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In the next stage, we use a MLP to iden-
tify the TPIPSS including both the PIPSS
and the ANN in Figure 5 as a whole dy-
namic system. The training data are pro-
duced by running many simulations on the
complete plant with different input distur-
bances such as changing voltage and power
references and various faults on the system.
From the simulation results, the Aw, AV,
and Uy signals and some of their past time
instances are extracted into separate data
files. The neural network is then trained
off-line using these data. After many trials
and errors we finally came up with a struc-
ture of NN(8-10-1) as a Neuro—P’Sﬁ which
shows an excellent performance character-
istics. The input variables to this NPSS con-
stitute a 8x1 vector as:

Po[Ao K), Ao k-1),A0 K-2), Ao (k-3),

r (14)
AV (K), AVi(k-1), AV, (k-2), AV (k-3)]

and the output is Upgg (K).

Figures 7 through 9 illustrate the dynam-
ic response of the system equipped with
this NPSS when subjected to different dis-
turbances. For comparison, the responses of
the system with and without the TPIPSS are
also shown in those Figures.

These Figures show that our prdposed
Neuro-PSS is capable of stabilizing the sys-
tem the same way the TPIPSS can. In some
cases (see Figures 7 and 8) the NPSS shows
even better performance than TPIPSS.

5. Conclusion

In this paper a Neuro-PSS using a multi-
layer feedforward neural network with Mar-
quardt training algorithm has been used to
control and to stabilize a synchronous gen-
erator connected to a remote bus. Simula-
tion results show remarkable capabilities of
our proposed method. In fact the Neuro-
PSS, as a nonlinear controller, is capable of
stabilizing the generator dynamic oscilla-
tions under different types of disturbances
and different operating conditions of the
generator (leading or lagging power factor)
without online tuning or adaptation. The in-
put signals of the proposed PSS are the gen-
erator voltage and speed which are easily
accessible in a real generating plant. The
authors believe that the performance and
characteristics of the proposed Neuro-PSS
could still be enhanced by development and
application of efficient on-line training
methods for Neural networks.
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Figure 8: Performance of PSSs sub-  Figure 9: Performance of PSSs sub-  Figure 10: Performance of PSSs
jected to a 30% ref. voltage increase. jected to a 50% ref. power increase. subjected to a fault on gen. termi-
nal followed by a line outagein a
double circuit line.
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4. Application of Neural Nets To PSS
4.1. Design of the Neuro-PSS

As we mentioned before, our goal in this
paper is to find a good approximation for
the function G in equation (5). This is well
done by means of a MLP neural network.
The approach used here to design the Neu-
ro-PSS (NPSS) is divided into two different
phases. First, the method introduced in [14]
is used to design a Tunable PIPSS
(TPIPSS) in which a MLP neural network
computes the K; and K, gains of the PIPSS
based on the operating point of the genera-
tor. The MLP in this system is an approxi-
mation to the functions f; and f, in equation
(1). The block diagram of this system is
shown in Figure 5 below:

...........................

Conditions

v W

5 Exciter

Figore 5: Block diagram of a tunable PIPSS

- Before calculation of its output signal,
the tunable PIPSS must know the system
operating point in order to determine the K,
and K, gains (see Figure 5).

In the second phase of our approach, we
have substituted completely the TPIPSS
with a MLP neural network. This neural
network is an identified model of the
TPIPSS and is trained on the pairs of input
and output signals of the TPIPSS designed
in the first phase. The MLP trained in this
way represents an approximation to the
function G in equation (5). Figure 6 shows
the block diagram of the proposed neuro-
PSS.

30

NPSS

Upss
Exciter ——-—il Generator

Figure 6: Block diagram of the Neuro-PSS
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It should be noted that the input argu-
ments of the function G can not be com-
pletely known in advance. By referring to
[20], we know that for a system of order n,
the last n time instances of outputs and in-
puts are sufficient as the input to the identi-
fying neural network. In fact, the proper
choice of the number ot past time instances
of the variables, not exceeding n, is a matter
of art; This can be found in general by a
trial and error process.

4.2. Simulation Results

To illustrate the effectiveness of the pro-
posed method, a synchronous generator
connected to a remote bus shown in Figure
1 is considered. The 7th-order nonlinear
model [4] is used for the generator which is
equipped with a IEEE-DCI1 type exciter
with amplifier and excitation saturation.
The turbine is a single-reheat tandom type
and the governor is modeled with the gener-
al model of the steam turbine governors.
All the model details and parameters are
found in [4, 25, 26].

For the first stage, a NN (6-8-2) MLP
neural network is trained off-line with the
Marquardt algorithm to tune a PIPSS for
varying operating conditions. The training
data were chosen so that the complete oper-
ational range of the generator including
both cases of leading and lagging power
factors be covered. This neural network is
then used in the block diagram of Figure 5
to tune the PIPSS adaptively.
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NN(4-5-2). This convention is referred to
illustrate the topology of a net.

3.2. Marquardt Training Algo;'ithm

Consider a MLP network shown in Fig-
ure 3 with the general input-output relation-
ship described as:

o ®y=f® 8).Rcp ©)

where p, o and 0 are respectively the in-
put, the actual output and the parameters of
the network. The parameters of the network
include all the network weights and biases
(W,, b). By training, we mean the minimi-
zation of the network error function on the
set of training data. This error function

could be defined as follows:
Sm

Q Q N
E@=Y &.%=3 3 40=2¢® (5
q=1 g=1j=1 ' i=l

where Q and s,, are respectively the size
of training data set and the size the network
output vector and e_ is the difference be-
tween the desired output, ¢, and the actual
network output, a(py):

&=ty-2 &y ®
T
=eq(1)eg(2)- - eg(Sw)]":q=1,---,Q

Remember that the adaptive rule for ad-
justment of the network parameters in order
to minimize the error function may be gen-
eralized as:

8k+1)=2@®)-a k). VEE ) 9)

The simplest optimization method, the
steepest descent algorithm, uses the oppo-
site direction of the gradient vector (this is
the basis of the BP algorithm [15, 16]),
which is a vector pointing to the descent di-
rection of the function E(8), and will lead to
a function decrease every adaptation step.
The most important deficiency of steepest
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descent algorithm is that it does not say
anything about the size of steps to be taken,
the step size oi(k) influences the rate of pa-
rameter adjustment or learning. This makes
the standard BP scheme or any other gradi-
ent search method to be very sluggish.

The Newton method, as a basic method
using second order information, tries to find
the best ouk) in each step. In this method,
the parameter adjustment is governed by:

8k+1)=2@-[VEQW)] .VECK) (10)

One problem with Newton method is
that it requires the calculation of many 2nd-
derivatives. Another problem occurs when
the Hessian matrix, V2E, is not positive def-
inite and the inverse does not exist. As a
remedy for the first problem, we may use
the Gauss-Newton modification which uses
the following approximation:

VE®=I"®.I1® (11)

where J(8) is the Jaccobian matrix of the
error function and is defined as:

dei(®
.e.z yil=
1®&)=[1y] { % } (12)

To solve the second problem, Mar-
quardt-Levenberg modification is used,
which along with the Gauss-Newton modi-
fication makes the following approximation
to the Newton's adjustment rule [23, 24]:

Bk + 1)=200-[I"(®). I @+ 1] VE®  (13)

Notic that when p, is large, this ap-
proaches  the steepest descent algorithm
with small step size. The algorithm starts
with a small p, and increases it by a factor
B if the step does not yield a smaller value
for E(B), or decreases it if we are in the
right descent direction.
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in the discrete-time domain.

From the physical behavior of the power
system it is well known that there exists is a
strong coupling between generator output
power (Ps) and system frequency () as
well as between generator reactive power
(Q5) and generator terminal voltage (V).
Therefore the relations given in (1) can be
simplified to:

{ e @

Kp=gp (@, Vo)

Combining the relations in (4) with the
dynamic equation of PIPSS in (3), we may
conclude the following simplified yet gen-
eral equation for the PIPSS dynamics:

Uess ) =G (Ao &), Aw (k-1),- -,
AV (K}, AV (k-1),..., %)
Usss (k- 1), Upss (k-2),--+)

Kept in a general form, the equation (5)
states that if we can approximate the func-
tion G, then the output signal of the PIPSS
could be computed directly from the gener-
ator speed and terminal voltage. This intro-
duces the idea that a neural network can be
used instead of a classical PIPSS to stabi-
lize the system.

3. Neural Networks

Based on an analogy with the structure
of real neaurons, artificial neural networks
as non-linear model-free adaptive dynamic
systems offer a practical approach for real
problems such as adaptive identification
and control of nonlinear systems [15-21].
This remarkable ability of neural networks
comes mainly from the fact that they are ca-
pable of approximating -(modeling) any
square integrable arbitrary nonlinear func-
tion.
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3.1 Architecture

A typical neural network, namely Multi-
layer Feedforward or Multilayer Perceptron
(MLP), is shown in Figure 3. It comprises
layers of interconnected processing ele-
ments (neurons) with the output of each
layer being fed only to the input of the suc-
ceeding layer, thus named multilayer feed-
forward.

Figure 3: Block diagram of a 2Z-layer MLP

The basic building block of Figure 3 is
shown in Figure 4, illustrating that each
neuron sums all its inputs and then per-
forms a nonlinear transfer function known
as the activation function. This function can
take a number of different forms. Although
this is typically a sigmoidal type function,
in principle any function with a bounded
derivative could be used. In this paper we
use the hyperbolic tangent type nonlinearity
for the hidden layer and linear function for
the output layer.

Figure 4: Simplified model of a neuron

The number of neurons in input/output
layers are dependent on the respective num-
ber of inputs and outputs for the problem
being considered, but the number of neu-
rons in the hidden layers is a designer
choice. A neural network with four inputs,
one hidden layer with five neurons and two
neurons ‘in the output 'layer is denoted by

Amirkabir / Vol. 8/ No.29




the Marquardt algorithm. In section 4 a
neuro-PSS is developed and its application
to a synchronous generator connected to a
remote bus as a sample power system is
also presented. Finally section 5 concludes
the paper.

2. Problem Statement

The system that we have considered in
this paper is a synchronous generator con-
nected to a remote bus through a transmis-
sion line as shown in Figure 1.

‘
Vr

| |
@g Z=ReAjLe |

Figure 1: Single machine connected to a remote bus

Note that the remote bus emphasized in
this paper is not an infinite bus; it has a var-
ying voltage, Vi, where the subscript "R"
stands for "remote". In fact the impedance
Z, and the voltage source Vy represent the
Thevenin equivalent of the external net-
work which is connected to the generator
terminal. In this way, any operating condi-
tion of the generator such as faults on gen-
erator terminal, faults on remote bus or out-
age of a transmission line in a double
circuit line could be simulated accordingly
by some proper choices of Z, and Vy.

Regarding the dynamics, the system is
controlled through two different control
loops. The first loop consists of exciter and
AVR systems in order to control the termi-
nal voltage, and the second loop consisting
of turbine and governor, controls the sys-
tem load and frequency.

To enhance the stability and to increase
the system damping, the generator is also
equipped with a Proportional-Integral Pow-
er System Stabilizer (PIPSS) acting as a
supplementary excitation controller whose
input is the speed deviation of the generator
(Am). This PIPSS consists of a wash-out fil-
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ter and a limiter in its output. Figure 2
shows the complete diagram of the plant

under study.
1"

=—--i Turbine H Governor |1--—-—

‘ Generator | V; »

e
Exciter
PIPSS
T

Figure 2: Block diagram of the generator controf system

<+ 8

Based on the mathematical manipula-
tions derived in reference [14], it can be
said that there exists a nonlinear relation be-
tween the operating condition of the gener-
ator and the integral and proportional gains
of the PIPSS (K, K). If we identify the op-
erating point of the generator with the three
parameters of P, Qg and V,, then the non-
linear relations could be written as follows:

{ Ki=f; (Ps, Qo, Vo) N

Ke=£(Ps, Qs Vo)

Now, if we consider the PIPSS as a dy-
namic system with Aw(t), Upgg(t) as its in-
put and output signals, respectively, and K;
and Kp parameters which vary with the op-
erating point of the system, then the dynam-
ic equation of the PIPSS could be shown to
have the following general form,

UPSS(t)-:F(Aw, A{{)a . '9ﬁP889 UPSS: . ,Kp(t),KI(t)) (2)

in continuous-time or equivalently

Urss (K)=F(A0(K), Aw (k- 1), ..., 3)
Usss (k- 13, Upss (k- 2), ..., Kp(k), Kx (k)
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This paper presents a novel approach for development of an adaptive Power
System Stabilizer (PSS) using Artificial Neural Networks (ANN). The system
which has been considered here is a synchrorious generator connected to an ex-
ternal network. The generator is equipped with AVR and turbine governor com-
patible with IEEE standards. The neural network which has been employed
here is a multilayer perceptron with Marquardt training algorithm. This algo-
rithm is known to be the fastest training algorithm for feedforward networks
[21]. The proposed neuro-PSS as a nonlinear controller, is capable of stabilizing
the generator dynamic and transient oscillations under different types of distur-
bances and under different operating conditions as well.

1. Introduction

Dynamic stability and damping charac-
teristics of synchronous generators are the
two most important criteria that are highly
concerned in power system design and op-
eration. Power system stabilizers (PSS)
have been widely employed in order to in-
crease the stability [1-6]. Different types of
PSSs are currently in use in power systems;
the Lead-Lag type and the Proportional-
Integral (PI) type are the most common
ones. The parameters of PSSs are normally
fixed at some pre-specified values which
are determined under a particular operating
condition.

Since the operating point of the system
varies continuously due to load changes or
system disturbances, the stabilizers de-
signed for a specific operating condition
will not yield satisfactory results in daily
operation of the power system. This has led

26

the researchers to the field of adaptive con-
trol in order to adjust the PSS parameters in
real-time processing based upon on-line
measurements [7-13].

All the different methods proposed for
adaptive stabilization of synchronous gen-
erators suffer from computational deficien-
cy; they all require plant identification in
real-time before they can compute the con-
troller parameters or the controller output.
This task will be very time consuming espe-
cially for a computer with limited computa-
tional capabilities. This, in turn, has initated
the use of artificial neural networks (ANN)
to control and to stabilize power systems
which will be discussed in sections 3 and 4.

This paper is organized as follows. Sec-
tion 2 introduces the statement of the prob-
lem. Section 3 briefly describes the multi-
layer feedforward networks and formulates
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