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5 - Conclusion

In this paper an Artificial Neural Net-
work (ANN) based approach was presented
for on-line power system Dynamic Security
Assessment (DSA), i.e., estimation of the
critical clearing time (t,) for transient sta-
bility analysis. A suitable topology for the
ANN, based on the multilayer Perceptron
was developed. The inputs of the proposed
ANN are a set of directly monitorable vari-
ables in the pre-fault situations. The high
performance of the approach was assessed
on the New England test system. Simula-
tion results indicated that the trained ANN
can be used to estimate the t, for a particu-
lar contingency under different operating
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this better, Table 1 lists the actual and esti-
mated t, for 20 out of 1000 test vectors.
From this table, it can be easily seen that the
trained network can estimate the actual t,
very well. This estimation just takes a few
milliseconds with the corresponding compu-
tation flops of 1486, which shows how fast
the designed neural network can determine
the t,. So, the proposed approach is well suit-
able for on-line dynamic security assessment.

Table (1) Comparison of actual and

estimated t.,.

Test No. Actual t, [Estimated €,

(sec.) (sec.)
1 0.25 0.246
2 0.30 0.297
3 0.34 0.343
4 0.31 0.311
5 0.26 0.253
6 0.30 0.298
7 0.36 0.353
8 0.28 0.276
9 0.34 0.333
10 0.30 0.301
11 0.31 0.309
12 0.22 0.233
13 0.26 0.259
14 0.33 0.337
15 0.22 0.212
16 0.27 0.280
17 0.24 0.235
18 0.23 0.229
19 0.26 0.256
20 0.22 0.213
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Fig. (3) Rotor angle plots for a three-phase
fault at a point very close to bus 15 cleared
by tripping the line 15-16: (a) Unstable
case, ty = 0.37 sec.; (b) Unstable case, t, = 0.36
sec; (c) Stable case, t, = 0.35 sec.
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For obtaining a training data vector we
proceed as follows: ’
1-The minimum and maximum limits for gen-

erated reactive power in all PV buses are

set to 0.2 and 0.7 times of their nominal
generated active power, respectively.
2-It is assumed that the following pre-fault
conditions vary over some specified
ranges independently:
- generated active power of all PV buses
- active and reactive powers of all electri-
cal loads
- generated reactive power of the shunt ca-
pacitor located at bus 25

It is further assumed that the range of
variations of each of the above mentioned
variables is bounded form 0.7 to 1.0 times
of their corresponding nominal value.

3-A random number with uniform distribu-
tion is assigned independently to each of
the variables mentioned in step 2.

4-With the above prepared data and as-
sumed specific voltage magnitude for
PV buses, a load-flow analysis is per-
fomed. The results may show that some
PV buses may be treated as PQ buses.
However, the voltage magnitude of all
violated and non-violated PV buses are
used as the inputs of the proposed ANN.

5-The TEF method described in Section 2
is employed to calculate the t,,.

To illustrate the application of the TEF
method for obtaining the t, data set, here
we consider some plots related to the time
variations of rotor angle of synchronous
generators in the test system. These plots
are based on the COI frame of reference
and have been obtained by the time domain
simulation of the system dynamic equa-
tions. For the sake of brevity, we focus on
three plots corresponding to a specific ran-
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dom pre-fault operating point and three val-
ues of the fault clearing time (t,,).

The first plot shown in Fig. 3a, is related
to t', = 0.37 sec; that is the critical clearing
time estimated by the PEBS method (i.e. t,
=0.37sec.) . It is clear that the system is un-
stable and the PEBS method has failed to
predict the actual value of t,. Thus, the t, is
reduced to 0.36 sec. As seen from Fig. 3b,
the system is still unstable . Therefore, fur-
ther reduction for t, is necessary (i.e. t; =
0.35 sec.). The rotor angle-time plot related to
this value for t, is shown in Fig. 3c. It is evi-
dent that the system is stable in this case. This
means that the exact value of t,, is 0.35 sec.

4-The simulation Results

With the procedure presented in Section 3,
we generated 2000 training data vectors in or-
der to train an ANN with 57 inputs corre-
sponding to 57 elements of vector x, and only
one linear output neuron corresponding to t,
for the previously mentioned three-phase
fault in the test system, (see Fig. 2). This
ANN has only one hidden layer with sigmoid
transfer function. The hidden layer has 5 neu-
rons. The MATLAB Neural Networks Tool-
box [22] was used to train this ANN, and
function TRAINRP (Resilient Backpropaga-
tion) was employed for this purpose. Before
training, the input and output data vectors
were scaled so that they fell in the range
[-1,1]. The error goal, the mean-squared er-
rors between desired and estimated outputs in
the training phase was set to 0.00002.

In order to test how good the trained net-
work generalizes, we generated another set
of 1000 data vectors as a test set. The
mean-squared errors for this data set be-
came 0.000032. This proves the generaliza-
tion accuracy of the trained network. To see
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(Vo= Vi)
- generated active power of all 9 PV buses
(PG-PGy)
- active power of all 19 electrical loads act-
ing on different buses (P, Pp,, ..., Pos)
- reactive power associated with above 19
electrical loads (QD,, QD,, ..., QD;,)
- generated reactive power of the single
shunt capacitor installed at bus 25 (QC,)
Hence, the vector x consists of 57 ele-
ments. It should be noted that, all variables
included in vector x are, in general, directly
monitored in Energy Control Centres
(ECC). As we pointed out earlier, for a par-
ticular fault, t, is a function of only pre-
fault system operating point. However, this
operating point can be adequately charac-
terized by the pre-fault conditions con-
tained in vector x. Consequently, t, can be
considered as a function of vector x as:

ter=f (x) (3)

The main objective of this paper is to ap-
proximate this function with a feedforward
ANN. To employ the ANN, we are required
to provide the ANN with an appropriate set
of training data vectors. By using a given
good enough number of pre-fault condi-
tions data vectors, as the inputs, we may
use the corresponding t,’s as the outputs, in
order to train the ANN. Since the inputs are
a set of directly monitorable variables, it is
worth noting that after successfully training
the network, t, can be estimated as fast as
possible at the output of the trained net-
work. This is a very attractive goal, which
is always looked for. Furthermore, due to
the fact that the variables included in vector
x are the minimum required number vari-
ables that can adequately characterize the
prefault system operating point, the size of
both ANN and training data set are remark-
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ably reduced.

Figure 2 shows the general architecture
for the multilayer Perceptron ANN adopted
in this paper for the New England test sys-
tem. It should be noted that the selected ar-
chitecture for the ANN shown in Fig. 2, can
be used for all fault scenarios in the test
system. Because , as we pointed out earlier,
for a particular fault t,, is a function of vec-
tor x. However, we should be careful that
we are required to train a separate ANN for
each fault scenario. This is due the fact that
a different data training set for t, is needed
for each contingency.

Fig. (1) One-line diagram of the
New England test system

57 @04
Tnput Layer Hidden Layer Qutput Layer

Fig. (2) Selected architecture for
the proposed ANN.
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In this paper Kakimoto’s Potential Energy
Boundary Surface (PEBS) method is used
for fast evaluation of V. This method has
been fully described in Ref. [2]. However,
it has been shown in [3, 21] that the V, and
therefore the t,, obtained by the PEBS meth-
od may be less or greater than their actual
values. To remedy this drawback, PEBS
method along with the time domain simula-
tion of the system equations of motion is
employed to obtain the actual value of t,.
The procedure can be described as the fol-
lowing steps:

Step 1: Integrate the faulted system dy-
namic equations until the transient potential
energy reaches a maximum along the fault-
ed trajectory (i.e. until PEBS crossing is de-
tected). This maximum value denoted by
V. provides a good estimate of actual V.,
[2].

Step 2: From the faulted trajectory find
the time instant, t',, , at which transient en-
ergy V reaches V', . The t',is viewed as an
estimate of the actual t, [2].

Step 3: Find actual t, by using t, as an
initial guess in the time domain simulation
technique accompanied by a trial and error.

3 -The Problem Statement

Consider the 10 machines and 39 buses
New England test system shown in Fig. 1.
The system data is given in [2]. Assume
that a three-phase fault occurs at a point on
the transmission line between buses 15 and
16 very close to bus 15 far from generation
buses. The fault clearing policy is to isolate
the fault by tripping the transmission line
from bus 15 to bus 16.

It 1s obvious that the critical clearing
time is a complex function of pre-fault sys-
tem operating point, fault type and location,
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and post-fault system configuration. But,
for a particular fault such as the fault men-
tioned above, the critical clearing time is in-
deed a function of only pre-fault system op-
erating point. Therefore, we try to focus
mainly on determination of this operating
point from the huge number of variables
that may characterize the pre-fault system.
To deal with this problem, it would be nec-
essary to extract a proper set of pre-fault
system conditions. This can be done as
below:

Here bus 1 represents the slack bus
whose voltage magnitude and phase angle
are known. The remaining generation buses
(i.e. buses 2-10) are considered as PV buses
whose generated active powers and voltage
magnitudes are denoted by PG, and V, (i =
2, 3, ..., 10). Besides one slack bus and 9
PV buses, the test system consists of addi-
tional 29 PQ buses (i.e. buses 11-39). How-
ever, the loads are acting only on 19 dis-
tinct buses. The active and reactive load
powers of these buses are denoted by PD,,
and QD (j is the bus number). Note that the
shunt capacitor installed at bus 25 is treated
as a load whose generated reactive power is
known as QC.

Knowing the fact that the slack bus
whose voltage magnitude and phase angle
are fixed, the pre-fault operating point can
be determined by the above mentioned pre-
fault conditions. Becduse, all the other vari-
ables in the pre-fault situations such as volt-
age of PQ buses, generated reactive power
of PV buses, rotor angle of synchronous
generators, etc., are dependent on the above
mentioned variables. These variables in the
New England test system can be arranged
in a vector x with the following elements:

- voltage magnitude of all 9 PV buses
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ping a transmission line. Thus, pre-fault

and post-fault topologies are not the

same.

3 -In the test system, the limits of generated
reactive power are considered for all PV
buses. Therefore, PV buses may be treat-
ed as PQ buses.

In order to obtain t, data set for training
purpose, the Potential Energy Boundary
Surface (PEBS) method, which is one of
the fastest TEF methods, accompanied by
the time domain simulation technique is
employed [2,3,21]. The remainder of
paper is organized as follows: The TEF
method is presented in Section 2. In Section
3, we propose our approach and introduce
some case studies. Section 4 presents the
simulation results, and Section 5 concludes
the paper.

2 -The Transient Energy Function Method

Consider a power system consists of n
synchronous generators. The system equa-
tions of motion for the ith generator using
the classical model and internal Center of
Intertia (COI) frame of reference are given
by [1-3]:

Mi$i=Pmi‘Pei“M—iPCOI 1
Mr ()

0i=;

where,

n
(Cijsin @4 + Djj cos e;j)+E?Gg;

Pu= 2

I'#i

n
P(‘Ol: Z (Pmi"Pei)
i=1

Ci=EiE;jBjy

Di=Ei;E; Gy
Yij=Gij+Bj
and:

Y; = elements of reduced admittance ma-
trix

E: = internal generator voltage magnitude
P,; = mechanical input power of generator
M, = intertia constant of generator

©; = angular velocity of rotor with re-
sepect to COI

8, = rotor angle with respect to COI

0;=6 -6,

The transient energy function V associat-
ed with Eq. 1 can be written as:

V= Vg + Vpg 2)

This function consists of two compo-
nents: transient kinetic energy Vy; and tran-
sient potential energy V... The expressions
for Vizand Vg are given in [1-3].

Computing two values of the transient
energy makes the stability assessment feasi-
ble. The first value of the transient energy
is normally determined at the fault clearing
time, V... The other value denoted by V_, is
the critical value of transient energy which
extensively determines the accuracy of the
transient stability assessment. In fact V,, is
the transient energy function evaluated at
the controlling Unstable Equilibrium Point
(UEP), for the particular disturbance under
investigation. The system is stable (unsta-
ble), if V, <V, (V,>V,).

Due to complexity of exact computation
of the controlling UEP, the evaluation of V,,
at the controlling UEP is a very hard task.
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ed active and reactive powers, active and
reactive load powers, active and reactive
powers flow on a branch, transient kinetic
energy, and some other static ‘and dynamic
features were used in [19].

In all of the methods seen in [13-19], de-
termination of the inputs of the ANNs is it-
self a time-consuming task. Because, the
determination of the inputs requires the
supplementary tools such as load-flow and/
or transient stability software. Thus, the
high speed solution capability of ANNs has
not been fully exploited in the neuro-based
techniques seen in the literature. In addi-
tion, because some previously designed
neural networks inputs are dependent on
some specific variables in the pre-fault situ-
ations, using these dependent variables does
not provide any additional information
about the state of the pre-fault system.

The main objective of the present inves-
tigation is to propose a new neuro-based ap-
proach for on-line DSA (i.e. t,, estimation).
The basic idea is that for a particular fault
scenario, t, is a function of only pre-fault
system operating point, which can be ade-
quately characterized by a proper set of di-
rectly monitorable conditions (variables) in
the pre-fault situations. On the other hand,
if we denote this set of directly monitorable
pre-fault conditions by vector x, and know-
ing that the t,, is indeed a function of vector
x as : t, = f (x), the principle goal of the
present approach is to approximate this
function by a multilayer ANN with the vec-
tor x as the input and t, as the output. In
fact, we face with a function approximation
problem associated with feedforward ANNs
for DSA. The great achievement of the
present investigation is to remove the addi-
tional static and/or dynamic variables from
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the inputs of the proposed ANN. The re-

moval of these variables from the inputs of

the ANN reduces remarkably the size of
both ANN and training data set. Moreover,

t. can be estimated as fast as possible, be-

cause there are no extra calculations for

ANN inputs generation. :

In [20], the authors of this paper ‘have
briefly demonstrated the results correspond-
ing to the application of the present ANN
approach to a small size power system. In
paper [20] , the following conditions were
considered:
1-Self clearing three-phase fault was as-

sumed at a point close to the terminal of

a specific synchronous generator. There-

fore, the pre-fault and post-fault configu-

rations of the underlying system were

the same .

2 -There was no limit on the generated re-
active power of each synchronous gener-
ator. Thus, all generation buses (PV bus-
es) were never treated as load buses (PQ
buses).

The present paper demonstrates the pro-
posed neuro-based approach more precise-
ly. In fact in the present study we show the
effectiveness of our proposed ANN ap-
proach in a medium size power system (i.e.
the New England test system). The salient
features of the present study which distin-
guishes the present investigation with our
latest report [20] are:

1 -The New England test system consists of
10 synchronous generators and 39 buses,
while the small system reported in [20]
includes only 3 generators and 9 buses.

2- A three-phase fault is assumed at a point
very close to a specific bus located far
from generation buses. It is further as-
sumed that the fault is cleared by trip-
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the major and necessary topics to be inves-
tigated. The results will show that follow-
ing a contingency, the synchronous ma-
chines would be ftransient stable (i.e.
settling in a new stable operating point)
and/or proper and necessary preventive
control actions are required.

The conventional method for DSA is
based on repetitive time domain simula-
tions of a given power system dynamic
equations. In this method a great number of
simulations for a large number of credible
fault locations are to be performed to assess
the system security and the critical clearing
time (t..). This method yields the most accu-
rate and reliable results. However, for on-
line applications this method has the fol-
lowing major drawback: it is very slow be-
cause of lot of time-consuming computa-
tions which are inherent to the method.

As an alternative method for transient
stability analysis in electric power systems,
we may cite the Transient Energy Function
(TEF) method [1-3]. The main advantages
of TEF method are computational speed
and the transient energy margin (AV) deter-
mination. However, fast calculation of the
AV will be achieved at the expense of accu-
racy. Furthermore, especially in stressed
power systems, the TEF method may fail to
provide any practical results because of
non-convergence problems related to itera-
tive nature of relevant Unstable Equilibri-
um Point (UEP) determination [4] . Thus,
several methods were proposed to deter-
mine the AV or the t, by analyzing the re-
sults of the time domain simulation tech-
nique through the TEF methods [4-12].
However, these methods still need consid-
erable computations for stability assess-
ment, and they are not fully suitable for on-
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line DSA.

Interest in applying Artificial Neural Ne-
works (ANNs) to dynamic security assess-
ment began in 1989. Sobajic and Pao pro-
posed a feedforward neural network for
estimating the t, [13]. The application of
feedforward and functional link neural net-
works were reported in [14]. Jeyasurya
used a feedforward neural network to eval-
vate the AV [15]. Zhou et. al. used ANNs
for estimating a power system vulnerability
[16]. Hobson and Allen [17] developed the
approach of Sobajic and Pao [13] and ap-
plied their method on a practical power sys-
tem. Aboytes and Ramirez reported the ap-
plication of feedforward neural networks to
a real longitudinal power system [18]. The
application of ANNs for dynamic security
contingency screening and ranking was re-
ported by Mansour et. al. [19] in order to
evaluate the energy margin and maximum
swing angle.

The following steady state and/or dy-
namic state variables were used as the in-
puts of the ANNs designed in the above
mentioned approaches: Initial angular rotor
positions, initial acceleration and accelera-
tion energy were used in [13] and later with
small enhancements in [17]. Generated ac-
tive and reactive power during a fault, me-
chanical power, angular rotor position and
machine inertia were reported in [14]. Tran-
sient kinetic energy, transient potential en-
ergy, rotor angle deviation, rotor speed de-
viation, mechanical power and terminal
voltage of a specific generator were em-
ployed in [15]. The UEP angles and the AV
were used in [16]. Generated active and re-
active powers, relative angular position,
number of synchronized generators and
load levels were analyzed in [18]. Generat-
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Abstract

-
! This paper presents a new Artificial Neural Networks (ANNs) based ap-
1 proach for on-line power system Dynamic Security Assessment (DSA). The
| paper represents an application of feedforward neural networks in estimating
! the critical clearing time (t,) for transient stability analysis. Knowing that for a
| particular fault scenario, t. is a function of only prefault system operating point,

! the main objective of the paper is to show how one may develop an ANN based
| method for estimating t.. by considering the smallest set of directly monitorable
! variables characterizing this operating point adequately. The proposed tech-

; nique does not require any supplementary tools such as load flow and/or tran-
| sient stability software for input determination of ANN. Here it has been at-
: tempted to just convert the DSA to a function approximation problem which is
 well-suited to be tackled by multilayer feedforward neural networks. So, we
! adopted a ‘multilayer ANN with the pre-fault directly monitorable variables as
| the inputs and t.as the output. In order to obtain the necessary training data set
| for t.,, we have used the Potential Energy Boundary Surface (PEBS) method ac-
l companied by the time domain simulation technique. The proposed approach
| has been successfully applied to the New England test system, and it has been
| shown that the t.can be estimated by the trained network in a few milliseconds.

! Our technique has the following two main advantages:1) t. is estimated as fat
| as possible;2) the size of both ANN and training data set are remarkably re-
l duced

_.__........_.._._‘_..__.__.___.__............._..._._._._......_.J
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Keywords 1 - Introduction
Dynamic Security Assessment, Critical In recent years electric utilities are in-
Clearing Time, Potential Energy Boundary creasingly facing with the transient stability
Surface Method, Artificial Neural Net- problem. In electric power systems, Dy-
works. namic Security Assessment (DSA) is one of
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