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and using this new algorithm we apply rule
1, 19 times; rule 2, 14 times; rule 3, 8§
times; and rule 4, 2 times and obtain X* =
(2,1, 1, 1, 1), f(x*)=8.

Example 2

Minimize f(X)=x,X,+3X,Xc+X;Xs+7X,,

Subject to:

X+X,+X; 2 6,

X +Xs+6X, 2 8,

X Xe+X,+3%5 27,

4X, X+ 3%,X5 = 25,

3X+2X5+x5 < 7,

3%, X3+6X,+4x5 < 20,

4x,+ 2X, + X¢x,< 185,

0£X<,

U=(2,7,3,3,5,7,7).

In this problem there are N=147456
points and using this new algorithm we ap-
ply rule 1, 960 times; rule 2, 589 times; rule
3, 275 times; and rule 4, 2 times and obtain
X'=(0,4,2,0,2, 1, 2), f(X"=16.

Conclusiuns
In this paper, we have developed a gen-
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x> 0. Now taking values of i > O in de-
creasing order, beginning with i=k-1, find
the first value of i such that x<u;,. Then set
x*=x, for r=1, ..., i-1 and x*=x,+1, and x*=0,
for j=i+1, ..., n.

Examples

X=0 ----- > X®=U ----> X* does not exist.

X=(, .., 0, 1) —->X°®= (0, ..., 0, un) >
X*=(0,..,0,1,0).

X=(0,..., 0, Xa) ~—--> x°= (0, ..., 0, ta) ---->
X*=(0,...,0, 1, 0).

X=(X1, D ¢ 0, Xy, 0, .., 0) _——>, X@=(X1, ey
Xj, 0, Wz, vy o) > X'=(x1, .y Xj, 1, 0,
s O0).

X= (xi, 0, ..., 0)-—--> X°®=U ---> X* does
not exist.

X=U ~--n- > X°=U ----> X* does not exist.

The algorithm

Let us consider the optimization problem
that was introduced earlier:

Minimize f(X),

Subject to g(X) = b, i=1, ..., k,

g(X) <b,, i=k+1, ..., m,

0<X<U,

X=(X1, vry Xo), U=(Wy, oy Uy

Where u, is the integer upperbound for
the integer variable x;.

Here, f(.) and g(.) (i=1, ..., m) are dis- '

crete isotone nondecreasing functions.

We might solve this problem by examin-
ing each of the X e S in lexicographic or-
der, starting with X = O and ending with
X=U. However this process can be consid-
erably shortened by invoking certain rules,
which we explain below. In general, the
more points we skip over the more efficient
the algorithm becomes. As we proceed
through the list of vectors, we keep a record
of X*, the incumbent optimal solution. and
f*=f(X*), the incumbent optimal value. The
following rules indicate conditions under
which certain vectors in the lexicographic
ordering can be skipped. The vector X € S
is the one currently being examined and
keep in mind that the functions f(.) and g(.),
S are discrete isotone nondecreasing func-
tions.
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Rule 1:

If for any X e S, f(X) > f* skip to X*.

Justification: clearly f(Z) 2 f(X) = f* for
any Z ¢ S such that X <Z <X°.

Therefore, no better solution will be
found between X and X® and we can safely
skip to X*. ’

Rule 2:

(a) If g(X*)<b;for any i=1, ..., k, skip to
X,

Justification: clearly g (X) £ g (Z) < g
(X® < b, for any Z e S such that X<Z < X°.

Therefore, no new vector between X and
X® will be found such that this ith con-
straint will be satisfied, and we can safely
skip to X*.

(b) If g(X)>b, for any i=k+1, ..., m, skip
to X*.

Justification: clearly g, (X®) 2 g, (£)2 g
(X)> b, for any Z e S such that X <Z < X,

Therefore, no-new vector between X and
X® will be foud such that this ith constraint
will be satisfied, and we can safely skip to
X*,

Rule 3:

If g, (X®) 2 b, fori=1, ..., k and g; (X)<b,
for i=k+1, ..., m, but g, (X)< b, for any i=1,
..., k, continue the enumeration with X’ be-
cause it might satisfy the constraints.

Rule 4:

If f(X) < f* and X is feasible, let X* <---
X, f* < - f(X). and continue the enumera-
tion with X* because this point might re-
duce the objective function further.

Example 1:
Minimize f(X)=X+ X+ X2+ X2 +X5,
subject to:
K AX+2x, 2 4,
X+2x523,
2X+X,2 5,
XX +2Xs S 6,
2x4+%s <4,
4x,+x%, <13,
0<X<U,
U=(3, 2,3, 3, 3).
In this problem there are N= 768 points
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established, are often helpful in determining
if a given function is isotone nondecreas-
_ ing. Suppose g(.) and h(.) are isotone non-
decreasing functions on T. Also, assume a
and b are nonnegative constants. Then in
each case the function f(.) defined below is
also an isotone nondecreasing function on
T.

(a) f()=g()+aorf()=g()-a.

(b) f(.)=af(.)+bh(.).

(¢ f(O)=w(g(.)), where w is monotone
nondecreasing function on R.

(d) f(.)=minimum {g(.), h()}.

(&) f()=maximum {g(.), h()}.

If, in addition, g(.) and h(.) are nonnega-
tive, then the following functions are also
isotone nondecreasing on T:

®  1()=g() h()

(& ()=gl)

Let § = {(s,, ..., 8,)} where s=0,1,... , u,
and j=1, ..., n. If for every X e S and every
Y e Sinwhich X >2Y implies g(X) = g(Y),
then the function g(.) is called discrete iso-
tone nondecreasing function on S.

Let Z be an n-vector of nonnegative inte-
gers. It is easy to prove that g(.) is a discrete
isotone nondecreasing function on S iff
h(X, Z)=g(X+Z)-g(X) = 0, for all Z and X
such that X e S and (X+Z7) € S.

Nontice that a function which is not an

isotone nondecreasing function may be a

discrete isotone nondecreasing function.

Example

f(X)=X*-X,+X?, is not an isotone non-
decreasing function on T={(X, X)X, = 0,
X, 2 0} because we have f(0)=0 and f
(172, 0)=1/4. However, this is a discrete iso-
tone nondecreasing function on the set S.

From now on we require that the objec-
tive function and functional constraints to
be discrete isotone nondecreasing function
on S.

Lexicographic (complete) ordering: Let
Y=(y,, ..., Vo € R". A vector Y is said to be
lexicographically positive, written Y>" 0, if
¥i=y.=... ¥.,=0, and y;>0, for some j=1, ...,n.
For X&Y e S we write X <Y to mean (Y-
X) > 0. We write X <Y to mean either (a)
(Y-X) >* 0, or (b) X=Y. We say "X pre-
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cedes Y" (in the lexicographic ordering) to
mean X <"Y.

The set S, defined earlier, has N=(u,+1)
(u+1) ... (u,+1) elements. The lexicograph-
ic ordering allows us to uniquely order the
N elements of S as S,, ..., Sy such that S,<*
S,<t S5 ... < Sy < Sy . We have, in this or-
dering, S;=(0, ..., 0), S,=(0, ..., D,..., Sy.=
(Useeey Uy, 1), and sy=(u,,..., u,). In the
following for every X we define the vectors
X', X®, and X*. The next immediate vector
of X is called X. If X=S, and k=1, ..., N-1
then X’=S,,, and if X=S,=U we say X’ does
not exist.

X® may be used to obain useful function
bounds for the constraints of the form g, (X)
2 b; and is defined in the following way: if
X=S,, k=1, ..., N then one can find the larg-
estmsuch thatm >k and §, <+ S, <+ S, im-
plies S, < §; <8, for all i=k, ..., m. That is,
the largest m such that for all the vectors
between X and s, lexicographic ordering
implies partial ordering.

One can obtain X® of any X € S in the
following way. Taking values of j > 1 in de-
creasing order, beginning with j=n, find the
first value of j, say j=k, such that x>0.
Then set x®=x, for i=l, ..., k-1 and x®=y, for
i=k, ..., n. If there is no value of j with these
properties let X°®=U.

Examples

X=0) —ommmme > X¢=U.

X=(0, ..., 0, 1) ~=memum > X°=(0, ..., 0, ua).
X=(0, ..., 0, Xa) ~m-ommem > X=(0, ...,0, un).

X=(x1, ..., Xj, 1, 0, ..., 0) -—> X°®=(x,, .., Xi,
Ui+l ooy Ua),

X=(x1, 0, ..., 0) -—--->Xo=U.

X=U oo > Xe=U.

If the function value at X® dictates to
continue our enumeration with the vector
immediatly following X® which is called X*
and is defined in the following way: if
X®=U we say X* does not exist otherwise
X*=(X®y.

one can directly obtain X* of any X ¢ §
in the following way. Taking values of j > 1
in decreasing order, beginning with j=n, ,
find the first value of j, say j=k, such that
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Abstract

\ This paper presents a general lexicographic partial enumeration algorithm |
| for the solution of integer nonlinear programming problems. The algorithm re-
| quires that the objective and the functional constraints to be discrete isotone !

: ) i
1 nondecreasing functions.

Introduction
This paper presents a general lexico-

graphic partial enumeration algorithm for

solving integer nonlinear programming
problems of the form:

Minimize f (X),

Subjectto g (X) 2b,i=1,...k,

g(X)<b,i=k+1, .., m,

0<X<sU.

X=(Xy, -ry Xo)> U=(0y, ..y Uy)-

Where u; is the integer upperbound for

the iteger variable Xx;.

Here, f(.) and g (1), i=1, ..., m are dis-
crete isotone nondecreasing functions.

Some of the features of this algorithm
are as follows:

1. It locates the global constrained integer
optimal solution by function evaluations
only, and so does not require that the
functions be continuous or even defined
for noninteger values of the variables. It
is not even necessary to have explicit al-
gebraic expressions for the functions.

2. Tt is easy to program and requires a small
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amout of computer memory.

3. It is not necessary to transform the vari-
ables to weighted sums of binary vari-
ables.

Definitions

In the following definitions let T be a
subset of R

Vector partial ordering: Let X ¢ T and
YeT. We write X < Y to mean x; <y; for
j=1, ..., n. Similarly, X=Y means X=y; for
=1, ., n

Isotone nondecreasing function: We say
g(.) is an isotone nondecreasing function on
T iff for every X e T and every Y e T and
X >Y implies g(X) = g(Y).

It can be proved that if f() is differentia-
ble on T and V f(X) = O for every X € T
then f(.) is an isotone nondecreasing func-
tion on T. Moreover, if f(.) is continuously
differentiable on T, then f(.) is an isotone
nondecreasing function on T iff v f(X) 20,
forevery X e T.

The following results, which are easily
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