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Fig. (16) Convergence trend for shock impingement
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cluding regions with strong upstream ef-
fects. The developed algorithm has been ap-
plied to several test cases. The results are in
good agreement with NS computation and
experimental data. Performance of the
present method has been compared with the
performance of the method used in Ref. 12.
It has been shown that the present method
converges faster, and this reduces the CPU
time some thing between 10% to 18%.
Eventhough the presented test cases were
limited to simple geometries, but it is hoped

that development of this method for compu-
tation of flows around complex vehicles
will also reduce the CPU time.
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Fig. (1) Length definitions for detection of IPNS region
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where the summation is over all points in
the IPNS region, (k=1, 2, ... Kmax).

The second case is a supersonic flow
over a 10° ramp. All the conditions in this
case are the same as those of previous one.
The finest grid used for this problem con-
tains 110 points in normal direction and
320 points in streamwise direction with 219
point in the IPNS region, i.e. 0.5 <x<1.8 .
Figures 6 and 7 show Mach number con-
tours and velocity vectors, respectively.
Distribution of pressure and friction factor
along the wall are shown in Figs. 8 and 9,
respectively. In these figures the IPNS re-
sults are compared with the NS results of
Hung and Mac Cormack [16]. As seen the
agreement between these results are excel-
lent. In Fig. 10 convergence trend of pres-
sure RMS obtained from the present meth-
od and the method of Ref. 12 are compared
with each other. In the present method the
number of iterations required for conver-
gence up to 10* is about 82% of those re-
ported from Ref. 12.

The third case includes impingement of
an oblique shock on a laminar boundary
layer developed on a flat plate, as shown in
Fig. 11. The shock angle 6 is 32.6°, the wall
is considered adiabatic, and the free stream
conditions are
Mao=20 Reyr =296 x 10°
The charateristic length is set equal to the
X-position of impinging point, i.e. L=0.049
m. Marching is started form the edge of the
plate with very small step size and is con-
tinued until position x=0.041. Then a con-
stant step size is used until station x = 1.61,
which is the end of solution domain. As
seen in Fig. 10, the height of solution do-
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Tew = 165" K

main is set equal to 0.65. Conditions behind
the oblique shock along the top boundary is
determined based on Rankine-Hugoniot
conditions. There are 170 grid points locat-
ed in the normal direction and 420 nodes in
the streamwise direction. From the latter
one 272 grid points are located in the IPNS
region, i.e. 0.5<x<1.53. Mach number con-
tours are shown in Fig. 12 and distributions
of pressure and friction factor along the
wall are shown in Figs. 13 and 14, respec-
tively. In these figures IPNS results, and
the conventional PNS results NS results of
Thomas and Walter [17] are compared with
experimental data presented by Hakkinan
et. al. [13]. It should be noted that in this
case a significant region of separation exists
in IPNS region. It is noted that the approxi-

mation used for the stability of the method

in separated regions does affect the detail of
the separation as shown in Figs. 13 and 14.
However, for such a difficult test case, the
IPNS results follow the experimental data
very well, and also the extent of the separa-
tion region is in excellent agreement with
the NS results and experimental data. In
Fig. 15 velocity profiles of IPNS in five
stations, are compared with the experimen-
tal data. As seen the agreement is very well.
Convergence trend of pressure RMS ob-
tained from the present method and that of
the method used in Ref. 12 are shown in
Fig. 16. It can be seen that with the present
number of iterations required for conver-
gence of 10™, decreases about 14%.

8- Conculsions

In this paper a method is presented for
the calculaton of pressure gradient in the
streamwise direction to develope a PNS
solver for computation of flow fields in-
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relations since approaximations have been
used in derivation of the above correlation
functions. With o,, ~ 1.2 good agreement is
observed between the numerical results and
experimental data. For more details about
these functions see Ref. 12. Using relation
(6), 1./8, is obtained as:

Lu F,,z___”CW(s.o +(0.2 +09 _Tl) (- 1)M£)
L RCL T

aw

(10)

in which F, and F, can be substituted from
either Eq. (8-a) or Eq. (9-a). Note that the
right-hand side of Eq. (10) is only a func-
tion of free stream conditions and solution
domain geometry. This equation together
with Eq. (8-b) or (9-b) can be easly used for
detection of IPNS regions in flow fields
over compression ramps and shock im-
pingement on a flat plate. As stated previ-
ously it is the above correlations that are
used in the present paper.

6 - Results

The proposed IPNS algorithm is tested
for three cases of two dimensional laminar
flow including regions with strong up-
stream effects. The first test case is a super-
sonic flow over a 5° ramp. Wall tempera-
ture is 606° K and L is considered as Im.
The free stream conditions are:
Ma=30 ReL = 1.68 x 10*

This problem has been solved in Ref. 15
using Navier-stokes solver. Although the
flow is not separated, the ramp induces sig-
nificant upstream effects. From the free
stream conditions at the edge of the plate,
solution is marched with a very small step
size until x=0. It must be noted that all of

Amirkabir/Vel. 11/ No. 43
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the lengths, discussed in this section, are
non-dimensionalized with characteristic
length of L. The computation then resumed
using a larger constant step size toward the
end of the domain. The height and length of
the computational domain are 0.7 and 2.0
repectively. The finest grid used to show
grid independent results, includes 100
points in the normal direction and 270
points in the streamwise direction (from x =
0.1 to x =2). There are 156 points located
in the IPNS region, i.e. 0.5 <x<1.6. Distri-
butions of pressure and friction factor along
the surface are compared with the solution
of NS computation [5] in Figs. 3 and 4, re-
spectively. The excellent agreement be-
tween the IPNS and NS results proves the
accuracy of our calculation in IPNS region.
Distribution of friction factor which is de-
fined as

du
= ar2) sooné (a_n)wall an
compares very good in the whole domain;
see Fig. 4. The pressure distribution howev-
er is a bit under-predicted from x=1.2 to the
end of the domain. As seen there is a larger
differenc between results of PNS and IPNS,
specially after the beginning of IPNS re-
gion. In Eq. (11) “n” denotes the normal di-
rection to the wall. Convergence trend
based on the root mean square (RMS) of
the relative change in pressure, in the IPNS
region, is shown in Fig. 5. As seen in this
figure, number of iterations required for
convergence .is neatly 20% less than the
one used in Ref. 12. The root mean square
is defined as:

RMszxfl K};(PP) (12)
K max k%1 Pk
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required CPU time and convergence rate
would be decision-making for choosing of
the method for evaluating pressure gradient
term.

5 - Determination of IPNS Appli-
cation Region

In this paper the IPNS region is detected
automatically. Simple flow fields with sin-
gle IPNS region is considered here. The
IPNS region is determined using a correla-
tion function which is derived based on the
geometry of solution domain and flowfield
parameters. For instance, Fig. 1 shows the
range of IPNS region for supersonic flow
over a ramp. As indicated, the IPNS region
is divided into two parts, a first part with
length of 1,, called upstream length, and a
second part with length of I, called down-
stream length. Correlation functions deter-
mine the ratio of 1, / & ,where & is the
boundary layer thickness at L. The experi-
mental relation given by White [14] is used
to specify the value of §,, as:

5L=L—‘f9—w«[so +(o.2 +09 lw.) -1 Mi} (6)
! RCL Taw

where in this relation:

Cw=pwhw/pPotos (Tw Te)™?

and

Taw=Tw(1+Y;m‘Mi

in which Pr=0.72

Based on dimensional analysis, 1./8, is
assumed as a function of four dimension-
less quantities of free stream Mach number
(M.), Reynolds number (Re,), ratio of wall
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temperature to adiabatic wall temperature
(T./T,.), and relative pressure change in in-
viscid flow (Ap/p=). For a case with adia-
batic wall, correlation function of 1./8, be-
comes:

i: F(4PP.)" ,(M)", Re) ] (7)
The constant a, b and ¢ have been specified
in Ref. 12 for flow fields of 2-D compres-
sion ramp and shock impingement on a flat
plate. In this reference IPNS algorithm, it-
self, is used for determining these con-
stants. By applying IPNS algorithm for dif-
ferent values of AP/P,, M, and Re, in the
whole solution domain, a variety of numeri-
cal data is produced. Now for each prob-
lem, constants of the correlation function
are determined using least square statistical
analysis. Beginning of the IPNS region is
indicated whenever the friction coefficient
deviates 1% from its value on a flat plate,
and the end of this region is determined
whenever this coefficient becomes con-
stant. The following correlations have been
derived by applying the above method [12].
For flow over compression ramps (see Fig.
2) we have:

_ l _ AP 3/8 ReB/S
F]——EI:-—GI('I—)‘:) M;’Z (8-a)
L-26 (8-b)

and for shock impingement flow fields (see
Fig. 11) we have:

Fo=liog,(8R) " Rel (9-a)
6]_, Poo Moo
L=23 (9-b)

by

Coefficients o, and o, appear in these cor-
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where S = At/AE. In regions where IPNS al-
gorithm is applied, implementation of rela-
tion (5) requires the information on down-
stream boundary of such regions (due to
presence of p“.,). In Ref. 11, Neumann
boundary condition is applied for pressure.
The pressure gradient is specified using su-
personic small disturbance theory and con-
sidering self similar nature of boundary
layer . The approach of Ref. 8 is to fix the
pressure gradient using its value calculated
from conventional PNS solver. What we
have applied in this paper is to equate the
pressure gradient with its value at the previ-
ous marching step. This condition is based
on the assumption that pressure is being lin-
early varied close to the downstream boun-
dary of these regions. The advantage of this
approach is that it can be easly extended to
a 3-D IPNS code. It must be noted that an
appropriate value of S falls between 0.95
and 1.03. In this range the number of itera-
tions are minimized . The value less than
0.75 causes solution instability. Results ob-
tained in this paper are all with S=1.0

3 - Modification Required in Sep-
arated Regions

As stated previously, space marching
method would be stable if the velocity com-
ponent in the streamwise direction is al-
ways positive. In separated regions howev-
er, this will not happen. But since the
mainstream flow is supersonic the nagative
velocities in separated regions are small,
and thus one way is to simply eliminate all

Amirkabir/Vol. 11/ Ne. 43
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the convection terms with negative stream-
wise velocities [12]. Instead of eliminating
these terms, the other approach adopted by
Ref. 13 is to keep their absolute values. In
Ref. 11, only a fraction of these absolute
values is employed. Refs 6 and 10 have
compared results of the above approaches
and demonstrated that all of them result in
the same solution; this fact is also observed
in the present paper.

In separated regions, the governing
equations are completely elliptic, therefore
w should be zero. In the present work, it is
shown that the convergence rate would be
optimum if w=0 between surface and boun-
dary layer edge in the separated regions.
This, in fact is equal to solving boundary
layer equations in each marching step with
a prescribed pressure distribution. The val-
ue of w is determined using the simple crite-
ria of:

W =

1 u<U5}

0 u>us

where u, is the nondimensional value of ve-
locity which is set equal to 0.99.

4- Solution Algorithm of PNS
Equations

In the present work finite volume meth-
od is used for the solution of two dimen-
sional/axisymmetric PNS equations in the
curvilinear coordinate. The components of
flux vector are evaluated using second-
order upwind method of Roe; for more de-
lails see Ref. 1. This algorithm has been
previously used in Ref. 12. The main differ-
ence between the developed PNS algorithm
IPNS in the present work, and that of Ref.
12 is the method of evaluating pressure
gradient terms. A comparison between the
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where o is a safely factor ranging from 0.75
to 0.95 , and M, is Mach number of flow in
the & direction. Using Vigneron’s method
Eq. (2) becomes:

&.}.Q_E_i.p&.yaﬁi:ar? v +(lﬁ*v (3)
9 9§ an

in which

Ei=E,+E;

and

Ep:‘}“[Epr*‘Epr}

Ef’:%[nghgny‘]

[ 0 i i 0 ]
\
1-
F,= 0 E,= (I-0)p
(I-w)p 0
L 0 J L 0 J
oy ] Copu ]
B = puv B = pu?+w
pv2+ wp puv
L Ei+p)v ] L EBi+p)v ]

In conventional PNS solvers, the (1-w)
fraction of pressure gradient is either elimi-
nated, or evaluated using backward differ-
encing. Several investigators have modified
the converntional PN$ solvers to permit the
calculation of flows with strong upstream
effects. One of the first attempts in modifi-
cation of conventional PNS solvers is the
work of Rakich [9]. His approach was to
use Vigneron’s method in which the (1-w)
fraction of pressure gradient is calculated
using forward differencing in the regions
with strong upstream effects; similar ap-
proaches have been also applied in Refs. 10
and 11. Thomson and Anderson [6] utilized
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a second order expression for the pressure
gradient, which includes a dissipation term
to improve the stability of the method.

The PNS equations with a modified
pressure term is applied either to separated
regions or the whole domain. The basic ap-
proach in all of the references is to itera-
tively solve these equations in a selected
domain. The procedure is that the solution
is marched from the beginning of the do-
main toward the end of it. Such a procedure
is iterated until a converged solution is ob-
tained. This PNS algorithm called devel-
oped algorithm, is also named as Iterative
Parabolized Navier-Stokes (IPNS) algo-
rithm. If the IPNS code is only applied to
regions with strong upstream effects (e.g.
separated regions), these regions should be
either predicted initially or detected auto-
matically. In Ref. 12, for instance , a meth-
od has been proposed for automatic detec-
tion of these regions. The method of Ref.
12 is adopted in the present paper and will
be discussed in section 5.

In IPNS algorithm of the present paper,
correction of the pressure gradient is per-
formed using Vigneron’s approach with an
additional pseudo-time derivative of pres-
sure multiplied by (1-w). Therefore the
pressure gradient term becomes:

(ap ! S PPt ( _o)[Ph-pi! pi'-pt]

98l i+ 1 AE AL At

4

in which superscript "n+1" indicates the
present iteration level, and subscript "i+1"
denotes the current marching step being
computed. After rearranging relation (4) we
get:

Amirkabir/Vol. 11 / No. 43



caus of the difficulties due to the matching
of two codes, it is preferred to apply a NS
code for the whole domain, although it
would be slower. The other approach adopt-
ed by researchers [4-7], is to solve NS
equations in supersonic region using space
marching technique . Since NS equations
should be solved iteratively in each march-
ing step, this method becomes very slow.
The last approach is to develop a technique
by which a PNS code can be used for the
solution of flows with embedded separated
regions. The modified PNS code may be
used either for the whole solution domain
[8], or only in the regions with strong up-
stream effects [9, 10]. The latter choice
needs less computational efforts, and this
makes the calculation faster. In this paper
we have adopted such an approach.

Detection of regions with strong up-
stream effects is automatically done by the
code. Although development of PNS codes
for the calculation of separated regions are
basically similar to each other, the main dif-
ference is their approach for the calculation
of pressure gradient term in the streamwise
direction. In the present paper, the pressure
gradient term is calculated using a new
method which considerably reduces compu-
tational efforts.

2 - Governing Equations

Based on the physical assumptions ap-
plied to the NS equations, different types of
PNS equations have been derived. The
main assumptions are, 1) elimination of
transient terms, 2) elimination of viscous
derivatives in the streamwise direction and
3) modification of pressure gradient term in
the streamwise direction for stability con-
siderations. The steady state two dimen-

Amirkabir/Vol. 11/ No. 43

sional/axisymmetric (a = 0, 1) NS equations
in the computational domain (g, v) is given
by: '

'Q—Q—'f‘ég'f'g-}f—-#aﬁ:O (1)
dgt  9E an

in which:

Applying assumptions 1 and 2, Eq. (1) be-
comes:
B, o o

+ oH; +oH
6  am on @)

in which the superscript * indicates that the
corresponding terms do not include viscous
derivatives in marching direction & PNS
equations are hyperbolic-parabolic in the
streamwise direction. Eigenvalue analysis
of these equaions dictates that a space
marching method is stable if 1) flow is su-
personic in the inviscid part of it, 2) veloci-
ty component in the streamwise direction is
positive in the subsonic region, and 3) pres-
sure gradient in the streamwise direction is
corrected to eliminate the elliptical behav-
ior of the equations in subsonic region.
Vigneron’s method [2] is the most common
approach for the correction of pressure gra-
dient term. Vigneron showed that the nature
of PNS equations remains hyperbolic-
parabolic in the subsonic regions without
separation, if only a fraction of pressure
gradient in the streamwise direction is in-
cluded. Using eigenvalue analysis the
amount of this fraction, called , is obtained
as:

2 .
® = min oy Mg 2,1
T+ (y-1)M:e

99



A New Approach for the Solution of Supersonic
Flows with Embedded Separated Regions
Using PNS Equations

M. Mirzaei
Ph.D. Candidate
Mechanical Engineering Department ,
Tarbiat Modarres University

H. Khaleghi
Assistant Professor
Mechanical Engineering Department ,
Tarbiat Modarres University

S.M. H. Karimian
Assistant Professor
Aerospace Engineering Department ,
Amirkabir University of Technology

Abstract

1 Conventional PNS codes cannot be used for the solution of supersonic flows
: with separated regions. In this paper a new method is presented for the modifi-

| cation of a conventional PNS code to solve supersonic flows with embedded sep-
! arated regions or regions with strong upstream effects. Flux vector components
1 are calculated using Roe’s second order scheme. In the above-mentioned regions,

| which are detected automatically by the code, PNS equations are solved. The
: addition of a pseudo-time derivative of pressure has highly increased the effi-
, czency of the code. Two dimensional calculations of supersonic flow over com-
I pression ramps and oblique shock impingement on a flat plate are made to vali-
| date the new method. Comparison of the results with experimental data, and
I results of Navier-Stokes computations demonstrates the accuracy and excellent

I performance of the present method.
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Introduction

PNS equations have been extensively
used for the numerical simulation of steady
supersonic viscous flows [1-3]. Space
marching in the streamwise direction is the
basic approach for the solution of these
equations. With this approach, which corre-
sponds to the nature of the PNS equations
steady supersonic viscous flows are calcu-
lated with CPU times and computer memo-
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ries much less than those used by a Navier-
Stokes code. Since PNS equations are de-
rived from Navier-Stokes equations, they
include all terms of Euler equations and
therefore are valid in both inviscid and vis-
cous regions.

The main drawback of PNS equations,
however, is that they can not be used for
analysis of flows with upstream effects or
with embedded separated regions. One ap-
proach for the analysis of such flows is to
use a NS code for separated regions and a
PNS code for the rest of the domain. Be-
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