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As expected, ply angle will have an impor- 02

tant effect on the responses of the heated A
shells. The results are presented in Fig. 50-15 — aat
(15). B s
As the last example , an open spherical ;;8'; 044 —
shell with clamped edges made of three 8 L
layer laminates is presented. The sphere is ;%0_05: . o
considered to be exposed to the inside ther- ] ’
mal shock given by Eq. (41). The thermal o |t~ o o 999
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ment of central layer at crown of shell. As it
indicates, coupling effect is important and
cannot be neglected. Fig. (17) presents the

variation of transient response of radial dis-

placement of central layer for two different ] =
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pected, ply angle will have an important ef-
fect on the response of shell. In Fig. (18)
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For Cylindrical Shells
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+17
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(47)

Substituting equation (44) in either of
equations (46) or (47), the following inte-
grals provide two set of independent equa-

tions for T, and T,

| ®R*)y*dz=0 (48)

[ ®*@*dz=0 (49)

The finite element model of shell using
Galerkin method is constructed and the o
method is used to solve the time dependent
finite element equation.

In the following a multilayer composite
cylindrical shell exposed to the inside ther-
mal and pressure shock given by equations
(40) and (42) is considered. .1

/
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Table (7) Geometry and material properties of

meltilayer cylindrical and spherical shells

E, E,
196 GN /m’ 4.83 GN /m’
4.83 GN /m’ 3.44 GN /m?
G,, Viz
3.44 GNJE, 0.05
Vo, K,
0.3 180 W / mk
K, K,
67 W/mk 67 W / mk
o] 0
1.3 % 10° 1/k 1.5% 10° 1/k
0y h,
157 10° 1/k 10000 W/m? k
ho R
200W/m? k 02 m

The thermal conditions at the ends of
shell is assumed isolated. Figs. (11) and
(12) compare the transient non - dimension-
al radial and longitudinal displacements for
the Classical and L - S models in a three -
layer stacking [45/0/45] cylindrical shell.
Owing to the anisotropy in the thermoelas-
tic moduli, the effects of boundary condi-
tions in the present laminated shell are ex-
pected to be more complicated than those in
isotropic shells. Different edge conditions
(together with the effects of the anisotropic
thermoelastic moduli, specially the coeffi-
cients of thermal expansion) may cause dif-
ferent mode of vibration. Figs. (13) - (14)
summarize the effects of various boundary
conditions on coupled response of the shell.
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7 - Coupled Thermoelasticity of
Composite Shells

The composite structures are more fre-
quently used in industry due to their many
advantages. Many shell structures are made
of composite materials to take advantage of
their strength and light weight.

‘Dynamic thermoelasticity of orthotropic
cylindrical shells and multilayer shells are
discussed by Wu et al. (1991) and Wang et
al. (1991). Eslami, Shakeri and Shiari dis-
cussed in a series of papers the coupled
thermoelasticity of composite laminated
shells of revolution (1996, 1997). The dis-
cussion includes the effect of coupling
terms, normal and shear stresses, the relaxa-
tion time, and the stacking sequence of the
laminated layers. The classical and Lord -
Shulman models are basically used in the
analysis. The finite element model is also
made on the assumption of equivalent sin-
gle layer model.

The formulation of the composite shells
of revolution are the same as those given
for isotropic shell (here we adopt the as-
sumption of second order theory and
Flugge model). However , the constitutive
law of composite material should be con-
sidered instead of the simple Hooke’s law.
For a layered composite the relations must
be considered for each single layer. The
stress - strain relation for the k - th ortho-
tropic layer bounded by surfaces at z = h,
and z = h,, are given by:

GX - - g =
- 921 gzz 923 0 0 926
G: |_| Qu Q32 Qiz 0 0 Qs
Toz 0 0 0 Qu Qs 0
Tyz — —

Tyo 0 0 0 Qs¢ Qss O
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Qun 612 613 0 0 616ﬂ

_661 662 663 0 0 616M

Bx

8X o
€6 ___e
€y Bz

- T
vo | B (43)
Yz
Y x8 0

L. Exe |

where [Q ij:I k and B4 kare stiffiness and ther-
moelastic matrices, respectively. The tem-
perature distribution across the shell thick-
ness is assumed as:

T ,00,z,)=To (o1, 002, t) +2T1 (001, 02, 0

(44)

Substituting for the strains in equation
(43) from equation (34) and using the ex-
pressions for the stresses in equation (43)
and integrating, the relations between stress
and moment resultants and the middle plane
strains and temperatures field are found.

The energy equation on the basis of Lord
- Shulman assumption is:

KijT,ij‘(1+ro§)[cva+TuBijéﬁ]=o (45)
t

For a multilayer composite spherical
(¢, 6, z) and cylindrical (x , 8, z) shells the
above equation yields:

For Spherical Shell

R =pcty T +to Ta [—-—B L) U¢ + ___BG)Q Vq) + B2z Wz
R+z R+z

4+ Beo cotgdU - 2 Beo_ cotgdV + Bos - Boo Wl
R+z R+z R+z

pCT + T, [»——B¢l U,‘p + ——ﬂ—ﬁ——v‘p + Bzz W.z + -99”9'“'30 tg(j)ﬁ
R+z R+z R+z
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Table (4) Effect of normal stress

shell with clamped edges under thermal

shock given by equation (40) and the fol-
lowing data;

Table (6) Geometry and material properties

(cylindrical shells)
Theory W (m)*10° | W (m)*10°
(R/h = 30) (R/h = 10)
Including o, 20976 67291
Excluding o, 20852 65881
Difference 0.7% 2%

Fig. (6) shows the time history of axial
moment of inside shell surface at middle
length for R/h = 10. Fig. (7) is the plot of
axial stress versus time at the same location
for R/h = 10. The axial stress is the sum of
N,/h + 12z M/h’. Since the axial force is
dominant, the axial stress follows its pattern.

Spherical Shells

The next example is a hemispherical
shell with the following dataR =03 m, h =
0.01 m, E = 200 Gpa, p = 8000kg/m’, v =
0.3. Sphere is clamped at edges. The pres-
sure pulse of equation (42) is applied and
the lateral deflection at the crown of the
shell is given in Table (3). It is noted that
the consideration of normal stress improves
the results up to 1.4 percent for R/h = 30
and 4.6 percent for R/h = 10.

Table (5) Effect of normal stress

(spherical shells)
Theory W(m)*107 | W (@m)*10°
(R/h=30) R/Mh=10)
Including o, 1731 53871
Excluding o, 1736 56347
Difference 0.2% 4.4%

The final example is a hemispherical

14

of spherical shell
E k
200 GN/m? 50W/m°k
o G
11.8*10° 1/k 76.9GN/m’
R v
0.15m 03
p h
7904 kg/m’ 0.15m
c, h,
500J/kg’k 10000W /m’k
h, T,
200,/m’k 293°k

In Figs. (8) and (9) the time history of
the radial deflection and inside temperature
at the crown of shell is given. It is noted
that the mechanical coupling § = 0.095 has
considerable effect on shell response and
cause the reduction of w and T. For a suita-
ble representation of relaxation time effect,
consider a cylindrical shell with clamped
edges under thermal shock given by equa-
tion (40) and geometry and material proper-
ties as Table (1). Fig . (10) illustrates the
difference between the values calculated
under two theories, the classical coupled

theory (1p=0) and L - S theory (7, = 1.5*10

%). The axial stresses curve for L-S theory
become smaller than the classical theory.
Maximum value of difference is about 38
percent which occur at t = 0.4*¥10° second
at outer surface of shell.
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shell is assumed isolated, and the shell is
considered to be exposed to inside thermal
shock given by the following equations:

Ti () =2207 (1 -¢ -13100ty 4 293" k (4())

The temperature of the inside surface
raise from 293° K to 2500° K in 0.45 msec,
and the shell behavior is studied up to 0.04
sec which is about 90 times the time period
required for the thermal shock to reach its
steady state condition. Shell is divided into
50 elements along its length and the time
increment is 1E-6 sec. In Fig. (1) the inside
temperature versus time is shown. The ef-
fect of mechanical coupling 8:%%
is shown in this figure. For 8§ = 0, the me-
chanical coupling term is ignored from the
energy equation and the problem is decou-
pled. For the given shell 8 = 0.0095 and it is
noticed that the effect of damping is negli-
gible. For larger o or smaller c, the value of
8 is larger. For § = 0.095 the mechanical
coupling has noticeable effect. In Fig. (2)
this comparison is shown for the middle
plane lateral deflection. It is noticed that
while at t = 0.04 sec the thermal shock is
reached to its steady state condition, but the
lateral deflection is still increasing. The rea-
son is that the characteristic time of heat
transfer is much larger than the mechanical
characteristic time for stress wave . This be-
havior is different when the shell is under
pressure shock.

Now consider the same shell under low
rate thermal shock. The equation of tepera-
ture shock applied to the cylindrical shell
is:

T (6) = 2207 (1 -e-!3) +293° k 4an
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The rate of temperature variation with
respect to time is slower compared to equa-
tion (40). Temperature reaches to its maxi-
mum value within 35 sec. Time increment
is selected A t = 0.01 sec and the shell be-
havior is studied up to 5 sec. In Fig. (3)
time history of radial displacement is
shown. Similar to Figs. (1) and (2), the val-
ues of temperature and displacement for
coupled condition (8§ = 0.095) is less than
the values for semi - coupled condition (8 =
0). This means that the coupled effect act
like a damper and thus it could be regarded
as “thermoelastic damping”. At the begin-
ing of the shock, due to lower values of
strains, the difference between coupled (8 =
0.095) and semi-coupled (5 =0) is negligi-
ble and as time increases this difference
also increases. When temperature reaches
its steady state condition the strains reach
their maximum values while their time rate
is decreased and the effect of mechanical

‘coupling will also increase. In Fig. (4) time

history of axial stress at inner surface is
shown. The variation of radial displacement
versus the shell length are shown in Fig.(5).

The effect of normal stress is studied in
the next example. A simply supported cy-
lindrical shell of L=1.0m,R=0.15m,h=
0.005 m, E = 196 Gpa, p = 8000 kg/m’, and
v = 0.3 under inside uniform pressure shock
of

P(t)=8*10°%(1 -e-1310m (42)

is considered . Pressure reaches its maxi-
mum value at 0.45 msec. Table (2) gives
the radial displacement for middle length at
t = SE - 4 sec. The difference between two
cases are about 0.7 percent for R/h = 30 and
2 percent for R/h = 10.
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d (A2 QI) + a(Al QZ) + A Ao (&+_N_L)
dotg oy R1 Rz

+ A Az [gn-T) W -T2 -%w"}zo

d (A2 My) , d (A1 Ma) | a0 1, OAL g, 982
doiy Lo %) 0002 do

- Q1 Ay A2+A1A2[m1~12ﬁ-13f31]=0

d (A1 M) + 9 (A2 M) + Mo 0Az _Mja_AL
dJoy Jo dol doz

-2 A Ag + ALA; [m2~Izﬁ—I3B2]=O

I(A281) L d(AI Sy Ay A, ML Moy Ap A,
o0 a0z R R

+ A1 A [mn-Iz'W—I,zW‘-g—“W"]:O

9A2T) p;a, BL 4 P2y paa,

8061 R, R>
+A A [rge-Bw-Lew g =o (37)
2 2 4
where

pr 2 V(1 + 2yl +-E)dz i=1,2..5

N
=1 1 R2

h
I, :}
g

(38)

q, and m, are the components of external
forces and moments acting on the middle
plane of shell. These forces and moments
are related to the external applied forces q*,
and q; as:

12

g=q5 (1 +-Ly@ +__b‘_)+q-i(] by by
2R 2R3 2R 2R,

mi=Brgr(+ By v By g by sy
2 2R 2R3 2R 2R,

(39)

where " acts on outer surface and q; acts
on inner surface of shell. q, is selected posi-
tive in the opposite direction of normal to
the middle plane.

The energy equation based on Lord and
Shulman model is considered and the Ga-
lerkin finite element technique is used to
derive the equilibrium equation of shell.

Cylindrical Shells

Consider a thin cylindrical shell of
clamped edges and following geometrical
and material properties.

Table (3) Geometry and material properties

of cylindrieal shell
E K
200 GN/m? S50W//m"k
o L
15*10° 1/k 0.40m
R v
0.1085 m 0.3
p h
7904 kg/m’ 0.002m
c, h;
500JkgOk 10000W /m*k
h, T,
200w/m’k 293%k

The thermal conditions at the ends

of
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These relations are obtained based on
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Flugge second order shell theory where the
term z/R is retained in the equations com-
paréjd to the unity.

The forces and moments resultants based
on the second order shell theory are defined
as:

+h
<N1,N12,Q1>=J (61, T2, Ty (1 +-2)dz
-h R2

+h
< Nz, Na; ,Q2>=J h(Gz,‘C]z,Tzn)(1+~Z—)dZ
- 1

+h
< M;,Mipn >=j (61,%12) (1 +-Z)yzdz
“h R,

+h
< Mz, My >=J h(02,721)(1+EZ.)ZdZ
i I

+h
<Si, Pi,Ti >=LJ (tin, 62212, T 721 2)( 1 + L)dz
21 R

i

+h
<AB >=( (G, 0az)( 142 (1+-2)dz

ij=1,2
-h R R,

(36)

The equations of motion can be obtained
using the Hamilton’s variational principle.
For this general case where the normal
stress and strain are included in the govern-
ing equations the Hamilton’s principle
yields the following equilibrium equations

9 (A2 Ny) +a(A1 Na1) +N;2§é—l~-Nz§—éz~+ Q1A Az
o0ty dow doi douy Ry

+A1A2[Q1—11ﬁ-12é1]=0

d (A N2) + 0 (Az Nip) + Ny, %A-Nl 9A1

a0y a0 do a0

+Qx A Ao

+ Ay AQ[C}Q-Ilﬁ—IzBﬂ:O
R
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under axisymmetric loading is discussed by
Eslami and et all (1994). In this paper, due
to the assumption of long cylindrical shells,
the axial displacement is ignored. The cou-
pled thermoelasticity of shells of revolution
based on the second order shell theory and
the Flugge assumption is given by Eslami
et. al. (1995, 1999). The papers referred so
far deal with homogeneous isotropic shell
materials and consider the classical coupled
thermoelasticity assumption. The latter
paper (Eslami et. al. 1999) considers the
Lord - Shulman assumption in addition to
the classical theory. Also, the effect of nor-
mal and transverse shear stresses are con-
sidered in this paper.

The basic assumption to consider the
normal stress and strain in the shell equa-
tions requires to relate the displacement
components along the principle orthogonal
curvilinear coordinate of shell to the dis-
placement components on middle plane as
given by the following relations;

Uoy,oz,2z)=u (o, o)+ zBilo , o2)
Vo, o2,z) =0 (o, o) + zBa(or , o2)
Wi, og, 2)=w (0, o)+ (o ,az)+ZZ-ZW"(ax , )

(32)

where (o, 0y, z) are the principle orthog-
onal curvilinear coordinates of shell and u,
v and w are the middle plane displace-
ments, B, and B, are rotations of the tangent
line to the middle plane along o, and o,
axes, respectively, and w' and w" represent
the non-zero transverse normal strains.
Consideration of these two terms violate the

10

third Love’s assumption (which states y, =
0) and part of the Love’s forth assumption
(which states e, = 0). Furthermore, if the
transverse shear strains vy, and vy, are not
made zero , the rotations B, and B, are no
longer simply described in terms of the
middle plane displacements, and the restric-
tions imposed by the other part of the
Love’s forth assumption (which state vy, =
v, = 0) 18 removed.

From the general strain - displacement
relations in curvilinear coordinate in terms
of the covarient derivative:

=2 (Ui + U (33)

The strain - displacement relations for
the second order shell theory follows to be:

g = —1 (801 + z8'y +~Z-2—8"1)
1+-2 2
R
g = 1 (802 +z€'2 + —Zie“z)
1 +-2 2
R

Ep=w +zw"

1 (0 7 )
In = Wy + 2z + & Uy
Y [+ .z 1 1 2“

R

an = ] . (u()z + ZH,Z + _223“‘”2)

1 + %

R2

(B +2B")

= 1 0 ‘ 1
le~—1+_z~(ﬂ 1+ZBl)+1+_L
R R2
(34
Where the definition of terms given in
equations (34) are
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involves five new material constants that
are not present in classical-theory.

¢) The heat conduction law of G-L theo-
ry does not involve flux - rate term. For a
material having a center of symmetry at
each of its points, this law reduces to the
clssical Fourier’s law in classical theory.
Accordingly, G-L theory can admit second
sound even without violating the classical
Furier’s law. But the formulation of L - S
theory itself is based on a modified Fouri-
er’s law.

d) The symmetry of k; is an integral part
of the structure of G-L theory. This 1s not
the case with L -S theory.

5 - Coupled Thermoelasticity in
Composite Structures

Structural components made of compos-
ite materials are frequently expected to op-
erate at elevated or low temperatures.
Whilst it is generally accepted that in most
thermal stress applications involving met-
als, the thermoelastic coupling term can be
neglected without introducing significant
errors, the same may not be true for com-
posite materials. A survey of the literature,
however, indicates that very little work has
been done in the area of transient thermal
stress analysis in composite structures
(Woo et. al., 1980; Wang et. al., 1991; Wu
1991). This is partly due to the fact that
these problems are usually analytically in-
tactable and recourse is often sought in nu-
merical procedures such as the finite differ-
ence and finite element methods (Zukas,
1974; Eslami, 1996, 1997, Shirakawa et.al.,
1982; Minagawa, 1988; Change and
Shyong, 1994). However, most commer-
cially available finite element packages
handle only uncoupled transient heat con-

Amirkabir/Vol. 11/ No. 41

duction problems. Furthermore, it is well
known that moisture and temperature aris-
ing from adverse environmental conditions
can significantly affect the mechanical
properties of certain composite materials
such as carbon fibre - reinforced plastics
(Padovan, 1980). The temperature depen-
dence of these properties should be taken
into account in a proper analysis of the cou-
pled transient problems.

6 - Coupled Thermoelasticity of
Shells

Owing to the mathematical difficulties
encountered in the analytical treatment of
coupled thermoelasticity problems, mainly
due to presence of coupling terms in gov-
erning equations, the close form solution of
this class of problems are scarce. For com-
plicated structures, such as shells, numeri-
cal methods of solution are inevitable. Mc-
Quillen and Brull in 1970 studied coupled
thermoelasticity of cylindrical shells by us-
ing the traditional Galerkin method to ob-
tain the approximate solution. He consid-
ered the first order shell theory based on
Love assumptions and essentially ignored
the normal stress, transverse shear stress
and rotary inertia, but assumed a nonlinear
temperature distribution across the shell
thickness. He concluded that the difference
between the coupled and uncoupled solu-
tions are about one percent. Li et. al
(1983), Ghoneim (1986), Sabbaghian
(1980), and Eslami and Vahedi in 1992
used the analytical and Galerkin finite ele-
ment methods and applied to the coupled
thermoelasticity ~of thick cylinders and
spheres. The coupled thermoelasticity of
cylindrical shells based on first order shell

~ theory for long circular cylindridal shells



rate is included among the constitutive vari-
ables. A remarkable feature of this theory is
that it does not violate the clssical Fourier’s
law, if the material had a center of symme-
try at each point. Moreover, even in the
general anisotropic case, the heat conduc-
tion equation of the theory does not include
the flux - rate term (Ignaczak, 1986). Suhu-
bi (1975), who has formulated this theory
independently, has referred to it as the
“temperature - rate dependent thermoelas-
ticity”. In order to deduce the governing
equations of the linear (G - L) theory fol-
lowing relations must be considered (Green
and Lindsay, 1972) :

6ij=Cijk & - Bij (0 +t1 6) (26)

n:no+-c-"—9+-——c"t2'é+%[3ijm,j (27)

[o] [}

where t, and 1, are the associated time
lags. Consideration of the proposed Constit-
utive laws results into the following gov-
erning equations for general anisotropic
material.

Cijkzuk,lj—ﬁije,j—tlBijé,j+pXi=pﬁi (28)

kije,i}‘=pcv(é+tzé)+90[3ijﬁi,j (29)

For isotropic materials these equations re-
duce to the following system of equations

qu ui+ A+ ) uk k- Gh + 200085 - 11 (3X + 2) B 5 = pu;
(30)
k V>0 +pR =pcy 0 + poy tr 8 + (3L + 2) 0B éx
(B

During the two past decades much at-
tention has been made toward this theory
(Gurtin and Papkin, 1968; Bem, 1982,
1983; Chandrasekhariah and Srikantiah,
1986 (a), 1986 (b) ; Sherief 1992 ; Eslami
et.al., 1997).

4 - Fundamental Differences Be-
tween the Theories

The two theories, L. - S and G - L theo-
ries, are thus structurally different from an-
other, and one cannot be obtained as a par-
ticular case of the other. While it is the flux
- rate term that incorporates the second
sound phenomenon into L - S theory, it is
the temperature - rate that plays the pivotal
role in G - L theory. We have seen that if
we drop q; from the constitutive equation
(24), L -S theory reduces to classical theo-
ry. If we drop 6 from the constitutive equa-
tions, G-L theory reduces to classical the-
roy. In other words, classical theory may be
recovered from G - L theory, by setting t,
and t, equal to zero. We can classify the
fundamental 'diffekences between the theo-
ries as:

a) While L - S modifies only the para-
bolic - type heat transport equation of clas-
sical theory to account for second sound, in
the process of its formulation G-L theory
modifies all the constitutive equations of
classical theory. As such , the second sound
phenomenon forms an integral part of the
infrastructure of G-L theory rather than the
one imposed from outside as in L-S theory.

b) Because of the ad hoc approach em-
ployed in its formulation, L-S theory does
not involve any new material constant other
than the thermal relaxation parameter 1. On

‘the other hand, G -L theory, which is for-

mulated on firm thermodynamical grounds,
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1973; Mengi and Turhun, 1978; Provest
and Tao, 1983; Sadd and Didlake, 1977;
Sadd and Cha, 1982) have employed the
modified Fourier equation to study some
practically relevant problems and have
found that in heat transfer problems involv-
ing very short time intervals and very high
heat flux, the parabolic heat equation (Clas-
sical Fourier Law) gives significantly dif-
ferent results than hyperbolic equation
(Modified Foruier Law). On the basis of
these studies it may generally be inferred
that the last term in equation (24) should
not be neglected practically when the
elapsed time during a transient is less than,
say, about 10° (s) or when the heal flux in-
volved is greater than , say about 10 ° W /
cm’® or when the heal flux involved is great-
er than, say, about 10° W/cm® (Chandra-
sekharaiah, 1986 (b)). Materials encoun-
tered in practice, except for pure liquids,
gases, and homogeneous solids, can be de-
scribed as complex systems made up of sol-
id, liquid, and gas, e.g., porous -capillary
bodies, systems
pastes, etc. The cumulative effect of differ-

cellular suspensions,
ent transfer mechanisms, for instance, heat
conduction, heat transfer by particle - to -
particle contact, free convection in a closed
space, radiation, etc., is often described by
the heat conduction transfer equation. The
presence of moisture and its method of
binding with a material play an important
role in heat transfer. The thermal conductiv-
ity determined experimentally is an average
value. It should be also noticed that in order
to obtain a better fitting of experimental
and calculated results thermal conductivity
is expressed as a function of temperature,
moisture content, etc. We will call these
non homogeneous inner structure materials.

Amirkabir/Vol. 11/ Ne. 41

Luikov (1966) sugges ed that depending on
process intensity, t can range from 10 ? to
10* seconds. Brazhnikov (1975) gives
=20 to 30 seconds for meat products.
Michalowski (1988) claimed that for the
falling drying rate period, the average value
of 1 is of the order of several thousand sec-
onds. Similar data have been published
elsewhere (Antonishyn, 1974; Raspopov,
1967; Todos, 1970 ; Kaminski, 1990).
These seem unnaturally high.

3 - 2 - Thermoelasticity with two relaxa-
tion times (G - L theory)

The idea of formulating a thermoelastici-
ty theory with second sound without mak-
ing any assumptions in regard to the form
of the heat conduction law was first ad-
vanced by Muller (1967, 1971). By consid-
ering general constitutive relations for the
entropy flux and entropy source, and by
making use of a generalized entropy ine-
quality, Muller developed a rigorous non-
linear theory of thermoelasticity, which in-
cluded
constitutive variables and consequently

temperature-rate  among  the
adapted second sound. But this theory is so
complex and implicit that it is not easily
manageable in regard to its applications.
McCarthy (1972), has made use of this the-
ory to study a specific application., viz., the
propagation of acceleration waves. In 1972,
Green and Lindsay formulated a theory of
thermoelasticity with second sound, which
is closely related to Muller’s theory. This
theory is simpler and more explicit than
Muller’s, and is based on an entropy in
equality, proposed by Green and Laws
(1972). In this theory the classical form of
the entropy flux and source are preserved
and as in Muller’s theory, the temperature -



qi+TQ§;:i=—kij93

(24)

The relaxation time  is the short time re-
quired to establish a steady - state heat con-
duction when a temperature gradient is sud-
denly applied to a solid. With the view of
illustrating how L - S theory yields results
which are qualitatively different from those
of classical thermoelasticity theory in spe-
cific problems, Chandrasekharaiah (1986)
discussed the Danilovskaysa’s problem
from the solution of field equations, which
is valid for small values of time. It is evi-
dent that there occur two waves propagat-
ing with different but finite speeds, v, and
v,. Accordingly, the wave propagating with
speed v, is predominantly “elastic” (E
wave) and the other is predominantly ther-
mal (T wave) in nature. We verify that v, <
v, and that as t — 0, v,— 0, and v, — «. The
constant 1, has a definite physical interpre-
tation. It represents the time lag needed to
establish the steady state heat conduction in
an element of volume when a temperature
gradient is suddenly imposed on that ele-
ment. Chester (1963) has explained a clear
physical meaning and has estimated that:

where v, is the speed of ordinary sound
(first sound). Various authors have deter-
mined < for different types of materials and
have found it to range 10 " (s) for gases to
10 ™ (s) for metals, with the values of t for
liquids and insulators falling within this
range (Nettleton, 1960; Chester, 1963;
Maurer, 1969). Francis (1972) and Barg-
man (1974) have given a table of values of
1 for some materials. (See Table II)

Table (2)

Material Acoustic veloci- | Thermal relaxa-

ty (cm/s) tion time, T (s)
Uranium dioxide |  4.06 * 10° 6.6 * 107
Uranium silicate 3.6%10° 1.5% 10"
Liquid He II 2.52 % 10" 2.0 *10°
Aluminum alloys |~ 5.07 * 10° 8.0 * 107
Carbon Steels 5.07 *10° 1.6 * 10"

An experimental procedure for determin-
ing the actual value of 1 for a given material
has been proposed by Mengi and Turhan
(1978). The general problem of measuring
short - time thermal transport effects has
been discussed by Chester (1966). He pro-
vides some justification to the fact that the
so - called second sound must exist in any
solid since all solid continua exhibit phonon
- type excitations. In an idealized solid, for
example, the thermal energy can be trans-
ported by different mechanisms: by quan-
tized electronic excitations, which are
called free electrons, and by the quanta of
lattice vibrations, which are called phonons.
These quanta undergo collisions of a dissi-
pative nature, causing a thermal resistance
in the medium. The relaxation time 1 is as-
sociated with the average communication
time between these collision for the com-
mencement of resistive flow. Since t© is
found to be very small, many authors (e.g.
Boley, 1964; Nowinski, 1978) have argued
that the last term in the right hand side of
equation (24) may be ignored in many prac-
tical problems. But some researchers (eg.
Vernotte, 1958 (a), 1958 (b), 1961 ; Bau-
mister and Hamill, 1969, 1971; Jackson and
Walker, 1970, 1971; Maurer and Thompson
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5= (Bh +2u)% o2 To (23)
(A +2p) pev
It is well known that, as long as & << 1,
the coupling term in equation (22) may be
neglected whenever inertia effects are
small. (See Table I)

Table (1)
Material Coupling constant(3)
Aluminium 0.0356
Copper 0.0168
Iron 0.0297
Lead 0.0733

However, coupling does have some in-
teresting effects on problems of wave prop-
agation. Since both the specific heat ¢, and
the coefficient of thermal expansion o ap-
proach zero as the temperature approaches
zero, while the ratio ¢, / o approaches a
constant for each material, the coupling
constant approaches zero for very low tem-
peratures (Bargman , 1974).

3 - Second Sound

The classical theory of thermoelasticity
allows thermal disturbances to propagate
with infinite velocity. To remedy this physi-
cally unacceptable situation, modified dy-
namic thermoelasticity theories have been
proposed to allow for so - called "Second
Sound" effects, the first sound being the
usual sound (wave) and the second sound
as the thermal wave propagation. Non clas-
sical theories predicting the occurrence of
such disturbances are known as theories
with finite wave speed or theories with sec-
ond sound. The concept of the so - called
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“hyperbolic nature * involving finite speed
of thermal disturbance dates as far back as
Maxwell (1867). Thermal disturbances of a
hyperbolic nature have also been derived.
using various approaches (Landau, 1941 ;
Vernotee, 1958). Most of these approaches
are based on the general notation of relax-
ing the heat flux in classical Fourier heat
conduction equation, thereby, introducing a
non - Fourier effect. There is also some
contradiction to these non - classical propo-
sitions in thermoelasticity, with arguments
questioning the applicability of finite
speeds of propagation in gases to that oc-
curring in solid continua. The aim of this
section is to present two models of a linear
thermoelastic body in which disturbances
propagate with finite wave speed: the L - S
model proposed, among other, by Lord and
Shulman (1967), and G - L model intro-
duced into the technical literature by Green
and Lindsay (1972).

3 - 1 - Thermoelasticity with one relaxa-
tion time (L - S Theory)

The L - S theory is obtained as a result
of modification of the classical thermoelas-
ticity through a generalization of the heat
conduction law. Such generalization was
obtained for gases by Maxwell (1867),
Maurer (1949) and was proposed for rigid
bodies by Cattaneo (1948, 1958). Taking
this analytical model into account in the de-
scription of a thermoelastic process in a de-
formable body, by Lord and Shulman
(1967), leads to the following system of
field equations of L - S theory. When the
specific free energy does not depend on the
temperature and temperature gradient, the
modified Foruier’s law, can be proposed as
follow:

Uy



energy in terms of the temperature change
and the principal invariants of strain tensor,
it is found that a linear stress-strain-
temperature relation (Duhamel-Neuman re-
lation) can be obtained (Nowacki, 1975).
For an anisotropic body the field equations
using the constitutive equations, reads:

ki 3+ pR= pcvé + 8, ﬁij i, j (15)
Ciyw uy- By 0,5+ pXi=pii (16)

Where By is the thermal expansion ten-
sor, k; is the thermal conductivity tensor
and 8 = T - T, is the temperature excess
over a reference absolute temperature T,.
Evidently, (15) is the equation of heat trans-
port and (16) is the equation of motion.
These equations are coupled for linear clas-
sical thermoelasticity theory of homogene-
ous and anisotropic solids. We see that of
the four field equations governing u; and 6,
the three (scalar) equations of motion, giv-
en by (16), are of hyperbolic type and the
fourth one, the heat transport equation (15),
is of parabolic type. Accordingly, the theo-
ry predicts a finite speed for elastic distur-
bances but an infinite speed for thermal dis-

. turbances.

2 -1 - Thermoelastic Coupling

An elastic material corresponds to the
postulate that the specific free energy,
hence entropy n, stress ¢ ; and heat flux g,
depend at most on strain e;, temperature T
and temperature gradient T,. With these as-
sumptions, and the restrictions imposed on
them by the second law, one obtains from
equation (15) the heat conduction equation.
For an isotropic material, lincar siress -
strain - temperature relation must be read

(Parkus, 1968; Nowaki, 1969):
O = 21ej; + &4 Aewk - BA + 21) 0B (17)

Where A, u are the Lame’ elastic con-
stants and o is the coefficient of linear ther-
mal expansion. Moreover, with the particu-
lar assumption of Fourier’s law of heat
conduction.

gi=-ki0,; (18)

by the additional assumption l6l < T, the
temperature is governed by:

PR +K i B i = pey 6 + 3\ + 2w)aT, & (19)

Where c, is the specific heat at constant
deformation. Equations (18) and (19) are
supplemented by the equations of motion
(16) and appropriate boundary and initial
conditions. Upon substitution, the equation
of motion reads

A+ pyuyy+ pug - pii = GA +2u) o ; - pX;
(20)

In particular, in the one - dimensional
geometry for the half - space x>0, the cou-
pled thermoelastic equations reduce to
(body force is absent)

Pu_ 1 o _(Gh+2padd @1
ox2 ¢ ot (A+p)  ox
> 2
Kvéﬁ_@;zﬁ(}»%-zu) d“u R (22)
ox? ot (BA+2u) dx ot ©v

Where «,, =k / (pc,) is the thermal diffu-
sivity at constant deformation, C*, = (A +
2w}/ p is the wave speed, and the coupling
constant
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1 - 3- Linearized theory

The system of equations (1) - (4) and
(14), is highly non - linear, even for an elas-
tic body. Experience shows however, that
many wave propagation effects in elastic
solids can be adequately described by a lin-
earized theory. For small displacements and
displacement gradients, it is not necessary
to distinguish between their values at the
position of a particle before and after defor-
mation. Then, Green’s strain tensor is given
by 2E; = 2e; =u;; + uy;.

2 - Thermoelasticity

The conventional quasi - static approach
to thermoelastic problems in the presence
of time - dependent temperature fields rests
on the assumption that the inertia terms
may be neglected in the governing field
equations. This hypothesis, which reaches
to Duhamel (1837), is known to yield use-
ful results in a wide variety of applications.
It is evident, however, that the quality of
the approximation must depend both on the
size of the relevant intrinsic inertia parame-
ters and on the nature of the time variations
inherent in the temperature distribution. If,
in particular, the temperature field exhibits
sufficiently steep time - gradients, the dy-
namic effects disregarded in the traditional
treatment of the problem may be expected
to become significant. Moreover, when the

inertia terms are taken into account, the en-

tire character of the problem is altered; the
process of transmission of the thermal
stresses is then no longer purely diffusive
but involves the propagation of elastic
waves. The first attempt to examine inertia
effects in a transient thermoelastic problem
is apparently due for Danilovskaya (1950).
Danilovskaya (1952) generalized her previ-
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ous solution to accommodate convective
boundary conditions. A particularly impor-
tant contribution to the subject under dis-
cussion is due to Nowacki (1957 , 1959)
who obtained several closed exact solutions
to the (uncoupled) three - dimensional ther-
moelastic equations of motion. The conven-
tional coupled thermoelasticity theory is
now proved to be an elegant model for
studying coupled effects of elastic and ther-
mal fields and the learned works, for exam-
ple of Biot (1956), Sternbery and Chakra-
vortry (1959), Chadwick (1960), Boley and
Wiener (1960), Boley and Tolins (1962)
Francis (1966), Achenbach (1967, 1968),
Boley and Hetnarski (1968), Nickell and
Sackman (1968), McQuilan and Brull
(1970), Carlson (1972), Oden (1975), Dost
and Suhubi (1975 (a), 1975 (b)), Bahar and
Hetnarski (1968), Dragos (1979), Dhaliwal
and Sharief (1980 , 1981), Dhaliwal and
Singh (1980), Taningawa and Takeuti
(1982), Li et. al. (1983), Takeuti et. al.
(1983), Inan (1983), Liu (1984, 1985), Li
and Chen (1984), Chang and Wang (1986),
Tamma and Namburu (1989), Carter and
Brooker (1989), Lee and Sim (1992), Geng
(1994), Change et . al. (1994), Eslami et. al.
(1992 , 1994, 1995) contain comprehensive
accounts of the theory and applications
thereof. However, because of its depen-
dence on the classical Fourier’s law, this
theory, with all merits to its credit, also suf-
fers from the deficiency of allowing infinite
heat propagation speed. During the last
three decades, attempts have been made to
remove this deficiency on various grounds,
and generalized versions of the theory have
come into existence. We consider these de-
velopment in following sections. In particu-
lar, by employing an expansion of the free

3



Gjij+ pXi=piy (2)
Cij=0ji 3

ii1) Law of conservation of mass:

pa=-L,

g g=det(Gij+ 2ey) 4

iv) Law of conservation of energy (the first
law of thermodynamics)

p(ﬁ'R):Gijéij'(]i,i (5)

In these equations, u; is the displacement
vector, e; is the Green strain tensor, o is the
(Second) Piola -Kirchhoff stress tensor, and
X;, U and R are the body force, the internal
energy, and the strength of the internal heat
source, respectively, referred to the unit
mass. In an arbitrary material element the
mass density is p (> 0) in the initial (unde-
formed) state and p, in the deformed state.
Further, q; is the heat flux within the materi-
al, referred to the unit area in the initial
state. A superposed dot () denotes materi-
al differentiation with'respect to time t and (
); denotes partial differentiation with re-
spect to the initial rectangular coordinate x,.
The second law of thermodynamic (Clau-
sius - Duhemel inequality), expressing in
non - negative entropy production, reads:

p(M-R)+qii-(@/T)T:iz0 (6)
where n is the specific entropy, and
T = 0 1s the absolute temperature. Eliminat-

ing R between eqgs (5) and (6) and introduc-
ing the specific free energy

y=U-Tq

o~
-
N

yields:
P +TM -0yé5+(q/TT:i=0 (8)

It is assumed that y, 1, q; and ¢; depend
only on e;, T and T,. Equation (6) and ine-
quality (8) then yield the following rela-
tions. (Parkus, 1976; Nowinski, 1978)

mj=p{§-e%1 ©)
n:g—‘]{‘ (10)
%:o (11)
gii=pR-TNH) (12)
GTi20 (13)

1 -2 - The Constitutive equations

“The character of the material is ex-
pressed through a set of independent con-
stitutive equations.

Gelog,q, ¥, ,T,eq5,%,t=0, (a=1,..,11)
(14)

The equations (9) - (13) and the Constit-
utive equations (14) must hold for every
history of deformation and temperature in
the body. Equations (1) - (4) and (14) are
19 equations for 19 unknowns p, x;, o, G, €;
(or y) , v and T. The inequality (8) places
restrictions on the possible constitutive
functionals, in particular by the principle of
frame - in difference (Bargman, 1974).
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Abstract

i The paper presents a review of the work done on the dynamic interaction be- |
| tween thermal fields and solid bodies. This reflects the intense interest which |
| has been shown recently in this field, owing to the great practical importance of 1
! dynamic effects in modern aeronautics and astronautics, nuclear reactors, high
| - energy particle accelerators, and its potential importance in cryogenic and la-
| ser applications. First, a brief summery of the general theory of continuum ther-
lmo - mechanics is given. Second, problems of thermoelasticity, i.e. thermoelas-
| tic coupling and second sound are reviewed. Recent works in coupled

| thermoelasticity in composite structures are then reviewed. An extensive bibliog-

raphy is included.

I
| I ——— R

1 - Introduction

When the materials are subjected to an
external load disturbance, due to their resis-
tance to deformation as well as motion,
they transmit mechanical waves. In fact, the
velocity of propagation of the disturbance is
the square root of the resistance to deforma-
tion and inertia. Frequently, the external
disturbance may be of thermal nature. For
example, sudden heat deposition in a body,
giving rise to thermal expansion, will create
mechanical waves. The dynamic effect de-
pends on the ratio of two significant times
the time t, characterizing the external
(thermal) disturbance, and the mechanical
time t,, characterizing the propagation of a
disturbance across the body. If t;, and t,, are
of the same order of magnitude, dynamic
effects are important. They may be neglect-
ed if t, > > ty, where the problem is quasi -
static. The dynamic intraction between

Amirkabir/Vol. 11/ Noe. 41

thermal fields and solid elastic bodies is the
topic of this review paper. Intense interest
has been shown recently in this field, owing
to the great practical importance of dynam-
ic effects in modern aeronautics and astro-
nautics and nuclear reactors (Bargman
1974). For convenient and better reference,
the basic equations of thermo - mechanics
are presented (Truesdell, 1960, 1965; Carl-
son, 1972).

1 -1 - The Principals of Conserva-
tion and Irreversibility

The thermoelasticity theory is based on
the following fundamental equations:
i) Kinematic relations:

2ei=Uqj+Uji+UmilUm,j )

ii) Equations of balance of momenta:



