the density is a
function of position x; (j = 1, 2, 3), confined
in a porous medium. The density variation
is due to dissolution of gas with a concen-
tration of C (z). Let u; (j = 1, 2, 3) denote
the components of the velocity. In writing
the various equtions, we shall use the nota-
tion of Cartesian tensors with the usual
summation convention. The governing
equations are formulated as follows:

(1) Continuity equation
9 _

0 “)

OX

(ii) Equations of motion

.L@.i..}._\u__.ui+uj§gi_:--l_ﬂ.+ LXi+szui

E ot pogK ax; Pogx; Po

4)
(i11) Equation of diffusion
E%(t1 +Uj§—x(—:j~=DeV2C (6)
(1v) Equation of state
p=poll-a(Co-0) (7

where «, E, and x, denote coefficient of
expansion, porosity, and external force in i

20

direction, respectively.

In writing equations (4) and (5), Boussi-
nesq assumption was accepted (see Nadolin
[12]). Therefore, variation of p and u was
neglected in most of the terms except in the
term px; in the equation of motion.

3 - The Perturbation Equations
Consider an infinite horizontal layer of
fluid in which a steady inverse concentra-
tion gradient is maintained. Since there is
no motion, the initial state is one in which

uj=0 and C=C €))
Moreover , equation (6) reduces to

viCc=0 €)
which upon integration yields

C=Cq-pz (10)

where B is the inverse concentration gra-
dient and C, is the concentration of gas at
the upper surface. Let the initial state de-
scribed by equations (8)-(10) be slightly
perturbed and the altered concentration dis-
tribution be

C'=Co-Bz+80 (1D

The corresponding perturbation equa-
tions to equations of motion and diffusion
derived in a way similar to that of Pellew
and Southwell [5]:

(Dz—az)(Dz-a2—lz)W=(%fllz)a2® (12)

(D2~a2)®=-(£12)w (13)

e
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cosity and thermal diffusivity of the liquid,
stable equilibrium is still possible when the
density increases positively upwards, pro-
vided that the density gradient does not ex-
~ ceed a certain critical value. The appropri-
ate dimensionless expression for the density
gradient is the Rayleigh number
4
R dp gd” (1)

thermal =a 1K s

where d denotes a typical linear dimen-
sion, such as the radius , and « denotes ther-
mal diffusivity.

Pellew and Southwell [5] have studied
the problem of stability of a layer of liquid
heated from below. Their theory is repre-
sented by Chandrasekhar [15] where values
of 657.5,1707.8, and 1100.7 are derived for
two free boundaries (no momentum crosses
the boundaries), two rigid boundaries (no
heat crosses the boundary), and one rigid
and one free boundaries, respectively. More
boundary condition types are discussed by
Hashim and Wilson [6].

The onset of convection in porous media
has been studied via mass as well as ther-
mal diffusion. When regarding the diffusion
of heat into the fluid and the media, one
should take into account part of the heat
transferred through the media itself. This
problem does not appear when working on
mass diffusion in porous media, because
the media is usually impermeable to mass.

Wooding [4] has studied the stability of
a viscous liquid, the density of which in-
creases with height because of the presence
of a dissolved substance, in a vertical im-
permeable tube containing porous material.
He defined the Rayleigh number for a vis-
cous liquid of variable density in a porous
medium to be
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where K is the permeability of the por-
ous medium, d is tube diameter, and D, is
the effective diffusivity of the dissolved
material. The value of critical Rayleigh
number was suggested to be 67.94. Saidi
[16] reports a value of 26.4 for the critical
Rayleigh number defined as

& ubD

conducting a  gas-oil  diffusion-
convection stability analysis in a cylinder.
Here L is the height of liquid column that
retains the inverse density gradient and p, is
density of fluid with a reference gas con-
centration. Zebib [7], and Bau and Torrance
[8] take into account the rule of cylinder as-
pect raio. Bau and Torrance [8] suggest a
critical Rayleigh number of 27.1 [as de-
fined in eq. (3)] for long cylinders.

Lapwood [9] studied the same problem
for various boundary conditions in porous
medium ignoring the term uv *u ; in the
momentum equation. He proved that
R.K/P=4x’, which states that in porous me-
dia the critcal Rayleigh number is a func-
tion of dimensionless term P/K, where [ is
the layer thickness and K is permeability.
Katto and Masuoka [10], though limiting
the préblem to low values of [ 2/K where a
simplifying symbolic approximation is val-
id, did not ingnore the uv *u , term, hence
giving more accurate critical Rayleigh num-
bers. Kaviany [11] experimentally exam-
ines the dependency of onset time on criti-
cal Rayleigh number and permeability.

This study, is concerned with the stabili-
ty analysis of a layer of fluid, the density of

~ which increases linearly with height, in a
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Abstract
ittt il T R R St
| An instability analysis in a horizontal porous layer is made for a fluid with |
| an inverse density gradient. The governing equations resulted when instability |
' analysis is applied to this problem, are non-linear and therefore mathematically
1 complex. In published literature, the problem is solved with some simplifica-
 tions such as ignoring certain terms in the governing equations, or finding alge-
! braic approximations that are valid in some specific range of physical parame-
ters.
i
I In this study, the problem is solved in its general form for two rigid, and one

1 ing critical Rayleigh numbers and critical wave numbers vs. I*'/K curves are

I compared to previous works.
1

i
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1 - Introduction

In a novel EOR (Enhanced Oil Recov-
ery) method, diffusion-convection may be
employed as a drive to force heavy, viscous
oil to move . A bed of gas is expanded be-
neath oil, and gas is allowed to diffuse up-
ward. As oil dissolves gas, it becomes
lighter. Therefore, an inverse density gradi-
ent is developed in oil layer gradually.
When this density gradient exceeds a criti-
cal value, convection is started . It may be
.concluded that developing a theory, which
predicts the onset of convection, should be
of practical importance to reservoir engi-
neering.

Early investigations on the instability
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: rigid and one free boundary conditions using variational methods. The result- |
i

I

i

1

I

i

I

i
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I

analysis were conducted in non-porous me-
dia. The stability of a column/layer of lig-
uid that maintains an inverse density gradi-
ent has been of concern as early as 1900.
The earliest experiments to demonstrate in
a definitive manner the onset of thermal in-
stability in fluids are those of Benard [1].
Benard set up an inverse density gradient in
a layer of fluid and showed that when insta-
bility prevails, a regular hexagonal pattern
forms. On the theoretical side, the funda-
mental theory is that of Rayleigh [2].

Hales [3] has studied the instability of
water in a long vertical tube heated from
below. Owing to the damping effect of vis-
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