of this example with different methods can be made.
However, the computational procedure of the hybrid

algorithm is an efficient implicit enumeration tech-
nique in which no optimality criterion is violated,
and hence the solution by this method based on the
principle of optimality must be an optimum. Cur-
rently the only available information is the execution

time of this single example. This example is solved
using a WATFIV coded program on the AMDHAL
470V/6 computer. The execution time for this prob-
lerm was 244.25 seconds. Considering the size and
difficulty of the problem, this appears quite reasona-
ble for obtaining an optimal solution.

Table 1
The optimal Allocation of The Budget levels for Industriai Table 2
Branches The Optimal Investment alternatives
Branch Budget Levels($) Optimal Optimal Eirm No.
No. Min Max  Budget($) Return Branch No. 1 2 3 4 5 6 7 8 9 10
1 290.000 400.000 310.000 762.84 1 t 1t 1 68 2 1 2 5 1 1
2 100.000 600.000 600.000 1,190.85 2 2 2 2 1 4 1 5 2 5 2
3 340.000 540.000 520.000 822.77 3 11 1 1t 3 2 5 5 5 1
4 260.000 420.000 420.000 809.24 4 3 1 1t 4 1 1 1 5 4 1
5 350.000 600.000 600.000 1,640.87 5 4 11 5 1t t 1 5 4 1
TOTAL  2.450.000 5.226.37
REFERENCES

1) Beightler, C.S., Pillips, D.T., and Wild, D.J.,
Foundations of Optimization, Prentice Hall,
Englewood, N.J., 1979.

2) Ghasemi-Tari, F., An Algorithm for Large-Scale
NKP and its Extensions, Ph.D. Dissertation,
1980.

3) Greenberg, H.J,, and pierskalla, W.P., Surrogate
Mathematical Programming, Operations Res., 18,
No.5, 1970.

4) Morin, T.L., and Marsten, R.E., Branch and
Bound Strategies for Dynamic Programming, Op-

erations Res., 24, No.4, 1976.

5) Nauss, R.M., The 0-1 Knapsack Problem with
Multiple Choice Constraints, University of Mis-
souri, 1976,

6) Sinha, p., and Zoltners, A.A., The Multiple
Choice Knapsack Problem, Operations Res., 27,
No.3, 1979.

7) Toyoda, Y., and Senju, S., An Approach to Line-
ar Programming with 0-1 Variables, Management
Science, 15, No.4, 1968.

AMIRKABIR/21




S.T.

Z € Sl

where

S1=The vector of the budget levels in the final stage
of branch 1

R1=The return vector obtained in the final stage of
branch 1.

Problem 2.2 is indeed a one-dimensional
(single linking constraint) nonlinear knapsack model
which can be easily solved with dynamic program-
ming techniques. The optimal solution resulting
from solving problem 2.2 will define the optimal
budget level, z1, and after obtaining this value, the
optimal set of investment policies for every firm of
each branch can be recovered.

To compare the size of 0-1 linear programming
model with the dynamic programming model, consid-
er a problem with 5 branches, each including 10
firms, 5 investment alternatives for each firm, 3 re-
source constraints and ten budget levels for each
branch. The dynamic programming model for this ex-
ample will have 50 variables each having five differ-
ent values, and three resource constraints. The 0-1
linear model will have 2800 zero-one vairables in-
cluding 2500 variables for Z'S, 50 variables for Y'S
and 250 variables for X'S, 15 resource constraints. 6
budget constraints and 5055 bounding constraints in-
cluding 50 multiple-choice constraints for X'S, 5
multiple choice constraints for Y's and 5000 con-
straints for the variable transformation.

The above discussion indicates that the 0-1 lin-
ear programming model will be of incredible size in a
realistic model. Perhaps one of the only alternative to
the solution of the problem is the use of a diverging
branch dynamic programming model.

A Case Problem

A case problem with 5 industrial branches, each
including ten industrial firms, five investment alter-
natives, and three resource constraints will now be
considered. The required data for this problem was
randomly generated using Monte Carlo concepts of
process generations; i.e., generating pseudo-random
numbers using subroutine RANF and applying in-
verse transform to obtain a uniform distribution func-
tion for the required data.

The problem of finding the best set of invest-
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ment alternatives for each firms in order to maximize
the overall return is solved by the hybrid algorithm.

The algorithm is called a hybrid algorithm, and
it is essentially a dynamic programming approach in
the sense that the problem is divided into smaller
subproblems. However, the idea of fathoming the
partial solution by branch and bound is incorporated
within the algorithm. The main feature of hybrid al-
gorithm is its capability of reducing the state-space
which otherwise would present an obstacle in solving
multiple-constraint dynamic programming problems.
part of this reduction is due to the use of the imbed-
ded-state approach, which reduces an M-dimensional
dynamic program to a one-dimensional problem. Oth-
er reductions are made through fathoming the state-
space and subsegent elimination of state-space regions,
which tend to eliminate inferior solutions compared to
the predetermined lower or updated lower bound.

The use of a surrogate constraint methodology
is implemented in the algorithm to obtain initial
lower and upper bounds for the objective function. At
each stage, the lower and upper bounds are also updat-
ed by use of a surrogated problem, and the updated
upper bound will be used for termination criteria. The
procedure for updating lower and upper bounds in the
surrogated problem is very efficient. In addition, the
primary advantages of using the surrogate problem to
estimate these bounds, are(1) it provides a narrow
range between the lower and upper bound, and(2) it
may provide the optimal solution to the problem at
the first step.

The generated data are used as input to the prob-
lem and optimal decision variables for each firm in
each industrial branch are obtained along with the op-
timal allocation of the budget levels for each district.
Table 1 illustrates the optimal allocation of budget
levels in each branch. The information concerning the
minimum and maximum budget levels, The return
obtained by each allocation, and the total budget and
total return are also presented in this table. Table 2 il-
lustrates the optimal investment alternative which re-
sulted from the allocation of the optimal budget to
each branch. Each branch number and the correspond-
ing optimal decision variables are also shown in this
table. This example was discussed previously, where-
in it was noted that the 0-1 linear programming mod-
el for this problem has 2800 0-1 decision variables,
and 5055 constraints. The current state of the art in 0-
1 integer programming techniques indicates that an
optimal solution to a problem of this magnitude can
not be achieved in a reasonable amount of computa--
tion time. Therefore, no comparison to the solution



within a branch, and the node S from which each
branch diverges represents the allocation of total bud-
get to each individual branch.

In each branch there will be J stages represent-
ing the number of firms in that branch, and L branch-
es diverging from node S.each branch may be solved
as an initial-value problem in terms of z;j. This is
accomplished using forward recursion carrying zj] as
an extera state variable. At the final stage the return
vector, a function of the state variables, will be ob-
tained for each branch. The state variables represent
the consumption of the resources such as types of
equipment, materials, personnel, and the total budget
level. Among these state variables, only consump-
tion of the budget is the subject of further optimiza-
tion and all other state variable inputs are fixed. As a
result, the returns of each branch, as a function of
budget level, are obtained. Considering each branch
as a single stage in the dynamic programming model,
a decision must be made with regard to the allocation
of budget levels to each branch in order to obtain the
maximum return.

Referring to Fig.2, it can be seen that each
branch involves a multiple-Constraint dynamic pro-
gramming problem. These constraints are divided
into two groups. The first group is represented by a
state vector yj|. The second group, projects cost, is
represented by a single-state variable, zjj. This separ-
ation has just been justified; i.e., the cost constraint
interrelates the decision-making process between the
different branches, while the group of constraints rep-
resents by yjj can be considered independently in each
branch.

Branch 1 3alﬂj R jﬂj
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Figure 2. Schematic presentation for the allocation of

funds within and between branches.

Consider branchl; allocation of resources to this
branch using a dynamic programming technique re-
sults in the following recursive equations:

Ry (zi, yn) = Max. 1y (x;)

over

0<Ap(x) €y

O<gen(x) <z
Rij (71, i) =Max. {5z) + Max.{Ri-1,1 (51,1, 9310 }
for j=2,3,....,J, and over;

0< A (x) <y
The state recursion equations are:

z=B
yn=TR
Zj11 = Zj1 - le(Xj) for j=2,3,....3

Yj-l,l = Y)l - AJI(XJ) for j=2,3,...,J
where the state variables are defined as;

Zjl =The amount of budget available for stages
[ E2 T |
¥t =The vector whose components represents the
amount of each type of resource available for stages
ARRES PN
and

TR:(b“, b21’ ceey bI*l,l)‘

The recursive equations developed for branch 1
can be applied to all branches, i.e., 1=1, 2, ..., L. Af-
ter dynamic programming is applied to all the branch-
es the return

Ry (zn, yw

will be obtained. Since the first group of constraints
is not involved in the allocation of budget to branch-
es, let

Ri(zD=Ry(zp.yn)-
The distribution of budget levels to each branch is
then obtained by solving the following problem:

Problem 2.2

L
Max. Ex R (zp
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1 if project j is selected for firm i in branch 1
Xjjl =

0 otherwise

1 if budget level k is used in branch 1

Yu=
0 otherwise

Zijkl = X451 ¥kl

=The number of firms in each branch

J=The number of alternatives projects for each firm

K=The number of budget level in each branch

L=The number of branches

rijk =The return obtained by selecting project j for

firm i in branchl

dijlum =The amount of resource type m used by select-

ing project j for firm i in branch 1 (M is the total

number of resources)

D =The amount of the available resource of type m

in branchl

bm =The budget level k considered for branch 1

Cijt =The cost of project j for firm i in branch 1

B=The total available budget for entire organization
A more desirable approach to the problem of al-

locating budget levels to branches is to develop a

model capable of handling both the within and be-

tween branches allocation process optimally. The

mathematical representation of such a model in the

form of a NKP is presented below.

Problem 2

L J
Max, 121 21 L) (Xj)
=] j=

.T.

M‘__‘U)

aijl (Xj) < bil for i:l,Z,...,I—I & 1=1,2,...,L

[
1}

M-
M=

Cil (Xj) <B

W
o
i

Xj S Sjl
Sﬂ - {1’25"'9Kj1}

where

aijl =The amount of resource type i (excluding pro-
jects cost) consumed as a function of alternative X,
for firm j at branch 1

bi=Total amount of type i available resource
(excluding budget level) at branch 1

Cil =The amount of consumption of project cost, a
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function of alternative X, for firm j at branch 1
L=The number of branches in the organization
Kji =The number of investment alternatives that can
be selected for firm j at branch 1
M=The number of resource constraints excluding cost
11 =The return function of alternative X, for firm j at
branch 1
B=Total amount of available budget for entire organi-
zation
X; =The decision variable indicating the types of al-
ternative to be selected.

problem 2 can be decomposed into two levels.
The first level is to decompose the problem according
to the branches. Each branch can then be considered
as a single stage of a total dynamic programming
problem. The second level is a decomposition of the
branch. This process can be more clearly illustrated
by expanding
problem 2.
Problem 2.1

J ] J
Max. El rj (%) +jZ] rj2 (X)) + ... )21 5L (X))
p < -

S.T.
J
2, aijl (x;) < by
P
JJ e .
2., aij2 (xj) < bi2
j=1
J
Z} aL (X)) < biL
]:
for i=1,2,..., I-1

J J J
jgl Cil (Xj) +j§'l Cj2 (Xj) + ...+ ngl CiL (XJ) < B.

Referring to problem 2.1, the limitations on all
the resources are considered independently for each
branch with the exception of the limitation on the
budget level which interrelates the decisions in all
branches. However, the allocation process within
each branch could be developed independently if it
were developed as a function of budget level in that
branch. That is, a vector presenting the optimal re-
turn as a function of budget level in each branch
could be obtained. These branches benefits and their
associated cost levels could be used for the allocation
of total budget to individual branch. This two-level
allocation process can be suitably performed using a
non-serial dynamic programming model. This model
is illustrated schematically in Figure 2. In this Fig-
ure,each branch represents the allocation of resources



levels through the organization branches is indeed a
subsystem optimization. Generally, a subsystem op-
timization may not reveal all possible decisions and
hence, may limit the study's range of possible solu-
tions. The fact that subsystem optimization cannot
cover all possible solutions can happen in our prob-
lem where one or more of the budget levels lies out
of the predicted range. In addition, the current ap-
proach is a very inefficient way of handling this
problem, because an optimization process in the
form of a large 0-1 model must be performed at each
budget level for each branch, in order to obtain the re-
quired information for further distribution of funds
throughout ail the branches. Thus, a better model
must be developed to resolve the above problems, in
order to develop a total system optimization model.

The overal optimization process is considered
as a sequence of interrelated decisions in each branch.
These decisions are interrelated by the amount of to-
tal available budget to be distributed in each branch.
Considering each branch as a stage of a dynamic pro-
gramming model, in each stage a multiple-resource
constrained nonlinear knapsack problem must be
solved, and the resulting returns with a single-state
transition equation (amount of funds spent in each
branch) is transferred to the next stage. This process
is shown schematically in figure 1. In this figure, S,
is the total amount of available funds; S; is the
amount of funds available for the next i+1, i+2, ...,
N stages; d; is the decision variable presenting the
amount of funds allocated to branch i; and r; is the re-
tun from branch i when d; unit of funds are used, for
i+1, i+2, ..., N, where N is the number of branches.

The return 1 is the expected value of total bene-
fits from branch i, which is calculated as the summa-
tion of the expected benefits gained in each firm.

The value of the return r; is actually obtained
by solving an NKP as a branch of a diverging branch
dynamic programming model. Hence each branch of
this model consist of a serial dynamic programming
model in which each stage represents the selection of
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different alternatives in each firm in any specific in-
dustrial branch.

Development of a Mathematical Mod-
el for the problem

A 0-1 linear programming approach to the
problem is interesting to examine, even though the
NKP can be shown to be more efficient optimization
technique. The propose is to provide an insight to a
better comparison between two models; 1)dynamic
programming model, and 2) the 0-1 linear model.

The 0-1 linear model for allocation of resources
within each branch and the distribution of organiza-
tion-wide budget between branches can be presented
in the following form:

Problem 1

e

Max. R=

i
i=

i L
r‘- Zo.kl
1i=1 k=1 lz:l ijk ]

w
-1

™M
M._( .

dijlmXijl §Dm1 for m=l,2,...,M & 1=1,2,...,L

7
[k
Z
L

N ™
Ml—q

K
Ciji%iji< X Yia big for I=1.2....L

0
=
1

M
INgba
o
=
N
=

A
ov}

T
o
-
If

iR

=1 fori=1,2,....1 & I=1,2,..L

Mo

[

){i.

[
[1i

for I=1,2,....L

=

v =1

Xijl + Y - Zijkl < 1 forallijkl's

_lel - Ykl - ZZ]_}}(I < O for all i,j,k,l 's

Xijl » Yki» & Zijk1 = Oorl forallijkl's
where;

R=The total return obtained from the scheduled in-
vestment activities

Branch N

'

Figure 1. The optimization process for the allocation of funds among organization branches
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resource constrained problems.

An alternative approach to the single industrial
branch optimization is to formulate the problem as a
“Nonlinear knapsack problem" (NKP) which signifi-
cantly reduces the number of variables and eliminates
all the constraints except the resource constraints. A
promising solution approach to handle NKP is dis-
crete dynamic programming. Although this approach
reduces the dimensionality of the decision variables,
it suffers from the fact that the existence of more
than three resource constraints renders this approach
computationally intractable. This is the well-Known
problem of dimensionality of state variables in the
dynamic programming technique. One way to reduce
the M-state variable dynamic programming problem
to a single-state variable problem is through the use
of lagrangian multipliers which incorporate some of
constraints in the objective function, and solve a ser-
ies of lower dimensional state problems sequentially.
Another attempt in this area was based on the con-
cept of surrogate constraints in which some or all of
the constraints were replaced by a single constraint
defined by a linear combination of the original con-
straints. As the result of this transformation, a series
of single constrained problems are solved sequential-
ly. However the problem of duality gaps, which is
likely in case of discrete variables, makes these ap-
proaches somewhat dubious. The other alternative
method to reduce the dimensionality of the state vari-
ables is by employing the "imbedded state" tech-
nique. Although the comparative efficiency of both
the lagrangian and imbedded state approach is a ques-
tionable matter, and probably depends on the struc-
ture of the problem, the latter approach is reported to
be relatively more efficient for NKP,

The use of dynamic programming techniques
for single branch optimization provides a bookkeep-
ing record of returns for different funding levels
which can be used for the overall distribution of
funds, in an optimal manner, throughout different in-
dustrial branches. Conversely, in the use of 0-1 pro-
gramming for single branch optimization, the overall
distribution of funding levels would be either impos-
sible or a very difficult and time consuming task.
The fact that the 0-1 integer programming model ne-
cessitated by the large number of decision variables,
dose not even facilitate a model to obtain a near-
optimal solution to the single-branch problem is the
best reason for using one of the alternative dynamic
programming based techniques.

Through this research a model will be devel-
oped which will be capable of distributing foreign
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currency funds over a single branch throughout or-
ganization branches and allocating other available re-
sources within each branch.

Problem Discription

consider an organization which is faced with the
problem of allocating budget throughout its different
industrial branches. In particular the scarcement of
foreign currency imposes special consideration to be
paid to this allocation. this organization has catagor-
ized its owned firms into the five distinct branches,
n:amely:

1) Casting and rolling branch.

2) motorized vehicles branch.

3) production machinery branch.

4) pressure vessels and equipments branch.
Each branch may owns more than 30 industrial firms.
Every year a number of firms may propose a set of
capacity expansion and new projects to the executive
committee of their branches. This committee re-
viewes the proposal and based on the attractiveness of
the proposed investment project and its requirements,
will decide which projects to be selected. However the
decision made by each committee branches may be
adjusted due to the limitation of budget. Hence the fi-
nal decision on the selection of projects is made by a
top committee in the organization based on the avail-
ability of budget. Which indeed allocates the budget
levels throughout the entire branches.

Until recently the process of allocating resourc-
es in each branch and allocation of budget through the
entire branches is performed subjectively without use
of a systematic approach. Therefore it was a need to
employ a systematic way of allocating available re-
sources.

As an early attempt to resolve the allocation
problem, we considered each branch individually and
developed a knapsack model in the form of 0-1 prob-
lem. This model was able to allocate the available re-
sources in each branch assumming a range for the
amount of fund is predicted (based on previous years)
and the lowest value of this range was used as a bud-
get constraint in the optimization model of each
branch.

The amount of funds in each branch then varied
over this range and the optimization routine was ap-
plied to each funding level. As a result, a vector of
funding levels with its associated vector of optimal
returns was obtained. These two vectors were then
used for the allocation of the total budget among the
branches for the entire organization.

The current approach for distribution of funding
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Abstract

A diverging-branch dynamic programming model is developed to solve the problem of
selecting investment alternatives for each firm in an organization with multi-industrial
branch. A case problem is formulated and solved via a developed hybrid algorithm.The

computational result is also presented.

Introduction

The allocation of funds for the problem of stra-
tegic planning concerning capacity expansion and the
selection of new investment projects requires the use
of a systematic approach to maximize the return of
the investment and to minimize the waste of availa-
ble resources. The strategic objective for the problem
is the selection of optimal investment policy for a
given project in order to maximize the total return of
all investment activities scheduled for the entire or-
ganization in each year.

This is an optimization process, requiring a se-
quence of interrelated decisions in each "industrial
branch" of the organization. Each industrial branch
includes several industrial firms and every year a
number of this firms propose several investment al-
ternatives for their capacity expansion and their new
projects. The problem of allocating resources in an
individual branch can be considered as an optimiza-
tion process in which the objective is to find the best
set of alternative investments policy for each firm
under supervision of this branch, subject to the exist-
ing menpower, equipments, materials, and other
overhead cost limitations in this branch.

The single branch optimization process is a
knapsack type problem with multiple choice con-
straints. An attempt to find a solution to this single
branch optimization problem is to formulate the
problem as a 0-1 integer linear programming model.
As a result a large scale 0-1 problem can be solved
by the use of a heuristic algorithm and a near optimal
solution can be obtained.

The simplest version of the knapsack problem
is called the "one dimensional knapsack problem”
which includes only one resource constraint. A gener-
al version of the knapsack problem is the case where
there are several resource constraints, several sets of
mutually exclusive alternatives, and the objective is
to select the optimal alternative from each set. The
restriction of having only one alternative to be select-
ed from each set adds a set of constraints, called mul-
tiple choice constraints, to the original problem.

One of the earliest potentionally successful re-
search efforts in the area of large scale binary knap-
sack problems is the work of Toyoda and Senju.
They have developed an approximation algorithm
which is capable of generating near optimal solution
to large scale binary knapsack problems in a relative-
ly short computational time.

Nauss developed an algorithmic procedure based
on the idea of lagrangian relaxation to solve a binary
one-dimensional knapsack problem. The idea of
branch and bound (B &B) is implemented in the algo-
rithm in order to find the optimal values of the La-
grangian multipliers. Although the computational ex-
perience with this method has shown that algorithm
is very efficient for large problems, the fact that it
can only solve one-constraint problems limits its ap-
plicability.

Sinha and Zoltners have developed an algorithm
for multiple choice knapsack problems which is re-
ported to be much faster than Nauss method. The ap-
plicability of this method is also limited to single-
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