|Al20 (non-negative matrix). (53) In words, the determinant of the auto-
correlation matrix is always bounded be-

it results: tween zero and unity.

0<|Al<1 (54)

Conclusions:ww SRS PR SUW A ROF AN AR SNOF ST N KU SEY AW ART SR SONS SO AW %0 SR RS SN0 RENY RO SOOW MRS SOW AR M e e v

The autocorrelation function theorem
has shown that the autocorrelation co-
efficients maybe represented as a non-
negative definite matrix of Toeplitz form.

The properties of this matrix and its sub-
matrices are:

(i) Real, non-negative eigenvalues.
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Then C, and S, are cigenvectors oi ma-
trix T.. Using equations (281 and (39) one
can write:

A=A0Y o E (AT, AQ)
rt

Hence:

AC,=Awk .E(mAw)C, 1)

Also:

ASn=A0k.E(mA®) S, (42)

o, has disappeared because o=1, =0:
o,=1/2, 1=0; in which case twice the :cn-
stant or zero appears. Therefore, it .s ev-
ident that C,, and S, are eigenvectors cof ma-
trix A:

A

Ca(m=0—=);A=A0E (nAw).k (43
Sm(m=0-—00);A=A0E (mA®).k (445

And the eigenvalues are represente 1 by
A®.E(mA®).k; where K is a non-neg uive
constant.

Therefore the eigenvalues of the . uto-
correlation matrix are proportional to B(1
A®) and vice versa.

As A is non-negative definite, ther the
eigenvalucs of A must be real and n0n-
negative, a necessary and sufficient co1di-
tion for a non-negative definite matrix, [7],
[91.

As A and K are also non-negative, then
E (m A®) will be non-negative. Therefore
as the infinite autocorrelation matrix is non-
negative dcfinite, then the true power spec-
trum must be non-negative.

Considering equations (41) and {(42), it
can be seen that for the infinite auto-
correlation matrix, the eigenvalues must ap-
pear in pairs, with each pair having as-
sociated eigenvectors of the form C, and
S... These pairs will be equal with. the ex-
ception of the case for which m is zqual to
Zero.

irart {47 The Auvtocorreiatic..

shown that the auto-
= non-negative defins

or:n. The elgenvalues mus

on-negaiive, ie:

e Ui

iz (42}

=rminan: of any square matrix. %,
! o the nreduct of the eigenvalues,
[8]. Therefore for & matrix of order N,

] M= (46)

The trice of a matrix is the sum of its ei-
genvalves, which is equal to the sum of the
diagonal clements, {10]. Hence, for the Aau-
tocorrelation matrix, from equation (19):

N

% M=NR() 47
As ‘he geometric mean is never greater
than th= arithmetic mean, ie:

(al.az.....an){:‘ﬁﬁ(aﬁvazﬁ‘.+a[,), (48)

Then for the autocorrelation matrix, by
substituting from equations (46) and (47)
into (48):

AR < NRO (49)
or
IAITIQ' < R) (50)

As it is seen from equations (17), (18)
and (19}, for the autocorrelation:

R(0)=1 (51)
Therefore, it yields:
|A]<1 (52)

and since,

£



Thus, T, maybe represented by:

o0s 0 0
0 s O

T.= 0 0

0 0
sin 0 0

0 sin Oy
" 0 0
0 0

Furthermore, introducing vectors C, and

S,., as:

m*
[ cosO

COS q)m
cos 20m

€05 30m

t

where,

On=mA®AT

sin 0
sin ¢
sin 20y

sin 30m

1

Then T, maybe expressed as:

cos 0

Te= cos ¢,

sin O

sin 20,

cos 20, -

sin 29,

- Sk
-8l

¢
-§t-

(32)

(33)

Ci-
c- |t

C-

"(54)

cos 0 cos O cos 20;
cos 0 cos cos 20y
cos 0 coS ¢y cos 20
cos 0 cos r cos 20,

(31)
sin 0 sin ¢ sin 20, ]
sin O sin ¢ sin 2¢r
sin 0 sin ¢ sin 20,
sin O sin Oy sin 20

-Ci- and -S:- denote row vectors, ie trans-
poses of C, and S, respectively.

Consider the orthogonality properties of
infinite sines and cosines.

C;Sm\__‘o (35)

CiCn

}:O if r#m=+ve constaut (k) if r=m =0(36)
Si S

CiCy = 2 (+ve constant)

SiSm=0

}ifr:m:() (37)

Using the matrix property of eigenvalues
and associated eigenvectors, it can be
shown that C, and S,, are eigenvectors of
the autocorrelation matrix T, (in fact they
already hold a necessary property-
orthogonality).

In general, for a square matrix B, if one
writes:
Bx =2Ax (38)
A is an eigenvalue,

x is the associated eigenvector.

Now, since,



Therefore the autocorrelation matrix ap-
pears as:

R(0) R(1) e RN
S
N
R(1) R(0) AN
AN AN \\
A A N D)
\ \ AN
\
Ay R(O) R(1)
\
\
B AN, R(0)]

This matrix is not only square, sym-
mentric and non-negative definite, but is
also of toeplitz form [8]. What dis-
tinguishes such a matrix is that each di-
agonal has equal entries, [6].

3. The Autocorrelation Matrix and The
Associated Energy Spectrum
The autocorrelation and energy spectrum
are a Fourier cosine transform pair.
The autocorrelation maybe expressed as:

R (1) =J:E (W) cos T dm 20)

where E (®) is the normalised energy
spectral density function, which shall be re-
fered to simply, as the energy spectrum, or
power spectrum. For ergodic data that
R (1) = 0 as T —e0, R (1) from the trapezoidal
integration rule, maybe expressed as [2]:

R(1)=A® })_E(0)+§; E (rAw)costAot)  (21)
L r=]

or equivalently:
R(T) = A(ni 0. E (rA®) costTA®T (22)
where,
a,=1; rzl (23)
P = L , "= O 24-
o 5 1 (24)

Then the value of R (1), at a particular valuc

of T=pAT, is:

R(pAT)=A®Y o, E(r A®)cosrss Pac (25)
r=l}

ie:
R(0)=A® (]EE(O) cos0+E (Aw) cosO +

EQ2 Aw)cosO+...),

R(AT) =A® (LE(0) cos0 +E (A®) cos AWAT +
2 (26)
E(2 A®) cos2A0AT+...),

R(2AT) =A® (J)-E(O) c0s0+E (A®) cos 2A0AT +

EQRA®) cosdA®AT+...),

etc., ...
Now, consider a matrix T,, of Toeplitz
form, such that:

. —_

cos 0 cos r AWAT  cos 2AMAT

cos 1 AWAT
AN
AY AN
€08 2rAMAT cos T AWAT & 5

T~ AR PO S 65
AN A Y
AN

cos 1 AWAT cos O
%

&

cos 1 AWAT

%
s \
cos I AWAT cos 0

From equations (19), (26) and (27), the au-
tocorrelation matrix A maybe formed:

A =Acoi o E(rAo) T, (28)

=}

where E (r Aw) is scalar; that is:

A:AwB_E(O)T(>+E(1)T1+E(2)T2+._l (29;
putting ry,,=®, in matrix T, and noting the
equality of cos(¢,) and cos (-¢,); consider an

element i, j of T,, (row 1, col j):

To(ij) =cos (i -j) 0 (30)
=cosj{rcosidr + sinj Prsini ¢,
733
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godic phenomena.
2. The Autocorrelation Matrix
Given an ergodic phenomenon repre-
sented by a time series f (t), whose mean is
zero, the autocovariance function is defined
as, [21:
T
q)(t)zLimlJ £(0) . f(t+7)dt )
Toe T Jo

and the autocorrelation function as, [2]:

T
IT,im_IJ £(0). F(t+1)dt
—= 7 ]

R()= - (2)
Lim | L £ (). £(0)dt

This may be written as, [2]:

R(7) fO.ft+7) (3)

f (1)

Where the bar represents time averages. In
order to approach the autocorrelation ma-
trix, let a function F (t) be given by:

Fi)=oof(®)+o ft+T)+ 0 t+21)+ -
. 4)
=% o f{t+n1)

n=()

Where o, is an arbitrary coefficient. Also
note the fact that [6], [7]:

T
f F(t) dt=0, (for all values of Oln) (5)
1)

Now, F (t) maybe expressed in matrix form
as:

F()=f, (6)
Where,

F=[f(D), f(t+1), f(t+27),.] (7
and,

al=[on o 02 ..] (8)

&

¥

In which case, the integral in (5), can be
manipulated [7] as:

T T
f F-(z)dt:f o F'Fol dt (9)
{3 0

Where o and F' refer to o transpose and F
transpose. The inequality (5) may, there-
fore, be re-written [7] as:

ITFl(t)dtzoc‘UTF‘ F dtJoczo,(for ally  (10)

This is known as a quadratic form, with real
symmetric, non-negative definite, matrix
(7], A,
T
A= f F'F di (1D
0

Considering the time averaged elements of
matrix A: element 1, j (row i, col j):

Ay=T(t+kt). f(t+1) (12)
where,

Lj=1,2,3.. (13)
and.

k=i-1./=j-1 (14)

Equation (12) may be equivalently written
as:

Ay=T(t). f(t+n1) (15)
where,
n=l-k=j-i (16)

Normalising the elements of this matrix, by
dividing through by element A yields:

Ay=f0-f0xnD) (17)
f(t)?

which is an autocorrelation coefficient; for
time interval AT:

Aij'-—"R (n AT) (18)



On the Determinant And Eigenvalues of the
Autocorrelation Matrices

Nezameddin Faghih

Abstract:

r m
. The autocorrelation function theorem for ergodic phenomena, is used to de- |
| rive the autocorrelation matrix and show that the autocorrelation coefficients |
| maybe represented as such a non- negative definite matrix of Toeplitz form. The |
| properties of this matrix and its sub-matrices are discussed. It is proved that the |
| eigenvalues of the infinite autocorrelation matrix are proportional to the energy |
| spectral densities at their corresponding frequencies and vice versa; these ei- |
, genvalues are real and non-negative. It is also shown that the determinant of |
| the autocorrelation matrix is always bounded between zero and unity; which re- |
| veals further characteristics of the autocorrelation matrix of ergodic phe-

Lnomena.

1. Introduction

The autocorrelation function is regarded
as an invaluable intermediate stage in spec-
tral analysis of ergodic phenomena, [1].
The autocorrelation function, for ergodic
data, is a measure of time- related (or
space-related) properties in the data that are
separated by fixed time (or space) intervals,
[2]. It can be estimated by shifting the er-
godic data record relative o itself by some
fixed time (or space) intervals, then multi-
plying the original record, with the shifted
record. and averaging the resulting product
values over the available record length.
This procedure can be repeated for various
intervals, [2].

The energy spectrum or power spectral
(also called autospectral) density function
describes the variation of mean square val-
ue with frequency. It can be estimated by
computing the mean square value of ergod-
ic data, in a narrow frequency band, at vari-
ous center frequencies, and then deviding
by the frequency band, [2]. In practice,
however, the spectral estimation is ap-
proached by estimating the autocorrelation
function, [2], [3]. In fact, the auto-
correlation function and the spectral density
function are related by the fourier cosine

Amirkabir/Vol. 7/ No. 25

transform, known as the Wiener-Khinchine
relations, [4]. For digital computer spectral
¢stimation, a discrete truncated (due to lim-
itations on availability or acquisition of
data, estimation errors, etc.) autocorrelation
function and some numerical integration
method. most usually trapezoidal rule, are
used, [2], [5]. This can cause various prob-
lems and may even result in misleading or
even theoretically unacceptable spectral es-
timations, for example attenuated or neg-
ative spectra, [2].

Therefore, investigation of the auto-
correlation characteristics, and its relation
to spectral estimations,is a non-trivial prob-
lem requiring enthusiastic research. This
paper considers the properties of the auto-
correlation matrix and its characteristic val-
ues, ie the eigenvalues and eigenvectors,
and the relation to the associated power
spectrum. The determinant of the
autocorrelation matrix is also considered
and its bounds are investigated. It is hoped
that the work reported in this paper will
pave for further research and development
of spectral estimation methods, and that it
renders further illustrations on the be-
haviour of autocorrelations and, hence, er



