Appendix
Nominal test motor specifications as provided by

the manufacturer:

Armature Resistance (ohm) = 12% 1.10
Max. Power Output (watt) 8.18
NoLoadSpeed (RPM) £ 12% 5500
No Load Current (mA) £ 50% 210

Friction Torque (No Load Speed) (Oz-in)  0.30
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Fig (4) Convergence of the unknown parameter estimation

devices. The overall system was linearized
by compensating the second order dynamic
which contained all of the nonlinearities.
Thus, the design of a linear controller to
achieve the performance requirements be-
came a relatively simple task. The experi-
mental results presented in this paper, con-
firmed the effectiveness of the self-tuning
controller in dealing with tracking prob-
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lems. The proposed controller had two im-
portant advantages over the other algo-
rithms:

- It was less sensitive to environmental
noises.

- Its response was more rapid, therefore,
this algorithm could be used in tracking
problems with high frequency command
signals.
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ments. For comparison, zero and pole
placement criterion as introduced in [9], is
combined with the nonlinear compensation
algorithm of this paper and then, the same
signal is applied to the system. The results
are shown in Figs. 3. a and 3.b. As it can be
seen from the figures, the response of the
system with the proposed controller is su-
perior to the response of the system with
previously introduced controllers existing
in the literature of control system. Fig. 4
shows the convergence of the unknown pa-
rameters estimation.

7. Conclusion
In this paper, the third order model of a

permanent magnet dc motor was derived
and the self-tuning controller for the trajec-
tory follow-up of the system with nonlinear
load was proposed. The control system was
successfully implemented on a digital com-
puter using a discretized model with a dis-
crete parameter estimation algorithm. The
system was also tested on an experimental

set-up consisting of a six-volt dc motor,

carrying a point mass at the end of a bar
which was vertically connected to the mo-
tor shaft. h

The control scheme presented here, illus-
trates a practical method for applying this

type of adaptive controller to industrial ro-

botic manipulators and other positioning

Fig (1) Physical system of a DC motor with nonlinear load
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ed along with other system parameters
through equations (29. a) and (29. b).

Now, considering the linearized dynam-
ics of a dc motor, a self-tuning controller
with minimum variance criterion is de-
signed. Suppose that the input-output rela-
tion of the discrete system is written as:

Y(O+b1y 1 byt 2=aiu(t-1)+au-2)+e(t)+c re(t-1+cre(t-2)
(34)

where y(t), u(t) and e(t) are system output,
system input and a white noise with unity
variance, respectively. Defining the shift
operator q, this relation can be written in
the folowing form:

B@y®=AQu)+C(@e( (35)

A general controller for the system of equa-
tion (35) has been proposed by [9] as:

R@Qu®+S(@y®=T (g uc(®) (36)

Here, the aim is to find the polynomials R
(@), S(q) and T(q) such that the closed loop
system stays stable and output y(t) follows
the command signal u.(t) with the minimum
variance. In addition, since the system has
an underdamped zero, the proposed algo-
rithm should operate in such a way that
none of the zero of the system is cancelled.

Considering the controller (36), the out-
put of the closed loop system can be ex-
pressed as:

y=_ AT 4 4+ CR .
BR+AS  BR+AS

(37
Therefore, the problem of designing the
controller reduces to solving the following

algebraic equations:
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BR+AS =qC (38)

where, the polynomials R(q) and S(q) are
chosen as:

R (q)=q+10 (39. 2)

S(@=s1q+s2 (39.b)

The polynomial T(q) should be chosen
such that the steady-state error between the
command input and the system output con-
verges to zero. In other words, the coeffi-
cient of u, in equation (37) converges to
unity for the steady-state case. It can simply
be demonstrated that, the design require-
ments are satisfied by choosing the follow-

ing polynomial for T(q):
T@=tq’+tq+t= a%% (40)

6. Experimental Results

The proposed controller is applied to a
six-volt 3540 MicroMo series DC motor
[Appendix] carrying a load which is verti-
cal to the shaft of the motor. The command
signal is chosen to be a periodic pulse
which changes between + 90°. Note that the
motor setup is in horizontal configuration
so that, the system is affected by the gravi-
tational force. The system output and the
control input for the suggested controller
are depicted in Figs. 2. a and 2. b. It is clear
that, the output of the system follows the
command signal after an initial transient
process. This transient state occurs on the
time that the nonlinear part of the system
dynamics have not been compensated yet.
In addition, due to the stochastic nature of
the controller, it is also able to maintain the
system performance in more noisy environ-
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ar=- e bzzg-(Ae"A- =) ¢ =T e <Ly

(26.b)

Equation (25) expresses a special type of
nonlinear model which is linear to its un-
known parameters. Therefore, it could be
written in matrix form as:

ek+2=(Fk+1)TQk+1 (27)

where,

Fis1 =[8ks1 Ok Vagr Var gSinBxsr  gSin64)

(28. )

gk+1=[a1 a2 bi by ¢ cz])T (28b)

The elements of information vector F,,
are nonlinear functions of the output angu-
lar position; but since the equation is linear
with respect to its parameters, linear system
identification methods can be used. In this
paper, least-squares estimator is considered
for system identification. Recursive least-
squares algorithm for estimation of the pa-
rameter vector q from the system input-
output data can be expressed as [6]:

Qi+ 1 =ak+——-fP—k~—Eﬁ-—~——[9k+1 - Fren)' G
(Fx) Pe Fx +1
(29.a)
T
Py st = Py - B Fi) (B Fi) (29. b)

(F)T Py By + 1

5. Adaptive Controller Design Us-
ing Feedback Linearization

Feedback linearization methods for a
broad class of electromechanical systems
have been addressed in many papers [7, 8].
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In general, the solution of the feedback lin-
earization problem is quite difficult and
needs nonlinear transformation of the state
space bases. Here, the nonlinear system un-
der consideration is a special case in which,
the system dynamic is a combination of a
linear part and a nonlinear part that can be
separated as follows:

() =ax(t) +bu () +f(x, h, 1) €l))

where f (x, h, t) is the nonlinear part of the
system dynamic and h defines the unknown
parameter vector. In addition, if it is as-
sumed that the nonlinear part of the system
dynamic is linear with respect to its param-
eters, one can write:

f(x,ht)=gxt) .h 31D

where g (x, t) is a vector of nonlinear func-
tions and also independent of h. Now, if the
structures of nonlinear functions are known
and h is also estimated, then the following
nonlinear feedback will linearize the closed
loop dynamics:

u(t)=r() -El)-g (x, 9" h _ (32)

Similarly, if the design model of the dc
motor and its nonlinear applied torque -
equations (12) and (13) - are considered,
one can linearize the system dynamics with
the following feedback:

Va=Var- L ml gSing (33)
p

V.. is the reference armature voltage pro-

portional to the desired output of the motor.

The coefficient of the term gSin6 is an un-’

known parameter which should be estimat-
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Xi+1=er X+ (] eAr 91) Buk 20)

Applying the above relation to equation
(14. b) results in:

cok+1=e°‘Awk+é—(e°‘A—l)uk (21)

Now, substituting equations (14. a) and (17)
in equation (21), the following second order
difference equation for 6 is obtained:

Brsa= ™+ 1)ek+1-ewek+§~(ew- Duk

22)

This model is called a “one - approximation
model”, since the approximation of the dif-
ferential is only used once. It is clear that
this model offers a higher degree of accura-
cy than equation (18). This model reduces
to the former one by simply using the first
two term in the Taylor expansion of e .

 3.3. Third Model

This model which is the first of the two
exact models, is based on the direct discret-
ization of equation (12). It results into a set
of first order difference equations as in the
following:

(23. a)

Wk =e°‘Au)k,1+&—(e"A~l)uk-1

- 1™ CLA- e
Ok+t1 =0k +Oc(e Dwk 0((A o ) Uk

(23.b)

The model expresses the relation between
the input and the output of the system by re-
cursive equations. At first, by utilizing the
information at instance k - 1, angular veloc-
ity at instance k is computed and then it is

Amirkabir/Vol. 16 / No. 39

used in finding angular position at instance
k + 1. Here, it is seen that there are two
time delays between the input and the out-
put. Since, the computation of the output
angle is indirect and it is done through an-
other first order difference equation, the ob-
tained model is an “exact indirect model”.

3. 4. Fourth Model

The last discrete model that is introduced
for describing the equation set (12), is a
second order difference equation which ac-
curately relates the output angle to the input
with no approximation. This equation is ob-
tained by simultaneously utilizing the equa-
tion set (23) as in the following:

=(e0A - ._1_ ‘e(XA_l _1,_ UA_C(’A ‘1
0 k2 =€+ 1)0 ka1 e"Aeka(A m Ju +a(Ae e Yug

k+l

(24)

This model is referred to as an “exact direct
model”.

4. Estimation of the Discrete Mod-
el Parameters

Any of the four obtained discrete models
should be transformed to a regression one
which is more suitable for parameter esti-
mation. For this purpose, equation (24) is
combined with equation (13) to obtain:

Oko= 40 gt +a0 x +biVagu +hyVar+erg Sin 61 +c2g Sin B¢
(25)

where,

a1=e®i] b= —g(A- 1 e =L -1y
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where, oo = - (B + K,. K/R,) / J, B =K//IR,
and y = -1/J. The disturbance torque on the
motor shaft can be expressed with the fol-
lowing equation:

Tq (t) =mgl Sin 6 (1) (13)

where, g is the gravitational acceleration
and the other parameters are as in Fig. 1.

3. Discretization of Nonlinear
Model of DC Motors

Most of the physical systems in the
world are continuous by nature. Nowadays
due to the use of digital computers in sys-
tem identification, discrete models are used
more often. Discrete parameter estimation
methods are utilized in discrete models of
actual systems. Thus, as a first step the con-
tinuous models must be transformed to dis-
crete ones. In this paper, four discrete
equivalents are proposed for equations (12.
a) and (12. b). Two of these are approxi-
mate models and the other two are accurate
ones and only differ in the way they are ex-
pressed. The main aim of this section is to
derive the second order difference equation
of the angular position 6. It is clear that the
first order difference equation of angular
velocity o, is obtained in the intermediate
steps.

3. 1. First model
By using first order approximation in
equations (12. a) and (12. b) one obtains:

Bk+1-0k — g,
A

(14. 2)

M=amk+ﬁva](+yrdk

. (14. b)
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where, A is the sampling period. For sim-
plicity , the effects of external inputs in-
cluding load torque and armature voltage
are collected in one term as:

uk=BV a + 7T & (15)

Now, solve equation (14. b) for @, :

Ok+1=( +0A) Ok + Auk , (16)

Using equation (14. a), the following can be
written:

Oxs2-Oke1 _
____"'___Z_._;."____Q)k+1 (17)

Equating equation (16) with (17) and utiliz-.
ing (14. a) the second order difference
equation describing the system behavior is
obtained as:

Oks2=(2+0A)Oks1-(1+0A)0k+A%uy
(18)

The accuracy of the model depends on A.
This model is suitable for the cases where
high resolution is not considered. Since the
differential approximation has been used
twice, this model is called the “two-
approximation model”,

3.2. Second model

Here, the exact discretization is used in
one step. Consider the following set of si-
multaneous first order state equations:

x = Ax + Bu (19)

If this set is sampled with period 4, the fol-
lowing first order discrete set is obtained [5]:

Amirkabir/Vel. 10/ No. 39



ical transients. This is achieved by equating
the scalar u with zero, which results in a
second order design model.

Now, the effects of this simplification
and the high frequency unmodeled dynam-
ics on the winding voltage is considered.
The relation of the output torque, T, with
respect to the control input is written as in
the following [4]:

T=K,l ; (4. a)
aJ Kpga, 1
L I-bg+ LV, 4.
”at R, Ra (.5)

Defining operator p = 9/t and combin-
ing equations (4. a) and (4. b) result in:

=Ko (YarKob) Kay, g, g4 p E00- T

R, upP+1 Ra P +1
3)
The effect of the armature voltage on the

output torque is seen by rewriting equation
(5) as:

T=Ks (V4 V=5 v 6)
a Ra
where,
Vuszvu'Kbé (73)
Vudzw (7.b)
uP + 1

V., is the armature winding voltage for the
slow state of the system, i. e., the voltage
which will be predicted in the case of low or-
der design model. V,, is a parasitic voltage to
the armature winding and it reflects the ef-
fects of high frequency dynamics which have
not been considered in the design model. The
state space model of V,, is written as:

Amirkabir/Vol. 10/ No. 39

oV wa -

RO -
ot B 4+ (Ko 6-Ve)

This equation shows that the unmodeled
dynamics have a stable pole at - 1/u. The
derivatives of the control input V, and the
output angular velocity are the inputs to the
parasitic system. It is clear that the control
input with fast changes or numerous dis-
continuities will excite the unmodeled dy-
namics, and degrade the performance of the
system. This matter is important specially
to adaptive controllers which are based on
variable structure theory and obtain the
control law using sign function.

Here, the effect of the unmodeled dy-
namics on the combined dynamics of the
actuator and the load, is considered by com-
bining equations (1) and (5) as:

Ko (v,-Kp0+HE0-Vay_ 5, 5541,
Ra uP + 1
)

Simplifying this equation results in:

Koy, =79+ @B + KaKoyg Ky pKp0-Va) 8-V 1y
R. R, R, WP+1
(10)

If the external input due to unmodeled dy-
namics in (10) is denoted by Z,, then the
following relation can be written:

K. (Kb 8- V) (1)
R,

M‘zud:‘zud'{“}rL

The second order model is obtained by sub-
stituting zero for p, which results in the fol-
lowing design model of dc motors:

6=w (12. 2)
=00+ B V,y+yTy (12.b)
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systems with input voltage fluctuations.

Design of a self-tuning adaptive control-
ler is outlined in the following. The pro-
posed controller consists of two indepen-
dent feedback loops. The first one utilizes a
parameter estimator to compensate the un-
desired nonlinear dynamics of the load and
the system. The second loop defines a suita-
ble controller for the closed loop system by
solving a minimum variance design prob-
lem. Special difficulties which exist in the
control of a dc motor with a nonlinear load
are listed in the following:

- The overall dynamic of the system is non-
linear. _

- Discrete transfer function-of a dc motor
has a very underdamped zero.

- The system output should track different
command signals.

This correspondence preéents the com-
bined nonlinear dynamic of motor and load.
On the basis of this model, the effects of
unmodeled dynamics using singular pertur-
bation theory and two-time-scale model
concept, are considered. Utilizing parame-
ter estimator and a linearizing feedback, the
nonlinear effects are compensated. Design

of a selthuning controller using minimum

variance criterion is outlined for the linear-
ized system. This controller guarantees the
convergence of the output error to zero
with desirable speed. Finally, the experi-
mental results are investigated.

2 - Continuous Model of a Perma-
nent Magnet DC Motor

The physical system of a permanent
magnet dc motor with nonlinear load is
shown in Fig. 1, where V,, R, and L, are
the armature voltage, resistance, and induc-
tance respectively. The armature winding of
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‘the system is subjected to a constant mag-

netic field represented by ®. Nonlinear me-
chanical load is modeled as a point mass m
at the end of an arm of length 1. w is the an-
gular speed of the motor and 6 indicates the
deviation of link with respect to a vertical
line passing through the connection point in
the trigonometric direction.

Using the electrical and mechanical bal-
ance laws, differential equations of a dc
motor is written as in the following:

Kal=Jo +Bo + Tqg (1.a)
Lag—£+RaI=Va‘-Kba)' (1.b)

where I, J, and B represent the armature
current, moment of inertia, and speed pro-
portional friction coefficient respectively.
T, indicates the nonlinear torque load on the
motor shaft. These equations can be rewrit-

ten as:
5. _B Ka 1
O=-20+22]-LTy

I I g (2.)
Ladl_ 7 Kb gy Ly, (2. b)
Ra at Ra Ra

By defining p = L/R,, X,=6, X, = » and
X; = I, equations (2. a) and (2. b) are written
in the state-space form as:

Xi 0o 1 o ][x]To 0

_ X 15 0 BT K (X|[Xe|t o | Vat| gy |Ta

1Xs 0 KyR, - Xl LR, 0
3)

This equation expresses a two-time-scale
model. Its characteristic is expressed by
the small positive scalar . Generally, the
fast x, electrical transient is neglected in
comparison with the slow x, and x, mechan-

Amirkabir/Vel. 10 / Ne. 39



Modeling and Adaptive Control of a Permanent
Magnet DC Motor with Nonlinear Load
Using Feedback Linearization

M. Mirsalim
Assistant Professor

M. Mansuri
Graduate Student

Department of Electrical Engineering
Amirkabir University of Technology

Abstract

:r In this paper, a two - time scale model of a permanent magnet dc motor is in-
| troduced and it is shown that the fast part of the model has a parasitic effect on
| the windings of the armature. This new framework allows one to predict the be-
! havior of the system in the case of input voltage fluctuations due to controller
| output and improve the robustness of the closed loop system. Next, derivation of

| lined. This controller utilizes feedback linearization to compensate the full non-
! linear dynamics and minimum variance criterion to enable the closed loop sys-
ztem to follow input command signal of desired angular position. Then, the
| suggested algorithm is applied to control a dc motor with nonlinear load. The
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i
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Lan adaptive control law for a dc motor with nonlinear mechanical load is out- :
H
i
H
i
H
!
i

I szmulatzon and the experimental results confirm the theoretical derivation.
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1 - Introduction

Today, dc servomotors are widely uti-
lized for various electromechanical applica-
tions, particularly in accurate position and
velocity control. In some cases, such as ro-
bot manipulators and cybernatic arms, the
dc motor is subjected to nonlinear loads.
Obviously, major difficulties arise in the ac-
curate motion control of these systems. The
nonlinear effects can be suppressed by the
use of high gear ratios. However, high gear
ratios have their own disadvantages and
trend is toward direct drive systems [1].
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In order to improve the motion perfor-
mance, efforts have been devoted to devel-
op various control algorithms such as adap-
tive control [2, 3]. This attractive alternative
approach to fixed gain controllers, allows
the following of reference trajectories, espe-
cially, in the cases where servomotors are
required to deal with variable loads. Gener-
ally a second order model representing the
slow mechanical dynamics of a dc servomo-
tor is used to design a controller.

In this note , a third order model of a dc
motor is considered and the effect of ne-
glecting the fast electrical dynamic on the
applied voltage to the winding is investigat-
ed. This model provides a new framework,
which allows one to predict the behavior of
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