- versity of Calgary (1990).
- [9] T. Mitchell. Fixed points and multiplicative left invariant means, Trans. Amer. Math. Soc. 122, pp. 195-202 (1966).
- [10] A. Riazi & H. Hedayatian, A characterization of extremely amenable semigroups, J. Sci. I. R. Iran, Vol.1, No. 4, summer (1990).
- [11] A. Riazi, Amenability and representation of locally compact groups. Math. Japonica (1997).
- [12] -----, Extremely amenable locally compact semigroups, Atti. Sem. Mat. Fis. univ. Modena XLV (1997).
- [13] J. C. S. Wong & A. Riazi, Characterisations of amenable locally compact semigroups, Pacific J. Math., Vol. 108, No. 2, pp. 479-496 (1983).
- [14] J. C. S. Wong, Characterisations of extremely amenable semigroups, Math. Scand. 48, pp. 101-108 (1981).

inf {||II (μ) x|| : $\mu \in M_o(G)$ } = dis (x, $K_{H, II}$) for all $x \in H$

Proof. Let $\{\mu_a\}$ be a net in M_o (G) which satisfies $\|\mu_{\alpha} * \mu * \mu\| \to 0$ for any $\mu \in M_o$ (S). For any $y \in H$ and $\mu \in M_o$ (G) we have

$$\begin{split} &||\Pi \ (\mu_\alpha) \ (y - \Pi \ (\mu) \ y|| = ||\Pi \ (\mu_\alpha) \ y - \Pi \ (\mu_\alpha * \mu) \ y|| \\ &= ||\Pi \ (\mu_\alpha - \mu_\alpha * \mu) \ y|| \\ &\leq ||(\mu_\alpha - \mu_\alpha * \mu)|| \ ||y|| \to 0 \end{split}$$

hence by linearity of II (μ_{α}) we conclude that $||II|(\mu_{\alpha})z|| \to 0$ fo all $z \in K_{H,II}$.

Now given $\epsilon > 0$ there is $z \in K_{H,II}$ such that $||x+z|| \le dis (x, K_{H,II}) + \epsilon$ and since $||II| (\mu_{\alpha}) z|| \to 0$, there is α_0 such that $||II| (\mu_{\alpha 0})z|| < \epsilon$. Hence

$$\begin{split} & \parallel \Pi \ (\mu_{\alpha\alpha}) \ x \parallel \leq \parallel \Pi \ \mu_{\alpha\alpha} \ (x+z) \parallel + \parallel \Pi \ (\mu_{\alpha\alpha}) \ z \parallel \\ & \leq \parallel x+z \parallel + \epsilon \end{split}$$

$$< dis (x, K_{H, II}) + 2\varepsilon$$

Thus inf {||II $(\mu) \times ||; \mu \in M_0 (G)$ } $\leq dis (x, K_{H,II})$. clearly

 $\{II\ (\mu)\ x\colon \mu\in\ M_{_{0}}\ (G)\ \} \subseteq x\ +\ K_{_{H,\,II}}\ for\ all\ x\in H \quad ,$

Thus inf {|| II (μ) x|| : $\mu \in M_o$ (G) \geq dis (0, x + K_{H,II}) = dis (x, K_{H,II}) hence the result

References

- [1] J. B. Conway, A Course in functional analysis, Springer -Verlag, New York (1985).
- [2] M. M. Day, Amenable semigroup III, J. Math 1, pp 509-544 (1957).
- [3] R. G. Douglas, On lattices and algebras of real valued functions, Amer. Math. Monthly 72, pp. 642-643 (1965).
- [4] E. Granirer, Extermely amenable semigroups, Math. Scand. 17, pp. 177 -197 (1965).

follows.

Corollary 3.2. Let G be a locally compact topologically amenable group and {II, H} be a representation of M (G), then the closure of $K_{H,\Pi}$ agrees with the set of all $x \in H$ satisfying $\inf_{u \in M_0(G)} ||II(u)x|| = 0$

Corollary 3.3. Suppose G is a locally compact topologically amenable group. If II: $M(G) \rightarrow B(H)$ is a faithfull representation, then $K_{H,II}$ is dense in H or II is reducible.

Proof. If G is trivial group, then M (G) is the linear span of ε_e (ε_e is the Dirac measure at the identity of G).

Without loss of generality we may assume that II ($\varepsilon_{\rm e}$) = I the identity operator of B (H), (see [7]). It is easy to show that any nontrivial closed subspace of H is invariant under II, so II is reducible in this case.

To prove the theorem for the case that G is nontrivial, we observe that since II is faithfull $\overline{K}_{H,II} \neq \{0\}$. In fact let $\mu \in M_o$ (G) be such that $\mu \neq \varepsilon_e$ then II (μ) \neq I, that is there is $x \in H$ such that II (μ) $x \neq x$ or II (μ) $x - x \neq 0$, so $0 \neq II$ (μ) $x - x \in K_{H,II}$. If $K_{H,II}$ is not dense in H then $\overline{K}_{H,II}$ is a nontrivial closed invariant subspace of H, so II is reducible and the proof of the theorem is complete.

- [5] -----, Extremely amenable semigroups, Math. Scand. 20, pp. 93-113 (1967).
- [6] ------ , Functional analytic properties of extremely amenable semigroups, Trans. Amer. Math. Soc. pp. 53-57 (1969).
- [7] E. Hewitt & K. A. Ross, Abstract harmonic analysis I, Spriger-Verlag, Berlin (1963).
- [8] J. M. Ling, Amenable and extremely amenable locally compact semigroups, Ph. D. Thesis, Uni-

the set of all $H \in M$ (S)* of the form $H = \sum_{i=1}^{n} F_i \times (G_i - \mu_i \Theta G_i)$ for some $F_1, ..., F_n$, $G_1,, G_n \in M$ (S)* and $\mu_1, ..., \mu_2$ in M_o (S). It is clear that H is a linear subspace of M (S)*. For each $H \in H$ let the orbit of H $\overline{O(H)} = \{ \mu O H: \mu \in M_o$ (S)} and $\overline{O(H)}$ be its closure in the norm topology (which is of course the same as its weak closure, since O(H) is convex).

Theorem 2.1. The following conditions are equivalent

- (a) M (S)*MTLIM.
- (b) $0 \in \cap$ O(H) where the intersection is taken over all $H \in H$.
- (c) sup $\{H(\mu): \mu \in M_o(S)\} \ge 0$ for all $H \in \mathcal{H}$.
- (d) inf $\{||1 H|| : H \in H\} = 1$

Proof. (a) \Rightarrow (b) Suppose M(S)* has a MTLIM, then by [8, 2. 2. 1] there exists a net $\{\mu_a\}$ in M_o (S) such that $\|\mu^* \mu_{\alpha} - \mu_{\alpha}\| \rightarrow 0$ for any μ in M_o (S).

Then for any F, G in M $(S)^*$ and μ in $M_o(S)$ we have

$$\parallel \mu_{\alpha} \Theta \left(F \times (G - \mu \Theta G) \right) \parallel \leq \parallel \mu_{\alpha} \Theta \left(F \times G \right) - (\mu * \mu_{\alpha}) \Theta \left(F \times G \right) \parallel$$

 $\leq \|\mu_{\alpha} - \mu * \mu_{\alpha}\| \|F \times G\| \rightarrow 0$

by linearity of l_{μ} , we conclude that $\|\mu_{\alpha} = H\| \to 0$, for all $H \in \mathcal{H}$, hence (b). (b) \Rightarrow (c).

Suppose $0 \in O(H)$ for all $H \in {}^{n}\!\!H$ then for any $H \in {}^{n}\!\!H$ there is a sequence $\{\mu_n\}$ in $M_o(S)$ such that $\|\mu_n \Theta H\| \to 0$. Hence

$$\begin{split} \|\mu_n & \Theta \text{ H}\| = \sup \left\{ |\text{H } (\mu_n * \nu)| : \nu \in M \text{ (S), } \|\nu\| \leq 1 \right\} \\ & \geq \sup \left\{ |\text{H } (\mu_n * \nu)| : \nu \in M_o \text{ (S)} \right\} \end{split}$$

 $\geq \inf \{ |H(\mu_n * \nu)| : \nu \in M_o(S) \}$

 $\geq \inf \{ |H(\theta)| : \theta \in M_0(S) \}$

 $\geq \inf \{ H(\theta) : \theta \in M_o(S) \}$

so inf $\{H(\theta): \theta \in M_o(S)\} \le 0$ and since H is a sub space of $M(S)^*$ we conclude that $\sup \{H(\theta): \theta \in M_o(S)\} \ge 0$ for all $H \in H$.

- (c) \Rightarrow (d). The assumption implies that $||1 + H|| \ge 1$ for all $H \in \mathcal{H}$. If not there is some $H_o \in \mathcal{H}$ such that $||1 + H|| = \varepsilon < 1$, in particular $1 + H_o$ (μ) $\le \varepsilon$ for all $\mu \in M_o$ (S). Hence sup $\{H_o(\mu) : \mu \in M_o(S)\} \le \varepsilon 1 < 0$ which is a contradiction. Since \mathcal{H} is a subspace of $M(S)^*$ we conclude that $||1 H|| \ge \varepsilon$ for all $H \in \mathcal{H}$. Therefore inf $\{||1 H||: H \in \mathcal{H}\} \ge 1$, since ||1|| = 1, hence (d) follows.
- $(d) \Rightarrow (a)$. Since by our assumption \mathcal{H} is not dense in M $(S)^*$, using an argument similar to [3, Lemma 3 $(d) \Leftrightarrow (a)$] one conclude that M $(S)^*$ has a MTLIM.

Corollary 2.2. Suppose for any v, $\eta \in M_o(S)$ there exists λ in M_o (S) such that $v * \lambda = \eta * \lambda$, then $M(S)^*$ has a MTLIM.

Proof. Let $H = \sum_{i=1}^{n} F_i \times (G_i - \mu_i \otimes G_i)$ for some F_1 , ..., F_n , G_1 , ..., G_n in M (S)* and μ_1 , ..., μ_n in M_o (S). Let θ be an arbitrary but fixed element of M_o (S). By assumption there exists $\theta_1 \in M_o$ (S) such that $\theta * \theta_1 = (\mu_1 * \theta) * \theta_1$. Inductively suppose we have chosen θ_1 , ..., θ_{n-1} , then choose $\theta_n \in M_o$ (S) such that $(\theta * \theta_1 \dots * \theta_{n-1}) * \theta_n = (\mu_n * \theta * \dots \theta_{n-1}) * \theta_n$ Now $\theta * \theta_1 * \dots * \theta_n \in M_o$ (S) and it is easy to see that $(\theta * \theta_1 \dots * \theta_n) O H = 0$ i. e. zero is in O (H) and a fortiori in O(H) for all $H \in H$, hence by Theorem 2.1, M (S)* has a MTLIM.

3. Amenability and Representation of Locally Compact Groups

Theorem 3.1. Let G be a locally compact topologically amenable group and {II, H} a representation of M (G), then

1. Extremely Amenable Semigroups

Let S be a discrete semigroup and A be a uniformally colsed left invariant subalgebra of m (S). Denote by P_A the set of all $h \in m$ (S) of the form $h = |g - l_s g|$, for some $g \in A$, $s \in S$. Also let H_A be set of all $h \in A$ which have a representation of the form $h = \sum_{j=1}^{n} f_j (g_j - l_{sj} g_j)$ for some $f_j, g_i \in A$, $s_j \in S$, $1 \le j \le n$. In case A = m (S) we denote P_A by P. If m (S) is ELA we say that S is ELA.

First we offer a Lemma.

Lemma 1.1. Let A be a uniformally closed subalgebra of m (S) then

- (i) A is a lattice. If in addition A is left invariant then $P_A \subseteq A$
 - (ii) If $f \in A$ and $f \ge 0$ then $\sqrt{f} \in A$.
- (iii) $|m(fg)|^2 \le m(f^2) m(g^2)$ for every mean m on A and all f, $g \in A$.
- (iv) m (|f|) = 0 implies that m (f) = 0 for every mean m on A and $f \in A$.
- **Proof.** (i) That A is a lattice is known by [9], hence if in addition A is left invariant, then $P_A \subseteq A$.
- (ii) Let m_c (S) be the space of bounded complex valued function on S with supremum norm. With conjugation as involution, m_c (S) is a C^* algebra. Now A + iA is a closed subalgebra of m_c (S). If we consider f as an element of the C^* algebra A + iA, it is easy to see that the spectrem of f is contained in $[0, \infty)$, in fact if $\lambda \notin [0, \infty)$ then

$$\frac{1}{|f-\lambda|} \le \frac{1}{Im\lambda} \quad \text{if} \quad Im\lambda \neq 0$$

$$\frac{1}{|\mathbf{f} - \lambda|} \le -\frac{1}{\lambda} \quad \text{if} \quad \mathrm{Im}\lambda = 0$$

so by [1, Proposition 3.5] $f = g^2$ for some self-adjoint, hence real-valued function g. Therefore $\sqrt{f} = g \in A$.

(iii) Similar to the proof of Cauchy -

Schwartz inequality.

(iv) If m = 0 then $m (f^+ + f) = 0$, so $m (f^+) = m (f) = 0$ i. e. m (f) = 0

Theorem 1.2. Let A be a uniformly closed left invariant subalgebra of m (S) with $1 \in A$. Then A is ELA if and only if there is a mean $m \in A^*$ such that $m(P_A) = \{0\}$.

Proof. Suppose A is ELA and m be a multiplicative left invariant mean on A, then m $(f - l_s f)^2 = 0$ for all $f \in A$, $s \in S$. So by Lemma 1.1, with f replaced by $|f - l_s| f$ and g replaced by 1, we obtain

$$(m (|f - l_s f|))^2 \le m (f - l_s f)^2 = 0$$

hence $m(P_A) = \{0\}.$

Conversely, suppose there is mean $m \in A^*$ such that $m(P_A) = \{0\}$. By parts (i) and (ii) of Lemma 1.1 we have $\lg - \lg \lg^{1/2} \in A$, for all $g \in A$, $s \in S$, therefore by Lemma 1.1 (iii) we have

$$\text{Im } (\text{Ig -} l_s g \text{I}^{1/2} \text{ Ig -} l_s g \text{I}^{3/2}) \text{I}^2 \leq \text{m } (\text{Ig -} l_s g \text{I}) \text{ m } (\text{Ig -} l_s g \text{I}^3) = 0$$

hence m
$$(g - l_s g)^2 = 0$$
.

Now another application of Lemma 1.1 (iii) shows that

$$m(|f(g - I_s g)|^2 \le m(f^2) m (g - I_s g)^2 = 0$$

for all $f \in A$. Hence by Lemma 1.1 (iv), $m(f(g - l_s g)) = 0$ i. e. $m(H_A) = \{0\}$, therefore H_A is not dense in A, so by [6, Lemma 3], A is ELA.

Corollary 1.3. S in ELA if and only if there is a mean m on m(S) such that m(P) = 0.

2. Extremely Amenable Locally Compact Semigroups

In analogy to discrete case let H denotes

M (S)* via the identification M (S)= C_0 (S)*. For F, G in M (S)* we denote the multiplication of F and G by $F \times G$. In [8] it is shown that $F \times G$ is defined via the following three steps.

(i) For any $\mu \in M$ (S) and $f \in C_o$ (S), $\mu_f \in M$ (S) is defined by

$$\int g d\mu_f = \int g f d\mu \text{ for all } g \in C_o (S)$$

(ii) For any $\mu \in M$ (S) and $G \in M$ (S)*, $G \times \mu \in M$ (S) is defined by

$$\int fd (G \times \dot{\mu}) = G (\mu_f) \text{ for all } f \in C_o (S)$$

(iii) For any F, $G \in M(S)^*$, $F \times G \in M(S)^*$ is defined by

$$(F \times G) (\mu) = F (G \times \mu)$$
 for all $\mu \in M (S)$

then M (S)* becomes a commutative Banach algebra with identity [8, Theorem 1.23].

A TLIM, M on M (S)* is called a multiplicative topological left invariant mean (MTLIM) if

$$M(F \times G) = M(F) M(G)$$
 for all $F, G \in M(S)^*$

Let G be a locally compact group and let H be a Hillbert space and $\{II, H\}$ be a representation of M (G) (See [1] for definition of representation). It is known that II is continuous, in fact $||II|| (\mu) || \le ||\mu||$ for all $\mu \in M$ (G) (See [7]). A subspace K of H is said to be invariant under II if II (μ) K \subseteq K for all $\mu \in M$ (G). II is called irreducible if $\{0\}$ and H are the only closed invariant subspaces of H. We say that II is faithfull if II

is one-to-one. Let $H = L^2$ (G) and consider II: $M(G) \rightarrow B(L^2(G))$ defined by II (μ) $f = \mu * f$, where ($\mu * f$) (x) = $\int f(y^1x) d\mu$ (y) then II is called regular representation of M (G). The regular representation is faithfull [7].

Let {II, H} be a representation of M (G), then $K_{H,\Pi}$ will denote the linear span of {y - II (μ) y: y \in H, $\mu \in$ M $_{o}$ (G)}. For x \in H, let dis (x, $K_{H,\Pi}$) denote the distance of x from $K_{H,\Pi}$.

Now let S be a discrete semigroup and m (S) be the Banach algebra of all bounded real valued functions on S with supremum norm. If $f \in m$ (S) and $s \in S$, let l_s f(x) = f(sx) for any $x \in S$.

Let A m (S) be a uniformly colsed left invariant (i. e l_s $f \in A$ for any $f \in A$ and $s \in S$) subalgebra of m (S) with $1 \in A$ (1 is the constant one function on S). A linear functional $m \in A^*$ (the continuous dual of A) is a mean if ϕ (f) ≥ 0 for any $f \geq 0$, $f \in A$ and $\phi(1) = 1$, this is equivalent to the condition that.

$$\inf \{f(x): x \in S\} \le m(f) \le \sup \{f(x): \in S\}$$

for all $f \in A$.

We say that the subalgebra A is extremely left amenable (ELA) if there is a multiplicative left invariant mean on A, i.e. a mean m on A such that $m(l_s f) = m(f)$ and m(fg) = m(f) m(g) for all $f, g \in m(S)$ and all $s \in S$.

Extremely left amenable semigroups were introduced for the first time by T. Mitchell [9] and later on studied by E. Granirer [4], [5], [6], and J. C. S. Wong [14] and for topological case by J. M. Ling [8] and A. Riazi [10] and [12].

Three Results on Amenability

A. Riazi Professor

Faculty of Mathematics Amirkabir Univ. of Tech.

Abstract

In this article we offer three results concerning amenability of discrete semigroups, topological semigroups and topological groups.

Introduction

Let S be a locally compact topological semigroup with measure algebra M (S). Let $M_o(S) = \{ \mu \in M(S) : \mu \ge 0 \text{ and } \| \mu \| = 1 \}$ be the set of all probability measures in M(S), $M_o(S)$ is a semigroup with convolution as multiplication.

For each $\mu \in M$ (S) we denote the operator l_{μ} : M (S)* \to M (S)* where (l_{μ} F) (v) = F (μ * v), $\nu \in M$ (S) by μ O F. Also denote by 1 the element in M (S)* such that 1 (μ) = μ (S) for all $\mu \in M$ (S). An element M \in M(S)* is called a mean if

$$\inf \{F (\mu): \mu \in M_o(S)\} \le M(F) \le \sup \{F (\mu): \mu \in M_o(S)\}$$
(1)

For any $F \in M(S)^*$. Condition (1) is equivalent to

$$M(1) = ||M|| = 1 (2)$$

or $M(F) \ge 0 \text{ for all } F \in M(S)^* \text{ with } F \ge 0 \text{ and } M(1) = 1$ See [2].

A mean M is called topological left invariant (TLIM) if M (μ O F) = M (F), for any F \in M (S)* and $\mu \in$ M_o (S). If there is a topological left invariant mean on M (S)* we say that S is topological left amenable (TLA). Let C_o (S) be the subalgebra of C B (S) (continuous bounded functions on S) consisting of functions which vanish at infinity. It is known that $M(S) = C_0(S)^*$ via the correspondence $\mu \to \overline{\mu}$ where $\overline{\mu}$ (f) = $\int f d \overline{\mu}$ for any f in C_o(S), [7, 14]. Under pointwise operations and supremum norm, Co (S) becomes a Banach algebra. Arens product can thus be defined in $C_{\circ}(S)^{**}$. In particular we have the following defining formulas for any f, g in C_o (S), m in C_o (S)* and θ , ϕ in $C_{o}(S)^{**}$

$$(m \Theta f) (g) = m (fg)$$

$$(\phi \Theta m) (f) = \phi (m \Theta f)$$

$$(\theta \Theta \varphi) (m) = \theta (\varphi \Theta m)$$

this product induces a multiplication in