acceptable performance.

In the case of SPC-based prior estima-
tion, a similar condition exists which can
also limit its use. Nevertheless, better sys-
tem performance can be expected from both
approaches.
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groups, 3 clusters per phonetic group were
obtained as shown in Table 3.

Note that due to unevenness of the distri-
bution of speakers within the clusters, in
few cases, some with very small number of
speakers were resulted which were omitted
from the list of clusters in order to prevent
clusters with small amounts of training data
to form. In one case (stops), this resulted in
only 2 remaining clusters within a phone

group.

Table (3) Number of speakers per phone

group cluster.

Phone Group [Vowels| Stops | Nasals | catives { Glides

Cluster 1 30 30 23 30 30

Cluster 2 52 77 56 13 48

Cluster 3 27 - 14 63 17

J

Table 4 displays the results of SPC-
based prior estimated MAP approach to
speaker adaptation. All the experiments in
this case, i.e. both adaptation and cluster-
ing, were performed on single-Gaussian
monophones for easier implementation.
The table compares the amounts of im-
provement over the baseline SI system, ob-
tained due to the application of SI-based
and SPC-based prior estimated MAP adap-
tations (called MAP and SPC-MAP respec-
tively). Results show that even without any
MAP estimation, the resultant system of
SPC shows an improvement of 16.0 percent
in word error rate over an SI system. In oth-
er words, the application of SPC can pro-
vide a better baseline system which natural-
ly leads to a better MAP estimation. SPC-
MAP shows a consistent improvement in its
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results and always outperforms MAP with a
noticeable margin. The baseline SI system
in these experiments had a word error rate
of 22.98%.

Table (4) Percent improvement in recognition
word error rate over SI system obtained by
speaker adaptation using MAP and
SPC-MAP approaches.

ﬂdaptaﬁon
Sentences 0 10 40 100 600
MAP 0.0 6.2 223 § 316 | 389 ¢

QPC-MAP 160 ¢ 156 § 308 | 37.8 48.9

5 - Conclusions

Two approaches to the estimation of
prior parameters for Bayesian adaptation of
CDHMM parameters were introduced and
evaluated. The results show considerable
improvements in MAP estimation due to
the use of any of these two approaches, in
comparison to the ad hoc prior estimated
MAP adaptation. However, the computa-
tion or memory overheads in these ap-
proaches, in some situations, might even
give priority to ad hoc approach.

In the use of moments method for prior
estimation, one method of implementation,
which was also our choice in our experi-
ments, was the use of several speaker de-
pendent systems for calculating sample mo-
ments. In comparison to the ad hoc
approach, this is costly both in the amount
of computations needed for training SD
systems and in the amount of memory (disk
space) needed for saving such trained mod-
els. These factors may in some cases lead to
the choice of ad hoc method due to its sim-
plicity in prior calculations and reasonably
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adapting (or training) means, mixture
weights and variances of the model output
distributions. The averaged word error rate
for the baseline SI system in this case was
5.9%.

Table (1) Percent improvement in recognition
word error rate over SI system obtained by
speaker adaptation using MAP and MM-MAP
approaches, compared to SD system.

Adaptation \
Sentences 0 10 § 40 | 100 | 600

MAP 100 | 49 {16.0]38.5159.8

MM-MAP| 0.0 |} 11.322.1140.5]61.3

\ SD 60.1 )

These results indicate a considerable im-
provement in the results of MAP due to the
application of the moments method in prior

estimation in comparison to ad hoc prior es-
timation, especially for smaller numbers of
adaptation sentences where the effect of
prior parameters is dominant, while in larg-
er numbers of adaptation sentences the ef-
fect of adaptation data is dominant. Howev-
er, it can be seen that even with larger
amounts of adaptation data, MM-MAP al-
ways outperforms (although slightly) the ad
hoc method.

4 - 2 - Evaluation of Prior Estimation by
Speaker Phone clustering

In clustering experiments, speaker-
specific model sets were single-Gaussian
monophones. This was chosen because of
the simplicity and small number of parame-
ters of such models, which can therefore
lead to better training of models in very
limited training data situation encountered
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during clustering process. A second benefit
of using such models is getting higher
speeds in the model training for clustering.

Moreover in clustering experiments re-
ported here, only mean parameters which
are believed to have larger influence on the
results of adaptation, are updated. The pos-
sibility of providing prior parameter esti-
mates for updating other parameters such as
covariance matrices or mixture weights, in
a Bayesian framework, using the speaker
clustering technique has been left for future
work.

For speaker phone clustering (SPC) ex-
periments, the 47 phone models of the sys-
tem were divided into 5 broad phonetic
groups, i.e. vowels, stops, nasals, fricatives
and glides. These groups and their members
are shown in Table 2.

Table (2) The five broad phonetic groups used

in speaker phone clustering.

aa ae ah ao aw ax ay eh en er ey iD
Vowels ix iy ow oy uh uw
bddddhdx gkkd
Stops ppdttdthts
Nasals mnng
Fricatives chfjhsshvz
kGlides hhlrwy J

The clustering process was carried out
within these 5 phonetic groups. As men-
tioned earlier, the clustering thresholds
could be chosen to be different within the
broad phonetic group. In practice, these
thresholds were chosen so that the desired
number of clusters within each group were
obtained. Eventually, using different values
of distance thresholds for different phone
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In ad hoc prior estimation, as performed by
Gauvain and Lee [2] in a so-called segmen-
tal MAP estimation framework, some od
hoc constraints were applied to prior pa-
rameter estimation procedure and the prior
parameters were calculated as follows:

Wik =0 ik é"l T ik 20)

ik = M ik @n
k=12t +1) (22)
Bic=1/2Tuth | : (23)

where ®i,ma and }; are the mixture

weights, means and precision parameters
extracted from the SI system. Note that
most of the calculated prior parameters de-
pend on the value of 1,, set for each mixture
component. However, in the experiments
reported in [2], the value of 1, was set to a
fixed value for all the mixture components.
Hence, apart from the mean parameter val-
ues, the rest of prior parameters were esti-
mated in an ad hoc fashion. Also note that
in this approach the adaptation of transition
probability parameters was not carried out
as their influence on the system perfor-
mance is negligible.

A similar implementation of the MAP es-
timation of HMM parameters was per-
formed in order to enable us compare our
results with the results of ad hoc prior esti-
mation approach. However, in our case, a
forward-backward MAP estimation proce-
dure was followed (in place of a segmental
MAP estimation one). A value of 10 was
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used for 7, in these experiments.

4 - 1 - Evaluation of Prior Estimation by
Moments Method

As a systematic approach to prior pa-
rameter estimation, the method of moments
is expected to show a better performance in
comparison to ad hoc method since the sub-
jective constraints applied in that approach
are allowed to be relaxed. This can be ac-
complished by the application of equations
(13) through (19) to estimate the prior pa-
rameters in a CDHMM system. The ap-
proach followed to realise the calculations
in the above - mentioned equations was to
use the parameters from several different
speaker dependent systems to calculate the
required sample moments.

The results of the application of mo-
ments method to prior parameter estimation
for Bayesian adaptation (MM-MAP), to-
gether with the results of an ad hoc MAP
implementation (MAP) and SD results are
reported in Table 1 as improvements in
word error rate over the baseline SI system.
The baseline system used in these experi-
ments was a 6-component mixture triphone
system discussed earlier. The results of ad-
aptation reported here and in the rest of ex-
periments were obtained by applying the
adaptation algorithm with specified number
of adaptation sentences to all available
speakers of SD database individually and
averaging the results. The SD systems indi-
cated in the results were trained using all
available 600 sentences per speaker, utilis-
ing the normal Baum-Welch training algo-
rithm in similar conditions and the reported
results were also obtained by averaging
over all 12 available speakers. All results
reported in Table 1 were obtained after
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MAP estimation is used to overcome, as far
as possible, the problem of sparseness of
training data. This is not in contradiction
with the whole process which is supposed
to provide better prior paramerters for MAP
estimation process for the purpose of speak-
er adaptation. However, in this case, the in-
termediate MAP estimation process is im-
plemented with ad hoc prior parameters.
These parameters are extracted from a
trained SI HMM system which naturally
provides better initial models for any new
speaker.

In step 2, using the model sets already
generated, and dividing the phone models
into a number of groups, the speakers are
clustered within each group individually ac-
cording to the similarity of their models in
that group, using the same clustering algo-
rithm described in [10]. This results in L,
clusters in any broad phonetic group i. Note
that the number of clusters per phonetic
group and also the thresholds used in the
clustering process can be different for dif-
ferent groups. The Intra-Cluster Phone
Model sets (ICPMs) are then trained in step
3 using the data from speakers in each clus-
ter.

Hence, L, ICPMs are trained for any
broad phonetic group i. Again, usual MAP
estimation technique was used for this pur-
pose, using all data available for that cluster
and the resultant models for that phonetic
group are extracted from the set of trained
models and added to the rest of the models
from the baseline SI system to form the
ICPM.

In Step 4, the ICPM with the highest av-
erage log likelihood per frame for the utter-
ances of the new speaker, i.e. the one to the
speech of whom the adaptation process
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should be applied, is found for any phonetic
group i. This specifies the most appropriate
cluster in each phonetic group for this
speaker. Assuming the number of broad
phonetic groups to be P, P such clusters are
found and phone group models are extract-
ed once again from each, and then com-
bined in step 5 to build new set of models.
In step 6, in place of the baseline SI system,
the newly formed model set is used in prior
parameter estimation for Bayesian adapta-
tion.

4 - Experimental Evaluation

The evaluation of the adaptation tech-
niques discussed so far was carried out on a
1000 word continuous speech database of
English language. The training and adapta-
tion data consisted of two sections: one
with more than 100 speakers with about 1.5
to 2 minutes speech of each, while the other
one consisted of 12 speakers with about 30
minutes speech of each. The first section
described above was used for training SI
baseline recognition system, as well as clus-
tering purposes, while the second section
was used as SD data for adaptation purpos-
es . For testing purposes, about 5 minutes of
speech per SD speaker was available and
was used in all experiments.

The parameterisation of the whole data-
base was carried out using 12 mel frequen-
cy cepstral coefficients (MFCC), normal-
ised log energy and the first and second
differentials of these parameters. Two base-
line systems were used in these experi-
ments: a monophone and a word-internal
triphone system, both trained with all the
available SI training data. The triphone sys-
tem was developed using the state-
clustering algorithm [11].



are the parameters of normal-gamma dis-
tribution. The values of E (r,), Var (1),
E (m,,) and Var (my,) can then be replaced
by their corresponding sample moments in
order to find the estimates of the above pa-
rameters. Similar equaions can also be de-
rived for full covariance matrix case using
the normal-Wishart distribution properties.

3 - 2 - Speaker Clustering For Prior Esti-
mation

The method of Speaker Clustering (SC)
was introduced in [10] . The basic concept
in this approach was to provide a better
baseline system to be used for each group
of speakers in place of the SI system in the
ad hoc method. In this approach, in place
of using a speaker independent speech data-
base to train a set of SI models to be used
as the base for prior parameter estimation, it
was divided into separate databases for
each of the K individual speakers. K differ-
ent speaker-specific HMM sets were then
trained using these databases. The speakers
of the SI speech database were then divided
into a few clusters, say L, according to the
similarity of their speaker-specific model
parameters.

For each of these speaker-specific clus-
ters, an intra-cluster HMM system, known
as Intra-Cluster Model set (ICM), was
trained pooling all the speech data available
from the speakers of that cluster. This led to
L intra-cluster model sets. Once the speech
data from a new speaker, to whom HMMs
were to be adapted, was available, these ut-
terances (i.e. adaptation data) were used to
select the closest ICM to the new speaker.
Therefore , a system different from the usu-
al pooled SI system, which was believed to
be closer to the new speaker’s actual acous-
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tic models, was selected and used in prior
parameter estimation process.

A further boost can be given to the re-
sults of this approach using the concept of
Speaker Phone Clustering (SPC). In this
case, the same concept of clustering is used
in a somewhat wider sense. The basic idea
in using the clustering approach in provid-
ing better prior parameters for Bayesian ad-
aptation was that some speech features
might have been shared among certain
speakers. Hence, dividing them to a few
groups according to their speech similari-
ties might have been useful. Here, the idea
is that among different speakers there may
be only some common acoustic features
while their other features may not even be
close to each other. Hence, it might be use-
ful to group speakers according to their
acoustic similarities in phone groups.

This is carried out by dividing the
phones into a number of broad phonetic
groups hoping that better clusters of speak-
ers with acoustic similarities could be found
within these phonetic groups. Examples of
these broad phonetic groups are vowels,
stop consonants, fricatives, etc.

The block diagram for the implementa-
tion of this algorithm is given in Figure 1.
In this approach, similar to SC, firstly, a
number of speaker - specific model sets are
trained. This is carried out in the same way,
by using the speech data from K speakers
of an SI speech database. As these model
sets will be used in clustering speakers, a
larger number of such model sets is desira-
ble. This is the main reason for using SI
speech data. However, the problem of small
amount of training data per speaker, availa-
ble in such a database, can lead to under-
training. Hence, similar to SC approach,

Amirkabir/Vol. 16 / No. 39



prior distribution, i.e. if a Bayes decision
rule involves a parameter ¢ of a prior distri-
bution, then if ¢ is replaced by any estimate
derived from observed data, the resulting
rule may be referred to as an empirical Bay-
es rule [7] [8]. In this case, it is assumed
that a current observation o is to be used for
estimating A. (O, A) denotes a sequence of
independent sets of past observations and
their associated unknown HMM parameters
when current observation is made. The ac-
tual values of A, A,, A, ... , A, (realisations
of A) are assumed not to be ever known, but
there exists a common prior p.d.f. for
them all. The empirical p.d.f. of O, f, (O),
is an estimate of the marginal p.d.f. of O,
f (O | A),, so that as n — « for every 0,
f, (0) - f (O 1A) . Then, it might be possi-
ble to find a p.d.f. G (A) such that in

f(0t¢)=jf(01A)8(Al¢)dA (10)

G(A19)-G (1) asn -« [8]. However,
due to the difficulty of finding maximum
likelihood estimates based on f (Ol$) in
such cases, a simpler approach should be
followed.

A few methods have been introduced in
literature to overcome this problem [5] [8].
One useful method is the method of mo-
ments. In this method, the first few sample
moments are equated to the corresponding
population moments to obtain as many
equations as needed . For example, in this
case, the observation sets 0,, 0,, ... , 0, can
be used for the estimation of corresponding
parameters 3, %, .. %, »using ordinary
parameter reestimation procedures such as
Baum-Welch algorithm. These estimated
parameters can then be assumed to be obser-
vations with density G (1) as defined in (4).
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Then, the Dirichlet distribution properties
can be used to find the population moments
for initial state probabilities as [4] [9]

N Mi
E(nx)—wztl\,:lm 1n

N
Var (r;) = Nni(ziz._.“lli_ni) 1)
chim?eliim+
Thus,

E@)[1-EMmy]
Var (ni)

1

ni= E (i) (13)
Similarly, as the distribution of the state
transition probabilities and mixture weights
are Dirichlet distributions,

nu:{E(aMIl-E(a@]_l E Gy 1)

Var (ay)

w:ﬁ@@ﬂﬁ@quE@m (15)
Var (0ik)

The population moments for the remaining
prior parameters can be found in a similar
fashion, using the properties of the normal-
gamma distribution (i" the case of using di-
agonal covariance matrix) leading to

akigi-(-k-ll)f (16)
B=§-(—(—>—) (17
Rikv = E (M ikv) (18)
Tiy=— B (19)

Var (m iky) O iky

Where all equations are written for every
vector element individually and o, and By,
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where =, is the initial state probability, o,
is the transition probability from state i to
state j and A is the i x j matrix of o’s, w, is
the weight, my, is the mean vector and r; is
the precision matrix of the mixture compo-
nent k of the state i. Also, in the above
equations, n;, Ny and y are the components
of the parametric vectors of the prior Di-
richlet distributions for initial state prob-
ability , mixture weights and transition
probabilities respectively. 1, pi, o and u,
are the parameters of the prior normal - Wi-
shart distribution. vy, is the probability of be-
ing in state i initially, given the model and
observations, &; is the probability of being
in state i at time t - 1 and state j at time t
given the observations and the model, and
Ci is the probability of being in state i and
mixture component k at time t given that
the model generates the sequence O. o, is
the observation vector at time t and V is the
vector size [2].

3 - Prior Parameter Estimation
The prior density defined by (4) was as-
sumed to consist of members of preas-
signed families of prior distributions . In a
pure Bayesian approach, subjective knowl-
edge about the process is also required to
enable one to assume a parameter vector of
this prior family known. In such cases
where the parameters are continuous and
multidimensional, however, it is rather dif-
ficult to acquire such subjective knowledge
[5]. Hence the application of a pure Baye-
sian approach in this case is extremely
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difficult.

To alleviate such problems, a few sce-
narios have been adopted in different re-
search works to perform prior parameter es-
timation. Gauvain and Lee [2] used the
parameters of an already available SI Sys-
tem to estimate their prior parameters in an
ad hoc fashion. This approach, due to the
generality of the SI models, has worked
quite well and led to successful results. A
fairly similar approach to the previous one,
was implemented by Lee ez al. [6] and con-
sisted of deriving the prior parameters using
several Speaker Dependent (SD) model
sets. Successful results were also  report-
ed from the implementation of this ap-
proach.

An alternative approach to prior parame-
ter estimation is what is called Empirical
Bayes approach and was first introduced as
a method in statistical decision problems by
Robbins [7]. In this approach a frequency
interpretation is given to the prior distribu-
tion and some methods such as modified

likelihood or moments method are utilised

to estimate prior parameters.

In this paper 2 different approaches to
prior parameter estimation, which have
been applied for the first time to CDHMM
- based continuous speech recognisers for
the purpose of speaker adaptation, have
been discussed and the results are com-
pared to those of speaker adaptation
with ad hoc prior parameter estimation ap-
proach.

3 - 1 - Prior Estimation Using Method of
Moments

In the empirical Bayes approach to prior
parameter estimation, as stated earlier, a
frequency interpretation is given to the
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techniques to prior estimation of a
CDHMM - based continuous speech recog-
nition system for the purpose of speaker ad-
aptation are discussed.

2 - MAP Estimation of CDHMM
Parameters

In speaker adaptation, the system is ex-
pected to adapt to a new speaker using lim-
ited amounts of adaptation data. Hence, the
problem of sparse training data is often
faced. This problem, when normal parame-
ter estimation techniques (such as ML) are
used, might even lead to substantial Sys-
tem performance degradations [2].

The main difference between MAP and
ML estimation is the use of a prior distribu-
tion of parameters. If O = {o,, ..., 0;} is 2
sequence of observations with a p.d.f. P(O)
and A is the parameter set defining the dis-
tribution, given a sequence of training data
O, \ is to be estimated. The maximum like-
lihood estimate for A, if A is assumed fixed
and unknown, can be found by

9P (on, .., 0or) =0 0

Ir
However, if A is assumed random with a
priori distribution function P O (), then the
MAP estimate for A is found by solving

9 pior, ..
o,

;o) =0 )
Using Bayes theorem, one can write

P(\loy, ..., 0r) = P (o1, ..., o1iA) Po (1) 3)
P (o1, ..., OoT)

Thus, the MAP estimation procedure in-
volves a prior distribution function PO (1)
for the random parameter A.

Gauvain and Lee [1] have shown that the
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MAP estimation technique is applicable to
the parameters of CDHMMSs with mixture
output distributions. However, due to statis-
tical limitations, similar to ML estimates, a
local maximisation of likelihood function
for the observed data should be carried out.
This, in the case of ML estimates is usually
done using the EM algorithm. Dempster et
al. [3] have shown that the same algorithm
can also be applied to the case of MAP esti-

mation.

Assume a joint prior density of the form

N N
GMye [T =T g @ [T o’ 4)
P=1

j=1

for all the HMM parameters, where g (8, is
the joint conjugate prior density for the pa-
rameters of the mixture Gaussian distribu-
tion and consists of Dirichlet and normal
Wishart distributions @ [2] [4]. The equa-
tions for the MAP estimations of the pa-
rameters of a hidden Markov model with
A=m, A {oy, my e }i=1,..,N,k=1,..,K),
are derived as

o= ni- 1+
TN N 5)
_;1 mj'l“;; Yi
T
~ M- 1+ 3 S
&g =5 N T (6)
Y MmE-D+ Y ¥ L
ji=1 j=1 t=1
T
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Abstract

1 - Introduction ,

The application of Bayesian adaptation
to the estimation problem of the parameters
of Continuous Density Hidden Markov

Models (CDHMMs) has recently attracted

much attention. This technique, also known
as Maximum a Posteriori (MAP) estima-
tion in such cases, has been found useful in
several aspects of speech recognition such
as speaker adaptation, context dependent
model building, etc. [1]. The reported re-
sults show a noticeable improvement over
normal training techniques such as maxi-
mum likelihood (ML) estimation especially
under the sparse training data condition.
Although several different successful ap-
plications of this technique to such areas in
speech recognition have been reported, it
still faces an important problem, i.e. the es-
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| Prior parameter estimation has proved to be a rather difficult task in Baye-
! sian adaptation. However, it plays a fundamental role in the process. As Baye-
| sian adaptation is known as a successful candidate for the speaker adaptation
! task of CDHMMs, finding better priors is of great importance for such applzca-
1 tzons. Two methods of prior parameter estimation for CDHMMSs have been .in-
' troduced in this paper, and their implementation in a continuous speech recog-
: nition system has been discussed. Both techniques have shown capabilities to
| improve the adaptation results up to more than double the improvements ob-
! tazned from normal Bayesian adaptation.

L............_.....__........._._...J

timation of prior parameters. The applica-
tion of the prior parameters in the process
of estimation is known as the main differ-
ence between MAP and ML. In fact, the
improvement obtained by MAP estimation
in sparse data conditions is mainly due to

the use of suitable prior parameters. Hence,

finding these suitable parameters is of great
importance.

The normal approach to this problem is
via an ad hoc method which usually esti-
mates the prior parameters of a speech rec-
ognition system as functions of the parame-
ters of already available system(s), e.g. a
Speaker Independent (SI) system [2].

In this paper, several approaches to prior
parameter estimation have been introduced
and the results of the application of such
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