procedure of dynamic programming algorithms are
varied depending on the structure of modeis to be
applied on, a knapsack type model is used as a
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computations are conducted in four stages. It is to be
noted that, the information regarding the state and
return values at each stage are stored in a matrix called
TS. This matrix consists of M+ 1 columns and a
number of rows which varies for each stage. In
addition another matrix Tj is defined composed of two
columns and the same number of rows as TS Matrix,
where the rows of Tj posses a one to one
correspondence to TS. The first column of Tj Matrix
stores the values of the decision variables, Xj s, and
the second column stores an index number showing the
row number of previous stage from which the current
state is obtained. This column facilitates the
backtracking procedure to obtain the optimal values of
decision variables at each stage.

The flowing are the results obtained by
computational procedure of the hybrid algorithm using
the above mentioned lower and upper bounds:

STAGE 1
TS T1
0 0 0 1 1
6 3 2 2 1
8 4 3 31
9 5 5 4 1
11 7 8 5 1
STAGE 2
TS T2
0 0 0 11
6 3 2 1 2
7 4 3 2 1
9 5 5 1 4
11 7 8 1 5
18 11 11 2 5
21 13 12 3 5

STAGE 3

TS T3
15 12 13 51
19 13 14 3 4
21 14 16 4 4
21 15 17 35
23 16 19 4 5
26 19 21 55

The computation is terminated in step 28. The
optimal return is obtained as R* = 24 and the optimal
solution of variables recorded as X* = (5,1,3,3).

The solution obtained by this procedure is one of
the alternative sloutions to this problem. As it is seen
in table (1), there are two other optimal decision
variables with the same amount of return. They are;
X*=(1,1,5,5),andX*=(1,24,4).

CONCLUSION

In this paper an efficient algorithm is developed to
solve the nontinear discrete optimization probiems. The
concept of imbedded state approach, surrogate
constraint technique, branch and bound procedure, and
updating routine for lower and upper bounds are
incorporated in a dynamic programmming algorithm.

Due to this integeration an efficient algorithmic
procedure called the Hybrid algorithm is developed.
The developed algorithm is capable of reducing the
state space and limits the growth of solution space of
dynamic programming in each iteration. This provides
an extenisve saving in computational time and the
required memory storage of computer to solve & large
problem. Since the behavior and the computational
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Step 25 - If LB; = UB; gb to step 27, otherwise go to
step 26

Step 26 -If j=N go to step 28 , otherwise go to step 11
Step 27 - If j<N , set Xj41, Xj42, ., XN =0 g0 1O
step 29, otherwise go to step 28

Step 28 - Set R* = Max . R (g}) and recover X'y for
K= 1, 2,. N and stop.

Step 29 - Set R™ = UB; and recover X'y fork = 1,2
, -} and stop.

Step 30 - Indicate that the solution is obtained by
surrogate problem , Set R' = UB; and recover X} for
k=1,2,.. N, and stop.

EXAMPLE

Consider the general nonlinear knapsack problem

with the following data:
R1X1)=(0,2,3,5,8)
R2(X2)=(0,3,4,5,6)
R3I(X3)=(0,6,9,11,13)
R4 (X4) = (0,4,7,10,11)
Xi={1,2,3,4,5)
All (X1) =(0,6,8,9,11)
A21 (X1) =(0,3,4,5,7)
Al2(X2y =(0,7,10,12, 14)
A22(X2) =(0,4,6,8,10)
Al3(X3)=(0,8,10,12,15)
A23(X3) = (0,6,8,9,12)
Al4(X4) =(0,5,6,9,10)
A24(X4)=(0,4,8,12,15)
Bl =28
B2 = 28

Solution:

The surrogate problem with the equal weight of
each constraint can be written as below:
RSP = Max. Rj (Xj)

Subject to :
Aj (X)) < B
Xj Sj
Where
AlX)=(0,4,6,7,9).
A2 (X2)y=(0,5,8,10, 12)
A3(X3)y=(0,7,9,10, 13)
Ad(X4) =(0,4,7,10,12)
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Bj=(1,2,3,4,5) forj=1,2,3,4

B =28
The solution to the surrogate prblem is
RSP(28)=27 with the value of X = (5, 1,3, 4 Yfor
the decision variables. However , this solution is not
feasible with respect to the original problem. Thus, a
search must be conducted to obtain the highest RSP
value which is feasible with respect to the original
problem. The result of this search is RSP (25) = 24
which is used as the initial lower bound for the hybrid
algorithm; and thus we have LB = 24 and UB = 27 .
Table (1)presents the final solution of the initial

surrogate problem.

Table (1) . Solution of the surrogate
problem

STATE RETURN X1 X2 X3 X4
0 0 11 1 1
4 4 1 1 1 3
7 7 1 1 1 3
9 9 11 3 1
10 11 1 1 4 1
13 13 11 5 1
13 13 11 3 2
14 15 1 1 4 2
16 16 1 1 3 3
17 18 1 1 4 3
19 19 51 4 1
19 19 11 3 4
20 21 1 1 4 4
22 22 1 1 4 5
23 23 51 4 2
25 24 5 1 3 3
25 24 1 1 5 5
25 24 1 2 4 4
26 26 5 1 4 3
28 27 51 3 4

Using the above initial lower and upper bounds,
the statgewise computations of the algorithm is started.
Since there are four decision variables, the



resource type i if alternative Xj of object j is
selected.

The nonlinear knapsack model rediices the number
of variables and eliminates all the multiple choice
constraints. A promising solution approach to handel
nonlinear version of the knapsack model is dynamic
programming technique. However, this technique
performs very poorly when it is faced with the well-
known problem of dimensionality of state variables.

In this research effort an algorithm is developed
which is capable of solving the general version of
nonlinear knapsack models. The steps to be taken by
the developed algorithm is presented in the next
section.

DEVELOPMENT OF AN ALCORITHM
A General description of the hybrid algorithm is
given below. Steps 1-8 of the algorithm comprise the
solution of the surrogate problem to obtain an initial
lower and upper bounds. If the optimal solution of the
surrogate problem satisfies the feasibility condition of
the main problem, steps 9-29 are discarded and the
final solution will be obtained by step 30; otherwise,
further computations will take place starting from step
9. The computations regarding the [irst stage are
performed through steps 10-11. Steps 11 and 12
comprise the constraction of the imbedded state space.
The reductions in the imbedded state space through
feasibility and dominancy tests are performed by steps
18-22. The lower and upper bounds are updated by
steps 23-24 and the remaining steps comprise the
required tests for termination of the algorithm.

; 1

Step 1 - Set R=0, and ¢; ZMH fort=1,2,., M,

20 a(Xj)

i=1

M M M
Sapbif Y ajb = [2 aibi]

i=1 i=1 ju=1

Step2-Set Aj(Xj)= forj=1,2,..,N

Step3setB ={ [ M
S ab;| + 1 otherwise
i=1

Step 4 - Find the optimal solution to the following
problem ;

N
Max. Rgp (B) = 2 5 (Xj)
j=1
Subject to :
N

S A (%)< B

j=1
Call the solution as X~ and R'sp(B) , and let UBo=
R7sp (B).

N
Step 5 - If 3 a;(X'j) < bj for i =1,2, .. M go to step
j=1

8, otherwise go to step 6.
Step 6 - Set | = 1+1
Step 7 - Let IA3 = B-l and find the optimal solution of
Rsp(é), call this solution X" ,R*sp(ﬁ),and go to step 5.
Step 8 - If 1 > 0, set LBy = R*Sp(é), go to step 9,
otherwise set LBo(B) = UBg(B) , go to step 30.
Step 9 - Let j=1,8=S§;, F§ = G; = {a;1(X]) , and
an(Xj) s - s
ajM(Xj) ; for Xj ¢ S} and r(g)) = { y Xy ! X € S}
Step 10 - Go to step 16.
Step 11- Let j = j+1, §=§; , Kj=K and G; = { gj1(X)
2 (X)) s aM(XS) 5 for X; & S}
Step 12 - Fj = Gj o Fj4
Step 13 - Ff = { g | gieFjand g} < (b, by, .
Bm )}
Step 14 - Rj = { rji | rji = R (gji) +r(Xjyand X je
Sj }
Step 15 - Let F® = { F [ - all the points dominated by
better points}
Step 16- Let the number of points in F;° be KK

Step 17 - Set i=1
N

Step 18 - Let UBY = R(gj) + 2 i (K)

t=j+1
Step 19 - Let UB2Y = R(g}) + Rsp (B -[ B' (g 1)
Step 20 - Let R(g}j) = -1 for those i which statisfy
UB1j < LBj.j or UB2j < LB 4
Step 21 - If i=KK go to step 22 otherwise set i=i+1
and go to step 18
Step 22 - Redefine R(g;) by elimination of all negative
R(g) .
Step 23 - Let UB;j = Min. {Min;. UB2}, UB;j; }
Step 24 - Set LB; = Max . { Max; . R(g})) , LBj1 }
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approach is usually less compared to lagrangian

method, however a unified theory to provide a basis -

for algorithmic procedures using surrogate constraint
methods has not emerged and general computational
applications are waiting a unified theory.

The third attempt is the approach of Morin and
Esogbue {13], who developed an algorithmic procedure
for solving dynamic programming problems by
searching over an imbedded state space at any stages.
Latter Morin and Marsten have shown how the use of
different methods, such as branch & bound, and
imbedded state approaches can be implemented in
dynamic programming for reducing its computational
requirements [14] [15] [16].

In this paper an efficient algorithm to reduce the
dimensionality of state space solution of a dynamic
programming model when it is applied to a discrete
nonlinear knapsack problem is presented. The
developed algorithm is essentially a form of dynamic
programming method. Several algorithmic procedures
such as the concepts of imbedded state, surrogate
constraint, and branch and bound, are incorporated in
the algorithm to increase its computational capability
through the reduction of state space solution vector. A
numerical example is also presented.

THE SCOPE OF MATHEMATICAL
MODEL

the simplest version of the knapsack model is
constructed when we have n objects to be selected but,
because of some limitations, not all can be selected
{20}, [21]. A more general version of the knapsak
model is the case where there are several kinds of
limitations (mostly resources), several sets of mutually
exclusive alternatives for each object, and we are
interested to select one alternative from each set 1,
[17], [18}, [19]. To be more precise, it is assumed that
“no selection" of an object is included in each set of
alternatives. The restriction of having only one
alternative to be selected from each set adds a set of
constraints, called multiple choice constraints, to the
original model.

A zero - one mathematical model for the later case
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can be presented as below:

M N
Max Yo = 21 21 Uij Yij
i= =

subject to

M N
> SCikYj<Bk fork=1,2,.,M
=1 j=1

M
ZlYij=1 for j=12, ..,N
i=

Where

N = total number of objects

T = total number of alternative objects in a set

M = total number of resources

Uij = utility of selecting alternative i of object i

Cijk = amount of usage of resource k when
alternative, i of object j is selected

Ek = total amount of resource k

Yo = total utility earned

Yij = azero -one variable having value one if the

alternative i of object j is selected, and zero
otherwise
An alternative mathemeatical model for this
problem is a discrete nonlinear knapsack model [4],
[11]. This model can be presented in a form of discrete
nonlinear knapsack model as below:
n
Max Xo = 3 Rj (X))
j=1

subject to
n

> Ajj (Xj) < Bi for i= 1,2,..,M
j=1
Xj=1,2,..,Tforj=1,2,.,N
Where
Xj = an integer variable indicating the alternative
number for selection of object j
Rj = an integer valued function indicationg the
amount of return if alternative Xj of object j is
selected
Alj = an integer valued function indicating the
amount of the resource consumption of
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ABSTRACT

Optimization of a discrete nonlinear model suffers from several obstacles, namely
the discontinuity of objective function and constraints, nonconvexity of mathematical
relations, and the existence of inequality constraints. Dynamic programming technique
may consider the only solution approach to this type of models. The use of this
powerful technique however is limited since the growth of the number of variables and
constrainis requires an extensive computer memory storage and computational time.

In this research effort a hybrid algorithm is developed to overcome the mentioned
difficulties. The developed algorithm is basically a dynamic programming solution
approach. The imbedded state technique is incorporated to the algorithm to solve the
problem of dimensionality of dynamic programming approach. To limited the growth
of state space solution the concept of branch and bound is employed. The lower and
upper bound for the optimal solution is calculated by the mean of imbedded state
approach and is updated through the progress of algorithm in each iteration. An

illustrative example is also presented.

INTRODUCTION

Dynamic programming is a well known solution
approach for optimization of a separable function
which provides a global optimal solution even in case
of non convex programming problems. However the
use of this powerful technique for discrete variable
problems has been limited by its excessive computer
memory storage and computational requirements [7].
These computational difficulties become more sever
whenever the state variables are defined by a vector of
more than three dimensions and / or the state variables
are in a lower dimension but the number of
discontinuities of state grows exponantionally in the

algorithmic solution procedures.

Considerable research has deen devoted to
overcome the problem of dimensionality in dynamic
programming techniques. Earlier attempts were made
through employing the concept of lagrangian
mutltipliers [2] [3]. Another attempts in this area was
based on the concept of surrogate constraints [8] [9]
[10]. Both lagrangian and surrogate constraint
framework suffer from existence of the duality gap.
Although the preformed studies by Greenberg [6] [7] ,
Glover [5], Mizukami [12], have shown that the
occurrence and the size of the gap in surrogate
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