اثر مواد جفت کننده بر روی خواص مواد قالبگیری فنیکی

احمد عارف آذر

استادیار دانشکده مهندسی پلیمر، دانشگاه صنعتی امیرکبیر

محمد حسین بهشتی

فارغ التحصیل کارشناسی ارشد دانشکده مهندسی پلیمر، دانشگاه صنعتی امیرکبیر

چکیده:
ترکیبات قالبگیری فنیکی امروزه کاربردهای زیادی را به خود اختصاص داده‌اند. کامپوزیتهای فنیکی آبی سیمه‌ای از نقطه نظر سیالی از خواصی جمله استحکام و مدول ویژه، قابل رقابت با بعضی از فلزات و آلیاژهای مهم می‌باشد. چسبندگی بین رزین ماتریس و آبی سیمه اهمیت بسزایی در بهبود خواص این نوع کامپوزیتهای فنیکی دارد. این چسبندگی باید از مواد جفت کننده بهبود چشمگیری حاصل گردد. در این تحقیق اثرات قارچ نوع مواد جفت کننده از دو نوع سیلانی ملوکس و سیلانی قارچی روی آبی سیمال بررسی گردیده و یک نیش از استحکام خمشی و حفظ آن در محیط مرطوب و استحکام ضربه‌ای با عامل جفت کننده کاملاً آموزورنیل تری انتوکوکسی سیلان حاصل گردد است. این نتایج اهمیت کاربرد و انتخاب صحیح مواد جفت کننده برای این مواد قالبگیری را نشان می‌دهد.

Effect of Coupling Agents on the Improvement of Properties of Phenolic Moulding Compounds Phenolic

A. Aref - Azar, Ph.D.

Assistant Prof. Polymer Eng. Dept Amirkabir University

M.H. Beheshty, M.Se.

Post graduate student, Amirkabir University

ABSTRACT

Todays, phenolic moulding compounds have found applications in many fields. Phenolic - fibre glass composites on properties such as strength and modulus are comparable with some metals and alloys.

Adhesion between matrix resin and glass fibres is very important in improvement of properties of such composites. By use of coupling agents considerable improvement is achieved in adhesion.

In this research four kind of different silane coupling agents as well as commercial silane coupling agent which was coated on glass fibres were studied. Biggest flexural strength in dry and wet environment and impact strength was found with γ - amino propyl tri etoxy silane. These results show the
مقامه

یکی از موارد مهم کاربرد رزینهای فلکیک، استفاده از آنها (Molding Compounds) به‌صورت ترکیبات قالبگیری می‌باشد. ترکیبات قالبگیری به موارد آن‌ها شکل داده می‌شوند که از قبل آماده‌سازی گردیده و آن‌ها به‌طور حتمی به محصول نهایی می‌رسند.

ترکیبات قالبگیری فلکیک که به‌نازدیع عرضه می‌گردند و به عنوان (General Purpose) یا کاربرد‌های خاص (Special Purpose) تلقی می‌شوند.

ترکیبات کاربردی به‌نوع‌های مختلفی هستند و عمداً از یکی یا چند خصوصیات ورودی نیاز متقاومات خارجی، مقاومت ضریب‌های بالا و خواص الکتریکی ورودی برخوردارند و یا به‌طور کلی به‌اختصار عرضه می‌گردد، نمونه‌هایی از انواع مختلفی یکساختری به‌ویژه با ورود خواص مکانیکی عالی می‌توان به‌ویژه صنایع نظام کاربردهای برتر ترکیبات فلکیک وجود دارد که نیازمند مواد با خواص ماستری بالاست و ان خواص را با مواد تجاری نمی‌توان پاسخگو بود.

هدف از اجرای این پروژه دستیابی به مواد قالبگیری رزینهای فلکیک بود که با استفاده از تقویت کننده‌های الاف شیشه‌دار خواص مکانیکی بالایی در مقایسه با مواد قالبگیری تجاری به‌اشت.

ترکیبات قالبگیری تقویت شده با الاف، در دسته کابوژوئیکی الاف به‌طور مجدید پر رنگ می‌گردند. در این نوع کابوژوئیکی الاف غیرپوستی می‌باشد. در این نوع کابوژوئیکی الاف می‌توان به‌زین متاسفیزا و اهمت زیادی است که استفاده روز را خواص کابوژوئیکی تأثیر

مکانیکال. در این تحقیق به‌برنامه‌ریزی که باعث تغییرات الاف (Coupling agents) به‌رژین می‌گردد.

جدول ۱: مواد جفت‌کننده تجاری

<table>
<thead>
<tr>
<th>مواد جفت‌کننده تجاری</th>
<th>ساختار شیمیایی</th>
<th>گروه عاملی</th>
<th>اهمیت</th>
<th>کاهش</th>
<th>ژیر شناسه‌نامه</th>
<th>۳۱۱</th>
<th>۲۰۲۳</th>
<th>۳۱۱</th>
<th>۲۰۲۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>بی‌خودی</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
</tr>
<tr>
<td>کریستال</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
<td>(C1H2O3)</td>
</tr>
</tbody>
</table>
جدول 2- مشخصات رژین نوولک مورد استفاده.

<table>
<thead>
<tr>
<th>خواص</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>هیدراتاس</td>
<td>%</td>
<td>85-95</td>
</tr>
<tr>
<td>تاپیده</td>
<td>℃</td>
<td>110-115</td>
</tr>
<tr>
<td>ذوب</td>
<td>℃</td>
<td>7-9</td>
</tr>
<tr>
<td>فلت آراد</td>
<td>%</td>
<td>0.5-1</td>
</tr>
<tr>
<td>اندازه رژین</td>
<td>mm</td>
<td>97</td>
</tr>
<tr>
<td>روندگی در</td>
<td>℃</td>
<td>90</td>
</tr>
</tbody>
</table>

سیلان‌های با عامل آنیل با رژین‌های فلکبک در فرآیندهای مختلف مورد استفاده قرار می‌گیرند. اضافه کردن سیلان به رژین فلکبک ممکن است باعث ایجاد سیالگلایسرین شود. این سیالگلایسرین به عنوان یکی از مواد‌های اصلی در سیلان‌های فلکبک استفاده می‌شود.

کارهای عمیق انجام شده
رژین فلکبک مورد استفاده در سیلان‌های فلکبک از ترکیبات قابل‌هیدراتاس می‌باشد. این سیلان‌ها می‌توانند به عنوان کاندیدات اصلی در تولید محصولات پلاستیکی مورد استفاده قرار گیرند.

جدول 3- مشخصات سیلان‌های مورد استفاده در ترکیبات قابل‌هیدراتاس.

<table>
<thead>
<tr>
<th>شماره ترکیب</th>
<th>نوع سیلان</th>
<th>شیوه سیلان</th>
<th>نام شیمیایی</th>
<th>روزهای</th>
<th>ماه‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>بدون سیلان (بای محل شیشه تمیز‌گردید)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>سیلان تجارتی رویال دایناسیلن AMED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>سیلان آزمایش کیفی</td>
<td>DYNASILAN AMED</td>
<td>7-3آمپینورول</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>نوک اولی نمونه</td>
<td>DYNASILAN AMEO - T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>سیلان اکسی‌تریول به‌صورت درجه‌بندی آنتونسیلا</td>
<td>DYNASILAN 1211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>سیلان مورد ورود در سایه‌سازی بی‌صفحه</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

روش پیش عمل آنیل شیشه
برای سیلان‌های درون فلکبک، لازم است این هر روز با سیلان آپاره‌های که دارند تمیز نمود. بنابراین، نوک نیز کیفی تجارتی مورد استفاده در این تحقیق به مواد 24 ساعت در دمای ۱۰۰ ℃ حرارت داده شده تا اطمنان حاصل شود که هیچگونه
مواد آلی اولیه‌ی رود آنها بایستی است و کاملاً تمیز شده‌اند.

پس محصولی از آب مقطور و اسید استیک با pH 3/5 تهیه کرده و 1 گرم از سیلان موردنظر (عندل 5/0 درصد) اضافه می‌گردد و با آن مخلوط می‌شود و بلافاصله لیف شده تیز شده به آن افزوده‌گردیده و بعد از 24 ساعت کارگذاری می‌شود. تا اطمینان حاصل شود که هیدروژن سیلان به کامل انجام گرفته است. سپس لیف شده خش خش شده به مدت 6 ساعت در دمای 120 °C خشک می‌شوند. پس از آن آمیده مورد نظر با این الاف شیما سیلانی شده، تهیه می‌گردد.

آمیده‌های ساخته شده یک آمیده ترکیب قالگیری فلزی در رنگ، شامل یک کاتالیزور، نوع کاتالیزور روان‌کردن می‌باشد. آمیده‌ای که جهت آزمایش گردیده، در دو ترکیب درصدی بود که در جدول شماره 4 نشان داده شده است:

جدول 3- ترکیب درصد آمیده جهت بررسی اثر سیلان

<table>
<thead>
<tr>
<th>مقدار بر حسب (Phr)</th>
<th>ماده</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>رژین نیوتلک</td>
</tr>
<tr>
<td>10</td>
<td>گوگر</td>
</tr>
<tr>
<td>3</td>
<td>اکسید نیتیمی</td>
</tr>
<tr>
<td>6</td>
<td>روان‌کردن</td>
</tr>
<tr>
<td>25 میلی متری</td>
<td>الاف شیمی</td>
</tr>
<tr>
<td>217</td>
<td>مجموع</td>
</tr>
</tbody>
</table>

مرحله مختلف تهیه آمیده و آماده‌سازی مواد مورد مصرف در قالگیری در شکل 1 نشان داده شده است. کلیه آمیده‌های ساخته شده به روش فشاری در فشار مطابق استاندارد D-2346 T-115 که در دمای 170 °C سازگاری قالگیری گردیدند. زمان قالگیری به قبیل نمونه‌ها 5 دقیقه در نظر گرفته شده است. برای تعیین خصوصیات اجرایی، مواد در قالبی یک هر فرابه به صورت یک صفحه به ابعاد 21/120×21/120 سانتی‌متر قالگیری شده، سپس نمونه‌های مورد آزمون طبق استاندارد D-790M تهیه و مورد آزمون قرار گرفته‌اند. آزمون خش نمونه‌های بررسی سیلان با دستگاه زوریک پیشرفت مدل 1445 انجام شده است. برای تعیین سطح ضریب ترکیب قالگیری در قالبی یک جغرافیا که طبق استاندارد D-647 ساخته شده بود قالگیری 12/17×21/12 حاصل گردید و

امیرکیمی/313
جدول ۸- نتایج آزمون خمش پرسی اثر سیلان‌ها

| شماره ترکیب | شرایط آزمون | استحکام خشی (MPa) | شدیدت استحکام خشی (GPa) | درصد افزایش استحکام خشی
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>طبیعی</td>
<td>(۲۴۳)</td>
<td>(۳۲۷)</td>
<td>۲۴۳/۲۴۳ = ۰/۵۵۹</td>
</tr>
<tr>
<td>۲</td>
<td>طبیعی</td>
<td>(۲۴۳)</td>
<td>(۳۲۷)</td>
<td>۲۴۳/۲۴۳ = ۰/۵۵۹</td>
</tr>
<tr>
<td>۳</td>
<td>طبیعی</td>
<td>(۲۴۳)</td>
<td>(۳۲۷)</td>
<td>۲۴۳/۲۴۳ = ۰/۵۵۹</td>
</tr>
<tr>
<td>۴</td>
<td>طبیعی</td>
<td>(۲۴۳)</td>
<td>(۳۲۷)</td>
<td>۲۴۳/۲۴۳ = ۰/۵۵۹</td>
</tr>
<tr>
<td>۵</td>
<td>طبیعی</td>
<td>(۲۴۳)</td>
<td>(۳۲۷)</td>
<td>۲۴۳/۲۴۳ = ۰/۵۵۹</td>
</tr>
</tbody>
</table>

به شرح آنچه، ناشی از عدم سازگاری رژیم فلکی و الاف شیئه است و یکی از نتایج عمده سیلان‌ها سازگار کردن الاف شیئه معده با رژیم الافی (Compatible) می‌باشد. بنابراین ترکیب دیگر که از سیلان‌های مختلف در آنها استفاده شده و در کنیفیت ظاهری خوبی برخوردار بوده، نتایج آزمون خشی آنها در جدول شماره ۵ آورده شده است. استحکام ضریبی یک متوسط‌آمیز جهت هر ترکیب می‌باشد.
نتایج این آزمون در جدول شماره ۶ نشان داده شده است.

جدول ۶- نتایج استحکام ضریبی

| شماره ترکیب | استحکام ضریبی | شماره ترکیب
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۹۶-۸۸</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>۹۷-۳۰</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>۹۶-۹۰</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>۹۵-۸۰</td>
<td>۴</td>
</tr>
<tr>
<td>۵</td>
<td>۹۶-۸۰</td>
<td>۵</td>
</tr>
</tbody>
</table>
نتیجه‌گیری:

از مطالعات بالا نتایج زیر حاصل گردید:
1 - علیرغم گذشت حدود هشتاد سال از عمر رزین فلیکس، هنوز موارد تحقیقی عدیدی وجود ندارد که می‌توانند روی این رزین انجام شود.
2 - نتایج بررسی‌های انجام شده در استفاده از عامل جفت‌کننده سیلان نشان می‌دهد که استفاده از سیلان برای سازگاری رزین فلیکس و الاف شیشه ضروری است و نوع سیلان استفاده شده تأثیر قابل توجهی بر افزایش خواص کامپوزیت در محیط مطابق و همچنین افزایش خواص آن دارد.
3 - بهترین نتایج با استفاده از عامل جفت‌کننده آمینوپریم‌برتری که توانست سیلان حاوی گردیه‌ای و پتالار آنتن که عمل جفت کننده مناسب برای کامپوزیت‌های فلیکس چهار است.
4 - خشک کردن نمونه‌ها خیس شده آزمایش خصوصی گردیه‌ای جلوگیری می‌کند، از خواص خشک بازیابی و میزان افزایش پراش سیلان‌های مختلف متفاوت بوده.

در شکل شماره ۳ مشاهده می‌شود که استحکام خشک نمونه‌های خیسی که خشک کردن گردیده‌اند نسبت به نمونه‌های تری بیشتر می‌باشد. به علاوه استحکام خشک مجدد افزایش یافته است و میزان افزایش پراش سیلان‌های مختلف مختلف متفاوت بوده.

در شکل شماره ۴ تغییرات استحکام ضریب ارگونومتری‌های پراش تکیاب در شماره ۵ با سیلان‌های مختلف نمایش داده شده است. در این شکل...

متابع: